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Controlling networks aims to study the models, structures,

and related dynamics of complex networks. The primary

problem of controlling networks is to determine whether

they are controllable. Nowadays, controllability has been

widely studied and applied to system engineering and con-

trol theory, power systems, aerospace, and quantum sys-

tems. Various classical criteria include the Gram matrix

criterion, Kalman rank criterion, and PBH test. Directly

applying these criteria to larger-scale networks will cause

high complexity due to intricate topology structures and

large amounts of calculation.

Various graph products [1] have been widely used to

model graphs that have similar properties to real-world net-

work systems. These products help estimate the proper-

ties of generated graphs and describe specific composite net-

work topologies through using a “small” network to build a

“large” network. Composite networks, consisting of smaller-

scale factor networks, can be analyzed and verified for char-

acteristics like stability, consensus, and controllability by

examining the properties of the factors. Chapman et al. [2]

investigated the controllability of composite networks via

Cartesian products and established a sufficient and nec-

essary controllable condition. Corona products, including

Corona operation, neighborhood Corona operation, and hy-

brid operation, can usually produce more complex compos-

ite graphs with the advantage of tractable analysis and rig-

orous inference, and the process of Corona graph generation

also has a good natural interpretation and argument. In [3],

some descriptive indicators of the Corona network topologies

are obtained, including the spectrum of Corona graphs such

as generalized neighbors, connection spectrum, and Lapla-

cian spectrum. More recently, the controllability of com-

plex networks via Corona product was studied in [4, 5]. In

particular, the controllability of Corona product networks

with N-duplication and Laplacian dynamics was investi-

gated, and the controllability conditions were established.

However, to the best of our knowledge, the controllability

of graph-product networks is still in its early stages. There

are questions about how to properly model large-scale com-

posite networks via graph products, how to select analytical

methods to characterize the controllability of graph-product

networks, and how to reveal the controllability relationship

between the whole network and its factors. In the context of

neighborhood Corona product networks (NCPNs), the con-

trollability problem bears new difficulties and challenges.

This study investigates the controllability problem of

NCPNs. We formulate the neighborhood Corona product

network model and establish controllable criteria. Com-

pared to relevant studies (e.g., [4, 5]), the contributions of

this work are threefold. (i) Different from the Corona prod-

uct network model [4, 5] with Laplacian matrix consisting

of its factors’ Laplacian matrices, the Laplacian matrix of

such model involves not only the factors’ Laplacian matri-

ces but also adjacency matrices, which makes it more diffi-

cult to formulate and characterize the features of the NCPN

by its factors and find the appropriately analytical tech-

niques. (ii) This study considers the connectivity of fac-

tors and discusses its influence on the NCPN controllability,

including connected and disconnected factor graphs, which

differs from the case of only considering the connected factor

graphs in [4, 5]. (iii) Taking advantage of the good features

of regular graphs, the controllability criteria of NCPNs can

be derived in terms of the determinants, eigenvalues, and

eigenvectors of the low-dimensional factors, rather than just

using the classical controllability criteria such as the PBH

test. Here, the new criteria established significantly reduce

computational complexity and improve the efficiency in ap-

plications compared with directly utilizing the PBH test.

This work will help us recognize and understand the syner-

gistic mechanism of networks.

The dynamics of two multiagent networks G1 and G2 un-

der a leader-follower framework are described as follows:

ẋG1
= −L1xG1

+ B1u1, (1a)

ẋG2
= −L2xG2

+ B2u2, (1b)

where xGα
∈ Rnα , Lα ∈ Rnα×nα , uα ∈ Rnα , Bα =

[bαβ ] ∈ Rnα×nα for α = 1, 2 are the states, Laplacian

matrices, control inputs, control matrices of G1 and G2,

respectively. bαβ = eαβ if agent β is a leader, otherwise

bαβ = 0nα , where eαβ denotes the column vector with all

zero entries except for [eαβ ]β = 1, β = 1, 2, · · · , nα. Then
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we have a compact form of the NCPN:

Σ : ẋ = −Lx+ Bu (2)

generated by the r-regular undirected and unweighted G1

and arbitrary undirected and unweighted G2 with

L=

[

L1+n2rIn1
−A1⊗1T

n2

−A1⊗1n2
In1

⊗(L2+rIn2
)

]

, B=

[

B1 0

0 In1
⊗B2

]

, (3)

where L,B ∈ Rn1(1+n2)×n1(1+n2), and 1n2
is the column

vector with all 1.

