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Appendix A Mathematical preliminaries
A triple G = (V, E,A) consists of a vertex set V, an edge set E and the adjacency matrix A = [aij ] ∈ Rn×n, where D and L ≜ D−A
are the degree matrix and the Laplacian matrix of G, respectively. Throughout this work, we consider undirected and unweighted

graphs, where aij = aji = 1 if (i, j) ∈ E, otherwise 0.

The neighborhood corona product graph G ≜ G1⋆G2 is a class of composite graphs generated by two smaller factor subgraphs

G1 and G2, all vertex-disjoint, with n1 and n2 vertices, n′
1 and n′

2 edges, respectively, which can be obtained by taking one copy of

G1 and n1 copies of G2, and for each i (i = 1, 2, . . . , n1), connecting each neighbourhood of the i-th vertex of G1 to each vertex in

the i-th copy of G2 by a new edge. It is easy to see that the graph G1⋆G2 has n1(1 + n2) vertices and n′
1(1 + 2n2) + n1n

′
2 edges.

Generally speaking, operation ⋆ is not commutative, that is, G1⋆G2 ̸= G2⋆G1. And the connectivity of G1⋆G2 is only determined

by that of G1. A visual example of the neighborhood corona product graph is illustrated as Fig. A1.
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Figure A1 Neighborhood corona product graph of G1 and G2.

Lemma A1. (PBH Test) [4] System (G,Σ) is uncontrollable if and only if there exists a left eigenvector ξ corresponding to

eigenvalue λ of L such that ξTB = 0.

Appendix B Proof of Theorem 1
Sufficiency. From Lemma A1, to prove the controllability of the neighborhood corona product network (NCPN) (2)-(3), we need

to prove that ξTB ≠ 0 for all the left eigenvectors of L. Three cases will be discussed here.

Case (1). Consider the eigenvalues in V1. Firstly, if each λi in V11
is single, its corresponding eigenvector is ξi =

 λi−r

θi−r Xi

Xi ⊗ 1n2


for i ∈ n1. Then, from Lemma A1, we can have

ξ
T
i B =

 λi−r

θi−r Xi

Xi ⊗ 1n2

T B1 0

0 In1 ⊗ B2

 =
[

λi−r

θi−r XT
i B1 XT

i ⊗ (1T
n2

B2)
]
̸= 0, (B1)
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due to XT
i ̸= 0 and 1T

n2
B2 ̸= 0 (since (L2,B2) is controllable and 1T

n2
( ̸= 0) is the left eigenvector corresponding to zero eigenvalue

of L2).

Secondly, if λi in V11
is k-repeated, that is, λi1

= λi2
= · · · = λik

in V11
, ξki =

∑k
p=1 aipξip is the eigenvector corresponding

to λi1 = λi2 = · · · = λik
(i ∈ n1), where arbitrary constants ai1

, ai2
, · · · , aik

are not all zero. So

ξ
k
i

TB =
k∑

p=1

aip

 λip
−r

θip
−r Xip

Xip ⊗ 1n2

T B1 0

0 In1
⊗ B2



=

∑k
p=1 aip

λip
−r

θip
−r Xip∑k

p=1 aipXip ⊗ 1n2

T B1 0

0 In1
⊗ B2


=

[∑k
p=1 aip

λip
−r

θip
−r XT

ip
B1

∑k
p=1 aipX

T
ip

⊗ (1T
n2

B2)

]
̸= 0,

(B2)

due to
∑k

p=1 aipX
T
ip

̸= 0 (since XT
i1

, · · · , XT
ik

are the orthogonal left eigenvectors) and B2 ̸= 0 (since (L2,B2) is controllable).