Lemma 1 ( [3]). Let G = G1⋆G2, where G1 is a con-

nected r-regular graph on n1 > 1 vertices and G2 is arbi-

trary graph on n2 > 2 vertices. Let σ(A1) ={ µ1 = µmax =

r, µ2, · · · , µn1
}, σ(L1) ={ θ1 = r − µ1 = 0, θ2, · · · , θn1

}
and σ(L2) = {η1 = 0, η2, · · · , ηn2

}. Then the eigenval-

ues of the NCPN can be expressed as σ(L)= V1∪ V2 ∪ V3,

where V1 = { λi|λi =
(n2+1)r+θi+

√
∆i

2
, i = 1, 2, · · · , n1 } =

{ λi|λi =
(n2+1)r+θi+

√
∆i

2
, θi 6= r } ∪ {λi|λi =

(n2+1)r+θi+
√

∆i

2
= (n2 + 1)r, θi = r} = V11 ∪ V12 , V2 =

{ λ̂i|λ̂i =
(n2+1)r+θi−

√
∆i

2
, i = 1, 2, · · · , n1 } = { λ̂i|λ̂i =

(n2+1)r+θi−
√

∆i

2
, θi 6= r } ∪ { λ̂i|λ̂i =

(n2+1)r+θi−
√

∆i

2
=

r, θi = r } = V21 ∪ V22 , V3 = { r + ηj , j = 2, · · · , n2 }, and
∆i , ((n2 + 1)r + θi)2 − 4θi((2n2 + 1)r − n2θi).

Proposition 1. The eigenvalues of L have the follow-

ing properties: (i) V1 ∩ V2 = ∅; V12 ∩ V3 = ∅; V12 =

∅ ⇔ θi 6= r (i = 1, 2, · · · , n1); V11 ∩ V12 6= ∅ ⇔ θi = r;

V11 ∩ V3 6= ∅ ⇔ r = 1, ηj = n2, θi = 0 with multiplicity-

1; V11 ∩ V3 = ∅ if G2 is disconnected; (ii) V21 ∩ V22 = ∅;
V21 ∩ V3 = ∅; V22 = ∅ ⇔ θi 6= r (i = 1, 2, · · · , n1);

V22 ∩ V3 = ∅ ⇔ G2 is connected.

Let X1 = 1n1
,X2, · · · ,Xn1

be the orthogonal eigen-

vectors corresponding to eigenvalues µ1, µ2, · · · , µn1
of A1;

Z1 = 1n2
, Z2, · · · , Zn2

be the linearly independent eigen-

vectors corresponding to eigenvalues η1, η2, · · · , ηn2
of L2,

where Z1 is orthogonal to Z2, · · · , Zn2
. Then

[

λi−r

θi−r
Xi

Xi ⊗ 1n2

]

,

[

Xi

0n1n2

]

,

[

λ̂i−r

θi−r
Xi

Xi ⊗ 1n2

]

,

[

0n1

Xi ⊗ 1n2

]

,

[

0n1

eq ⊗ Zj

]

(i ∈ n1 , {1, 2, · · · , n1}, j = 2, · · · , n2, q = 1, 2, · · · , n1)

are the eigenvectors corresponding to λi ∈ V11 , (n2 +1)r ∈
V12 , λ̂i ∈ V21 , r ∈ V22 and r + ηj ∈ V3, respectively.