Thirdly, if V12
̸= ∅, eigenvalue (n2+1)r in V11

(as θ1 = 0) is single and in V12
is m1-repeated. Thus ξ

(m1+1)
i = a1

 −n2X1

X1 ⊗ 1n2

+

∑m1
p=1 aip

 Xip

0n1n2

 (i ∈ n1) is the eigenvector corresponding to (m1 + 1)-repeated eigenvalue (n2 + 1)r in V1, where arbitrary

constants a1, ai1
, ai2

, · · · , aim1
are not all zero. So

ξ
(m1+1)
i

T
B =

−a1n2X1 +
∑m1

p=1 aipXip

a1X1 ⊗ 1n2

T B1 0

0 In1 ⊗ B2


=

−a1n2X
T
1B1 +

m1∑
p=1

aipX
T
ip

B1 a1X
T
1 ⊗ (1

T
n2

B2)


̸= 0,

(B3)

due to
∑m1

p=1 aipX
T
ip

B1 ̸= 0, XT
i ̸= 0 and B2 ̸= 0 (since (L2,B2) is controllable).

Fourthly, if V11 ∩ V3 ̸= ∅, from proposition 1, there must exist a common eigenvalue τ = ηj1 + r = ηj2 + r = · · · = ηjm2
+ r =

n2 +1 ∈ V11
∩V3. Then ξ

(m2+1)
j = a1

 λ1−r
θ1−r X1

X1 ⊗ 1n2

+
∑m2

p=1

∑n1
q=1 aqjp

 0n1

eq ⊗ Zjp

 =

 −a1n2X1

a1X1 ⊗ 1n2
+

∑m2
p=1

∑n1
q=1 aqjpeq ⊗ Zjp


(j ∈ n2) is the eigenvectors corresponding to eigenvalue n2 + 1, where arbitrary constants a1, a1j1 , · · · , a1jm2

, · · · , an1jm2
are

not all zero. So

ξ
(m2+1)
j

T
B =

 −a1n2X1

a1X1 ⊗ 1n2 +
∑m2

p=1

∑n1
q=1 aqjpeq ⊗ Zjp

T B1 0

0 In1 ⊗ B2


=

−a1n2X
T
1 B1 a1X

T
1 ⊗ (1

T
n2

B2) +

m2∑
p=1

n1∑
q=1

aqjpe
T
q ⊗ (Z

T
jp

B2)


̸= 0,

(B4)

since XT
1 B1 ̸= 0 or a1X

T
1 ⊗ (1T

n2
B2) +

∑m2
p=1

∑n1
q=1 aqjpe

T
q ⊗ (ZT

jp
B2) ̸= 0.

Case (2). Consider the eigenvalues in V2. Firstly, if each λ̂i in V21
is single, its corresponding eigenvector is ξ̂i =

 λ̂i−r

θi−r Xi

Xi ⊗ 1n2


for i ∈ n1. Then

ξ̂
T
i B =

 λ̂i−r

θi−r Xi

Xi ⊗ 1n2

T B1 0

0 In1
⊗ B2

 =
[

λ̂i−r

θi−r XT
i B1 XT

i ⊗ (1T
n2

B2)
]
̸= 0, (B5)

due to XT
i ̸= 0 and B2 ̸= 0 (since (L2,B2) is controllable).

Secondly, if λ̂i in V21 is k′-repeated, that is, λi1 = λi2 = · · · = λi
k′ in V21 , its corresponding eigenvector is ξ̂k

′
i =

∑k′
p=1 aip ξ̂ip

(i ∈ n1), where arbitrary constants ai1
, ai2

, · · · , ai
k′ are not all zero. So

ξ̂
k′
i

T
B =

k′∑
p=1

aip

 λ̂ip
−r

θip
−r Xip

Xip ⊗ 1n2


T B1 0

0 In1
⊗ B2


=

[∑k′
p=1 aip

λ̂ip
−r

θip
−r XT

ip
B1

∑k′
p=1 aipX

T
ip

⊗ (1T
n2

B2)

]
̸= 0,

(B6)

due to
∑k′

p=1 aipX
T
ip

̸= 0 (since XT
i1

, · · · , XT
i
k′ are the orthogonal left eigenvectors) and B2 ̸= 0 (since (L2,B2) is controllable).
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Thirdly, if V22 ̸= ∅, eigenvalue r in V22 is m1-repeated. Thus ξ̂
m1
i =

∑m1
p=1 aip

 0n1

Xip ⊗ 1n2

 (i ∈ n1) is the eigenvector

corresponding to m1-repeated eigenvalue r in V22
, where arbitrary constants a1, ai1

, ai2
, · · · , aim1

are not all zero. So

ξ̂
m1
i

TB =

m1∑
p=1

aip

 0n1

Xip ⊗ 1n2

T B1 0

0 In1
⊗ B2

 =
[
0T
n1

∑m1
p=1 aipX

T
ip

⊗ (1T
n2

B2)
]
̸= 0, (B7)

due to
∑m1

p=1 aipX
T
ip

̸= 0 (since XT
i1

, · · · , XT
im1

are the orthogonal left eigenvectors) and B2 ̸= 0 (since (L2,B2) is controllable).

Case (3). Consider the eigenvalues in V3. Firstly, if each r + ηj in V3 is single, its corresponding eigenvector is ξj =

 0n1

eq ⊗ Zj


(j = 2, 3, . . . , n2). Then

ξ
T
j B =

 0n1

eq ⊗ Zj

T B1 0

0 In1
⊗ B2

 =
[
0
T
n1

e
T
q ⊗ (Z

T
j B2)

]
̸= 0, (B8)

since (L2,B2) is controllable.

Secondly, if r + ηj in V3 is k′′-repeated, that is, r + ηj1
= r + ηj2

= · · · = r + ηj
k′′ ∈ V3, its corresponding eigenvector is

ξk
′′

j =
∑n1

q=1

∑k′′
p=1 aqjp

 0n1

eq ⊗ Zjp

 (j = 2, · · · , n2), where arbitrary constants a1j1 , · · · , a1j
k′′ , · · · , an1j

k′′ are not all zero. So

ξ
k′′
j

T
B =

n1∑
q=1

k′′∑
p=1

aqjp

 0n1

eq ⊗ Zjp

T B1 0

0 In1
⊗ B2


=

[
0T
n1

∑n1
q=1

∑k′′
p=1 aqjpe

T
q ⊗ (ZT

jp
B2)

]
=

[
0
T
n1

∑k′′
p=1 a1ipZ

T
jp

B2
∑k′′

p=1 a2ipZ
T
jp

B2 · · ·
∑k′′

p=1 an1ipZ
T
jp

B2

]
̸= 0,

(B9)

since (L2,B2) is controllable.

In summary, the NCPN (2)-(3) is controllable combining with equations (B1)-(B9).

Necessity. If the NCPN (2)-(3) is controllable, then ξTB ̸= 0 for all the left eigenvectors of L and B ̸= 0. From equation (B8)

and equation (B9), if ξTj B ≠ 0 and ξk
′′

j

T
B ≠ 0 for j = 2, · · · , n2, obviously, ZT

j B2 ̸= 0 and ZT
jp

B2 ̸= 0. As j = 1, we can have

ZT
1 B2 = 1Tn2

B2 ̸= 0. Therefore, ZT
j B2 ̸= 0 and ZT

jp
B2 ̸= 0 for j = 1, 2, · · · , n2, Thus, (L2,B2) is controllable. From equation (B3),

if V12
̸= ∅ and ξ

(m1+1)
i

T
B ̸= 0, then −a1n2X

T
1 B1 +

∑m1
p=1 aipX

T
ip

B1 ̸= 0 or a1X
T
1 ⊗ (1T

n2
B2) ̸= 0, for arbitrary constants a1 and

ai1
, · · · , aim1

(not all zero), which implies that
∑m1

p=1 aipX
T
ip

B1 ̸= 0 as a1 = 0. Finally, from equation (B4), if V11
∩ V3 ̸= ∅, and

ξ
(m2+1)
j

T
B ≠ 0, then XT

1 B1 ̸= 0 or a1X
T
1 ⊗(1T

n2
B2)+

∑m2
p=1

∑n1
q=1aqjpe

T
q⊗ (ZT

jp
B2) ̸= 0 (j ∈ n2).