Theorem 1. Let G2 be connected. Then NCPN (2)

is controllable if and only if the following conditions

are satisfied. (i) (L2,B2) is controllable; (ii) If V12 6=
∅, then

∑m1

p=1 aipX
T
ip
B1 6= 0 (i ∈ n1) holds, where

m1 is the multiplicity of (n2 + 1)r in V12 and arbi-

trary constants ai1 , ai2 , · · · , aim1
are not all zero; (iii) If

V11 ∩ V3 6= ∅, then XT
1 B1 6= 0 or a1X

T
1 ⊗ (1T

n2
B2) +

∑m2

p=1

∑n1

q=1 aqjpe
T
q ⊗ (ZT

jp
B2) 6= 0 (j ∈ n2 , {2, · · · , n2})

holds, where m2 is the multiplicity of ηj and arbitrary con-

stants a1, a1j1 , · · · , a1jm2
, · · · , an1jm2

are not all zero.

Theorem 2. Let G2 be disconnected. Then NCPN (2)

is controllable if and only if the following conditions are

satisfied. (i) If r + ηj1 = r + ηj2 = · · · = r + ηjl ∈ V3,

where l is the multiplicity of ηj , then
∑n1

q=1

∑l
p=1 aqjpe

T
q ⊗

(ZT
jp
B2) 6= 0 (j = 2, · · · , n2) holds, where arbitrary con-

stants a1j1 , · · · , an1j1 , · · · , an1jl are not all zero; (ii) If

V12 6= ∅, then ∑m1

p=1 aipX
T
ip
B1 6= 0 (i ∈ n1) holds, where m1

is the multiplicity of (n2+1)r in V12 and arbitrary constants

ai1 , ai2 , · · · , aim1
are not all zero; (iii) If V22 6= ∅, then

∑m1

s=1 aisX
T
is
⊗(1T

n2
B2)+

∑n1

q=1

∑l′

p=1 aqjpe
T
q ⊗(ZT

jp
B2) 6= 0

(i ∈ n1, j ∈ n2) holds, where m1 and l′ are the multiplicity

of r in V22 and in V3 (as ηj = 0), respectively, and arbitrary

constants ai1 , · · · , aim1
, a1j1 , · · · , an1j1 , · · · , an1jl′

are not

all zero.

Lemma 2. (A1,B1) is controllable if and only if (L1,B1)

is controllable.

Corollary 1. If G2 is connected and NCPN (2) is control-

lable, then (L2,B2) is controllable.

Corollary 2. If G2 is connected, and both (L1,B1) and

(L2,B2) are controllable, then NCPN (2) is controllable.

Corollary 3. If G2 is connected and det(A1) 6= 0 & r 6= 1,

then NCPN (2) is controllable if and only if (L2,B2) is con-

trollable.

Corollary 4. If G2 is disconnected and det(A1) 6= 0 & r+

ηj1 = r + ηj2 = · · · = r + ηjl ∈ V3, where l is the multi-

plicity of ηj , then NCPN (2) is controllable if and only if
∑n1

q=1

∑l
p=1 aqjpe

T
q ⊗ (ZT

jp
B2) 6= 0 (j = 2, · · · , n2) holds,

where arbitrary constants a1j1 , · · · , an1j1 , · · · , an1jl are not

all zero.

Theorems 1 and 2 and Corollaries 1–4 revealed the con-

trollability relationship between the NCPN and its factors,

gave effective criteria and easier approaches to determine

and check the controllability, and further provided insights

to model a composite network. Moreover, the computational

complexity of selecting the new criteria obtained is approxi-

mately O(n4
1) +O(n4

2), while directly using the PBH test it

is approximately O(n4
1n

4
2) operations. Obviously, the new

criteria greatly reduce the computational cost.

The preliminaries are included in Appendix A. The

proofs of Theorems 1 and 2, Proposition 1, Lemma 2 and

some remarks are included in Appendixes B–E, respectively.

Illustrating examples and simulations are presented in

Appendix F.
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