Appendix C Proof of Theorem 2

Sufficiency. Similar to the proof of Theorem 1, three cases will also be discussed in the following.

Case (1). Consider the eigenvalues in V3. If ς = r + ηj1
= r + ηj2

= · · · = r + ηjl
∈ V3, its corresponding eigenvector is

ξlj =
∑n1

q=1

∑l
p=1 aqjp

 0n1

eq ⊗ Zjp

 (j = 2, · · · , n2), where arbitrary constants a1j1 , · · · , a1jl
, · · · , an1jl

are not all zero. So

ξ
l
j

TB =

n1∑
q=1

l∑
p=1

aqjp

 0n1

eq ⊗ Zjp

T B1 0

0 In1
⊗ B2


=

[
0T
n1

∑n1
q=1

∑l
p=1 aqjpe

T
q ⊗ (ZT

jp
B2)

]
=

[
0
T
n1

∑l
p=1 a1ipZ

T
jp

B2
∑l

p=1 a2ipZ
T
jp

B2 · · ·
∑l

p=1 an1ipZ
T
jp

B2

]
̸= 0,

(C1)

and B2 ̸= 0, since
∑n1

q=1

∑l
p=1 aqjpe

T
q ⊗ (ZT

jp
B2) ̸= 0.

Case (2). Consider the eigenvalues in V1. If V12 ̸= ∅, then
∑m1

p=1 aipX
T
ip

B1 ̸= 0 (i ∈ n1) holds, which can be proved similar to

that of Theorem 1, here omitted.

Case (3). Consider the eigenvalues in V2. If λ̂i is in V21 , the proof is similar to that of Theorem 1. If V22 ̸= ∅, then eigenvalue r in

V22
is m1-repeated and in V3 (as ηj = 0) is l′-repeated, and hence ξ

m1l′
ij =

∑m1
s=1 ais

 0n1

Xis ⊗ 1n2

+
∑n1

q=1

∑l′
p=1 aqjp

 0n1

eq ⊗ Zjp

 = 0n1∑m1
s=1 aisXis ⊗ 1n2

+
∑n1

q=1

∑l′
p=1 aqjpeq ⊗ Zjp

 (i ∈ n1, j ∈ n2) is the eigenvector corresponding to (m1 + l′)-repeated eigen-
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value r in V22 ∩ V3, where arbitrary constants ai1 , · · · , aim1
, a1j1 , · · · , an1j1 , · · · , an1j

l′
are not all zero. So

ξ
m1l′
ij

T
B =

 0n1∑m1
s=1 aisXis ⊗ 1n2 +

∑n1
q=1

∑l′
p=1 aqjpeq ⊗ Zjp

T B1 0

0 In1 ⊗ B2


=

0
T
n1

m1∑
s=1

aisX
T
is

⊗ (1
T
n2

B2) +

n1∑
q=1

l′∑
p=1

aqjpe
T
q ⊗ (Z

T
jp

B2)


̸= 0,

(C2)

due to
∑m1

s=1 aisX
T
is

⊗ (1T
n2

B2) +
∑n1

q=1

∑l′
p=1 aqjpe

T
q ⊗ (ZT

jp
B2) ̸= 0.

In summary, the NCPN (2)-(3) is controllable combining with equations (C1)-(C2).

Necessity. If the NCPN (2)-(3) is controllable, then ξTB ̸= 0 for all the left eigenvectors of L and B ̸= 0. From equation (C1),

obviously, ξlj
TB ≠ 0 (j = 2, · · · , n2), then

∑n1
q=1

∑l
p=1 aqjpe

T
q ⊗ (ZT

jp
B2) ̸= 0 (j = 2, · · · , n2). From equation (B3), if V12 ̸= ∅ and

ξ
(m1+1)
i

T
B ≠ 0, then −a1n2X

T
1 B1 +

∑m1
p=1 aipX

T
ip

B1 ̸= 0 or a1X
T
1 ⊗ (1T

n2
B2) ̸= 0, for arbitrary constants a1 and ai1 , · · · , aim1

(not all zero), which implies that
∑m1

p=1 aipX
T
ip

B1 ̸= 0 as a1 = 0. Finally, from equation (C2), if V22
̸= ∅, and ξ

m1l′
ij

T
B ̸= 0, then∑m1

s=1 aisX
T
is

⊗ (1T
n2

B2) +
∑n1

q=1

∑l′
p=1 aqjpe

T
q ⊗ (ZT

jp
B2) ̸= 0 for arbitrary constants ai1

, · · · , aim1
, a1j1

, · · · , an1j1
, · · · , an1j

l′
(not all zero).

Remark 1. Comparing with the conditions of Theorems 1-2, we can find that when G2 is connected, if (L2,B2) is controllable,

the condition (i) of Theorem 2 holds, vice versa.

Remark 2. Theorems 1-2 give simple methods to analyze the controllability of larger-scale composite networks generated by

lower-dimensional factor networks via the neighbourhood corona product, which can help us to understand the properties of NCPNs

and be applied into the real scenarios.

Appendix D Proof of Proposition 1
(i) First of all, if V1 ∩ V2 ̸= ∅, there must be λi = λ̂j ∈ V1 ∩ V2, which implies that θi +

√
∆i = θj −

√
∆j . It is obvious to see√

∆i + θi ⩾ 0. And θj −
√

∆j < 0, since

√
∆j =

√
((n2 + 1)r + θj)2 − 4θj((2n2 + 1)r − n2θj)

=
√

(n2 + 1)2r2 − 2θjr(3n2 + 1) + (4n2 + 1)θ2
j

=

√(
(n2 + 1)r −

3n2 + 1

n2 + 1
θj

)2

+

(
4n2 + 1 −

(3n2 + 1)2

(n2 + 1)2

)
θ2
j

>θj .

(D1)

Therefore, V1 ∩ V2 = ∅.
Secondly, if V12

∩ V3 ̸= ∅, then (n2 + 1)r = ηj + r ∈ V12
∩ V3, and hence n2r = ηj ⩽ n2 ⇒ r ⩽ 1 ⇒ θi = r = 1, which

contradicts with the fact θi = 0 or θi = 2, since the Laplacian matrix of G1 must be

 1 −1

−1 1

 as r = 1. Therefore, V12 ∩ V3 = ∅.

Thirdly, it is obvious to know that V12
= ∅ ⇔ θi ̸= r (i = 1, 2, · · · , n1).

Fourthly, if V11
∩ V12

̸= ∅, then θi = r from the definition of V12
. Conversely, if θi = r, it is obvious to know (n2 + 1)r ∈ V12

.

Since θi = 0 ∈ σ(L1) for some i, λi =
(n2+1)r+θi+

√
∆i

2 = (n2 + 1)r ∈ V11
. Therefore, V11

∩ V12
̸= ∅.

Fifthly, if V11
∩ V3 ̸= ∅, there exist λi ∈ V11

and ηj + r ∈ V3, such that λi =
(n2+1)r+θi+

√
∆i

2 = r + ηj . And we can know

√
∆i =

√
((n2 + 1)r + θi)2 − 4θi((2n2 + 1)r − n2θi)

=
√

((n2 − 1)r + θi)2 + 4n2(r − θi)2

⩾(n2 − 1)r + θi > 0.

(D2)

Based on equation (D2), we can have 2ηj = (n2−1)r+θi+
√
∆i>2(n2−1)r+2θi, and (n2−1)r+θi< ηj ⩽ n2 ⇒ (n2−1)r+θi<n2 ⇒

(n2 − 1)r<n2 ⇒ r<
n2

n2−1 ⇒ r = 1, since 0 ⩽ ηj ⩽ n2 and 0 ⩽ θi. Because G1 is connected and r = 1, σ(L(G1)) = {0, 2}, but

θi = 2 should be given up, which contradicts with the fact that (n2 − 1)r + 2 = (n2 − 1)1 + 2<n2,therefore, θi = 0. Furthermore,

put r = 1 and θi = 0 into λi =
(n2+1)r+θi+

√
∆i

2 = r + ηj , we can have λi = n2 + 1 = 1 + ηj , so ηj = n2. Therefore, the result

holds. Conversely, V11
∩ V3 ̸= ∅ is clearly true if r = 1, ηj = n2 and θi = 0 with multiplicity-1. Specially, if G2 is a disconnected

graph, it is easy to get 0 ⩽ ηj <n2, which implies that V11
∩ V3 = ∅.

(ii) Firstly, If V21
∩V22

̸= ∅, then ∃λ̂i ∈ V21
, such that λ̂i =

(n2+1)r+θi−
√

∆i
2 = r ∈ V21∩V22 , and hence (n2−1)r+θi−

√
∆i = 0,

which contradicts with equation (D2).

Secondly, if V21 ∩ V3 ̸= ∅, ∃λ̂i ∈ V21 and r + ηj ∈ V3, such that λ̂i =
(n2+1)r+θi−

√
∆i

2 = r + ηj ∈ V21 ∩ V3, which implies that

2ηj = (n2 − 1)r + θi −
√
∆i < 0 from equation (D2). It contradicts with the fact ηj ⩾ 0.

Thirdly, from the definition of V22
, it is easy to get V22

= ∅ ⇔ θi ̸= r (i = 1, 2, · · · , n1).

Fourthly, if V22
∩ V3 ̸= ∅, ∃λ̂i ∈ V22

and ηj + r ∈ V3, such that λ̂i =
(n2+1)r+θi−

√
∆i

2 = r = ηj + r ∈ V22 ∩ V3, then ηj = 0 for

j ∈ n2, so G2 is disconnected, and we can get V22
∩V3 = ∅ when G2 is connected. Conversely, if G2 is disconnected, then ηj = 0 for

j ∈ n2 and r = ηj + r ∈ V22
∩ V3 ̸= ∅, therefore we can get G2 is connected when V22

∩ V3 = ∅. In summary, V22
∩ V3 = ∅ ⇔ G2 is

connected.
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Appendix E Proof of Lemma 2
Since X1, X2, · · · , Xn1 are the orthogonal eigenvectors of A1 corresponding to eigenvalues µ1, µ2, · · · , µn1 , we can have XT

i A1 =

µiX
T
i . Then

rX
T
i − X

T
i A1 = X

T
i rIn1

− µiX
T
i

= X
T
i (rIn1 − A1)

= (r − µi)X
T
i ,

(E1)

and hence XT
i L1 = (r − µi)X

T
i = θiX

T
i , which implies that X1, X2, · · · , Xn1

are also the eigenvectors of L1 corresponding to

eigenvalues θ1, θ2, · · · , θn1 . Therefore, A1 and L1 have the same orthogonal eigenvectors, which means that the controllability of

(A1,B1) is equivalent to that of (L1,B1).

Remark 3. Note that if det(A1) ̸= 0 ⇔ µi ̸= 0 ⇔ θi ̸= r, then we can know that V12
= ∅, V22

= ∅ and V11
∩ V3 = ∅ (as r ̸= 1)

according to proposition 1. Based on these, combining with Lemma 2, Theorems 1-2, some simpler controllable conditions of the

NCPN (2)-(3) can be obtained, which are easier to check, compute and design the network structures.

Appendix F Examples and simulations
Example 1. A NCPN shown is shown in Fig. F1, where G2 is connected.

=⋆

1
G

2
G

1
G

2
G⋆1

G
2

G⋆

Figure F1 A NCPN of G1 and G2 for Example 1.

Let

A1 =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , L1 =


2 −1 −1 0

−1 2 0 −1

−1 0 2 −1

0 −1 −1 2

 , L2 =


1 −1 0

−1 2 −1

0 −1 1

 , B1 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , B2 =


1 0 0

0 0 0

0 0 0

 ,

then

L =

 L1 + 6I4 −A1 ⊗ 1T
3

−A1 ⊗ 13 I4 ⊗ (L2 + 2I3)

 , B =

B1 0

0 I4 ⊗ B2

 .

By calculation, the eigenvalues and the corresponding eigenvectors of L1 and L2 are respectively


θ1 = 0,

θ21 = 2,

θ22 = 2,

θ3 = 4,


X1 = e1 + e2 + e3 + e4,

X21
= −e1 + e2 − e3 + e4,

X22
= e1 + e2 − e3 − e4,

X3 = e1 − e2 − e3 + e4,

and 
η1 = 0,

η2 = 1,

η3 = 3,


Z1 = e1 + e2 + e3,

Z2 = e1 − e3,

Z3 = e1 − 2e2 + e3.

Furthermore, V11 = {8, 6 + 2
√
7}, V12

= {8, 8}, V21
= {0, 6 − 2

√
7}, V22

= {2, 2}, V3 = {3, 3, 3, 3, 5, 5, 5, 5} and rank(L2,B2) = 3,

hence V11
∩ V12

̸= ∅, V11
∩ V3 = ∅, (L2,B2) is controllable, and (a21

XT
21

+ a22
XT

22
)B1 =

[
−a21

+ a22
a21

+ a22
0 0

]
̸= 0, which

satisfy the conditions of Theorem 1, therefore, this NCPN is controllable.
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Fig. F2 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are

denoted as ⋆ in G1 and ◦ in G2, respectively, and Letter ‘N’ shows the final configuration (the desired state, denoted as ▷).
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Figure F2 Letter ‘N’ configuration for G in Example 1.

Example 2. A NCPN shown is shown in Fig. F3 where G2 is connected. Let

=⋆

1
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2
G

1
G

2
G⋆1

G
2
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Figure F3 A NCPN of G1 and G2 for Example 2.

A1 =

0 1

1 0

 , L1 =

 1 −1

−1 1

 , L2 =


1 −1 0

−1 2 −1

0 −1 1

 , B1 =

1 0

0 1

 , B2 =


1 0 0

0 1 0

0 0 0

 ,

then

L =

 L1 + 3I2 −A1 ⊗ 1T
3

−A1 ⊗ 13 I2 ⊗ (L2 + I3)

 , B =

B1 0

0 I2 ⊗ B2

 .

By calculation, the eigenvalues and the corresponding eigenvectors of L1 and L2 are respectively{
θ1 = 0,

θ2 = 2,

{
X1 = e1 + e2,

X2 = −e1 + e2,

and 
η1 = 0,

η2 = 1,

η3 = 3,


Z1 = e1 + e2 + e3,

Z2 = e1 − e3,

Z3 = e1 − 2e2 + e3.
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Furthermore, V11 = {4, 3 +
√
7}, V21 = {0, 3 −

√
7}, V3 = {2, 2, 4, 4} and rank(L2,B2) = 3, hence V12 = ∅, V22 = ∅, V11 ∩ V3 ̸= ∅.

So we can know that (L2,B2) is controllable, XT
1 B1 = [1 2] ̸= 0 and

a1X
T
1 ⊗ (1

T
3 B2) +

2∑
q=1

aq3e
T
q ⊗ (Z

T
3 B2)

=
[
a1 a1 0 a1 a1 0 a1 a1 0

]
+

[
a13 −2a13 0 0 0 0 0 0 0

]
+

[
0 0 0 a23 −2a23 0 0 0 0

]
= [a1 + a13 a1 − 2a13 0 a1 + a23 a1 − 2a23 0 a1 a1 0]

̸= 0,

which satisfy the conditions of Theorem 1, therefore, this NCPN is controllable.

Fig. F4 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are

denoted as ⋆ in G1 and ◦ in G2, respectively, and a ‘rectangle’ shows the final configuration (the desired state, denoted as ▷).
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agent8(G2)

Figure F4 A rectangle configuration for G in Example 2.

Example 3. A NCPN is shown in Fig. F5, where G2 is disconnected.
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Figure F5 A NCPN of G1 and G2 for Example 3.

Let

A1 =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , L1 =


2 −1 −1 0

−1 2 0 −1

−1 0 2 −1

0 −1 −1 2

 , L2 =


1 −1 0

−1 1 0

0 0 0

 , B1 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , B2 =


1 0 0

0 0 0

0 0 1

 ,
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then

L =

 L1 + 6I4 −A1 ⊗ 1T
3

−A1 ⊗ 13 I4 ⊗ (L2 + 2I3)

 , B =

B1 0

0 I4 ⊗ B2

 .

By calculation, the eigenvalues and the corresponding eigenvectors of L1 and L2 are respecively


θ1 = 0,

θ21 = 2,

θ22 = 2,

θ3 = 4,


X1 = e1 + e2 + e3 + e4,

X21
= −e1 + e2 − e3 + e4,

X22
= e1 + e2 − e3 − e4,

X3 = e1 − e2 − e3 + e4,

and 
η1 = 0,

η2 = 0,

η3 = 2,


Z1 = e1 + e2 + e3,

Z2 =
1

2
e1 +

1

2
e2 − e3,

Z3 = −e1 + e2.

Furthermore, V11 = {8, 6 + 2
√
7}, V12

= {8, 8}, V21
= {0, 6 − 2

√
7}, V22

= {2, 2}, V3 = {2, 2, 2, 2, 4, 4, 4, 4}, so V11
∩ V12

̸= ∅ and

V22
∩ V3 ̸= ∅. We can get Z2B2 = [ 12 0 0] ̸= 0, Z3B2 = [−1 0 0] ̸= 0, (a21

XT
21

+ a22
XT

22
)B1 =

[
−a21

+ a22
a21

+ a22
0 0

]
̸= 0,

and

2∑
s=1

a2sX
T
2s

⊗ (1
T
n2

B2) +

4∑
q=1

aq2e
T
q ⊗ (Z

T
2 B2)

=
[
−a21 0 −a21 a21 0 a21 −a21 0 −a21 a21 0 a21

]
+

[
a22 0 a22 a22 0 a22 −a22 0 −a22 −a22 0 −a22

]
+

[
1

2
a12 0 − a12

1

2
a22 0 − a22

3

2
a12 0 − a32

1

2
a42 0 − a42

]
=

[
−a21 + a22 +

1

2
a12 0 − a21 + a22 − a12 a21 + a22 +

1

2
a22 0 a21 + a22 − a22 − a21 − a22

−
1

2
a12 0 − a21

− a22
− a32 a21

− a22
+

1

2
a42 0 a21

− a22
− a42

]
̸= 0,

which satisfy the conditions of Theorem 2, therefore, this NCPN is controllable.

Fig. F6 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are

denoted as ⋆ in G1 and ◦ in G2, respectively, and a ‘rectangle’ shows the final configuration (the desired state, denoted as ▷).
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Figure F6 A rectangle configuration for G in Example 3.

Example 4. A NCPN is shown in Fig. F7.
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Figure F7 A NCPN of G1 and G2 for Example 4.

Let

A1 =


0 1 1

1 0 1

1 1 0

 , L1 =


2 −1 −1

−1 2 −1

−1 −1 2

 , L2 =

 1 −1

−1 1

 , B1 =


0 0 0

0 0 0

0 0 0

 , B2 =

1 0

0 1

 ,

then

L =

 L1 + 4I3 −A1 ⊗ 1T
2

−A1 ⊗ 12 I3 ⊗ (L2 + 2I2)

 , B =

B1 0

0 I3 ⊗ B2

 .

By computing, det(A1) = 2 ̸= 0 ⇔ θi ̸= r, r = 2 ̸= 1, so V12 = ∅, V22 = ∅, V11 ∩ V3 = ∅, and (L2,B2) is controllable (since

rank(L2,B2) = 2), which satisfy the conditions of Corollary 2, therefore, this NCPN is controllable.

Fig. F8 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are

denoted as ⋆ in G1 and ◦ in G2, respectively, and a ‘rectangle’ shows the final configuration (the desired state, denoted as ▷).
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agent2(G1)
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agent7(G2)
agent8(G2)
agent9(G2)

Figure F8 A rectangle configuration for G in Example 4.
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