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Appendix A Mathematical preliminaries

A triple G = (V, £, A) consists of a vertex set V, an edge set € and the adjacency matrix A = [a;;] € R"*™, where D and £ £ D— A
are the degree matrix and the Laplacian matrix of G, respectively. Throughout this work, we consider undirected and unweighted
graphs, where a;; = aj; = 1if (4,7) € €, otherwise 0.

The neighborhood corona product graph G £ G, %Gy is a class of composite graphs generated by two smaller factor subgraphs
G1 and Ga, all vertex-disjoint, with n1 and no vertices, n} and nj edges, respectively, which can be obtained by taking one copy of
G1 and nj copies of Ga, and for each ¢ (¢ = 1,2,...,n1), connecting each neighbourhood of the i-th vertex of G1 to each vertex in
the i-th copy of G2 by a new edge. It is easy to see that the graph Gi1 %Gz has n1(1 + n2) vertices and nj (1 + 2n2) + ninj edges.
Generally speaking, operation s is not commutative, that is, G % G2 # Ga%G1. And the connectivity of G; %Gs is only determined
by that of G1. A visual example of the neighborhood corona product graph is illustrated as Fig. Al.

e

G, G, G, %G,
Figure A1l Neighborhood corona product graph of G; and Gs.

Lemma Al. (PBH Test) [4] System (G,X) is uncontrollable if and only if there exists a left eigenvector £ corresponding to
eigenvalue X of £ such that ¢78 = 0.

Appendix B Proof of Theorem 1

Sufficiency. From Lemma Al, to prove the controllability of the neighborhood corona product network (NCPN) (2)-(3), we need
to prove that €78 # 0 for all the left eigenvectors of £. Three cases will be discussed here.

A;—r
Case (1). Consider the eigenvalues in V1. Firstly, if each A; in Vi, is single, its corresponding eigenvector is §; = Oi—r =t
Xi ® 1y,
for 4 € n;. Then, from Lemma Al, we can have
T
A —r
=X B1 0 .
= | =[5 xTB xTeal,By)] #0, (B1)
X; ®1p, 0 In, ® B2 K

* Corresponding author (email: huangjunjie@imu.edu.cn, houshengsu@gmail.com)



Bo Liu, et al. Sci China Inf Sci 2

due to XI # 0 and 13:2 Ba # 0 (since (L2, B2) is controllable and 1;1:2 (# 0) is the left eigenvector corresponding to zero eigenvalue
of ﬁg)

Secondly, if A; in Vi, is k-repeated, that is, Aj; = A, = -+ = Ay in Vi, {f = §=1 aipi,ip is the eigenvector corresponding
to Aiy = Xip =+ = )\.;k (i € m), where arbitrary constants a;,,ai,," - ;@) are not all zero. So
X T
k ‘p X B 0
E,]L-CTB:ZU@F Gip—r ip 1
p=1 Xip ® 1n, 0 Iny ®B2
. Xip, =7 T
szl Fip WX'@ By 0 (B2)
ES:I @iy Xip ®1ng 0 Iny ®B>
PU—
k i T k T T
—[Shyay X0 Th XD 0 LL6)|
# 0,
due to 22:1 ai, XE; # 0 (since X}; g ,XE; are the orthogonal left eigenvectors) and Bz # 0 (since (L2, Bz) is controllable).
—na X
Thirdly, if V1, # 0, eigenvalue (n2+1)r in Vi, (as 01 = 0) is single and in Vi, is mj-repeated. Thus 55m1+1) = a1 240t
X1 ®1p,
m X ) . . . . . .
szll @iy, P (i € m1) is the eigenvector corresponding to (m; + 1)-repeated eigenvalue (nz + 1)r in Vi, where arbitrary
ning
constants ai, @iy, Qig, - ) ipy| ATE not all zero. So
gmi+D T _ —ain2 X1 + 3000 aq, Xy, B 0
‘ a1 X1 ® 1y, 0 In, ®B2
my (B3)
= —aanXlTBl + Z aipXiI;)lﬁ QIX;T ® (12282)
p=1
#0,
due to Z;n:ll aing;)Bl # 0, XiT # 0 and By # 0 (since (L2, B2) is controllable).
Fourthly, if Vi, N V3 # 0, from proposition 1, there must exist a common eigenvalue 7 =1, +r =1, +7="--- = Mimg +7 =
)xl—rX 0
— A1 3 —aina X1
na+1€ Vi, NVs. Then §§7”2+1) =a | 17 +3 02 0k agy "1 = o
X1 ®@1n, eq ® Zj, a1X1 ® 1n, + Zp:l Zq:l Aqjp€q @ Zjy,
(j € m2) is the eigenvectors corresponding to eigenvalue na + 1, where arbitrary constants a1, aij,,- - - 7 @1my > " 1 Gngjm, AT€
not all zero. So
T
E(m2+1)TB _ —ain2 Xy By 0
! a1X1 ® 1y, +Z;n=21 Zsi1 agjpeq ® Zjp 0 In; ® B
mg n (B4)
= |—a1n2XTB; arX{ ® (15, B2)+ > > agje; ® (ZijBQ)
p=1qg=1
#0,
since XTB; #0or a; X7 ® (13:262) + 2;”:21 Z§i1 aqueg ® (Z};Bg) # 0.
S\i—’V‘X_
Case (2). Consider the eigenvalues in Va. Firstly, if each A; in Va2, is single, its corresponding eigenvector is §; = O3 —r
Xi ®@1n,
for i € n;. Then
N T
A;—r
N L X, B1 0 S
fp=| o = [3=exrB xT@alB)] #0, (B5)
Xi®1n2 0 Inl ®82 4
due to XTI # 0 and Bz # 0 (since (L2, B2) is controllable).
Secondly, if s in Vo, is k’-repeated, that is, Aig =i =+ = )\ik/ in V3, its corresponding eigenvector is éf/ = i,=1 aipéip
(i € n1), where arbitrary constants @iys Qig, =", @iy, Are not all zero. So
K o 0
! T ;i
&= e, [T | |
=1 Xip ® 1n, 0 I, ®B2
- (B6)
— K/ Nip " T K’ T T
= [szl ai, #X%Bl szl aipXip ® (1n282)
#0,
due to E’;/:l ai, X,?; # 0 (since Xg; yee ,XE;I are the orthogonal left eigenvectors) and Bz # 0 (since (L2, Bz) is controllable).
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« 0
Thirdly, if Va, # 0, eigenvalue 7 in Va, is mi-repeated. Thus ' = Z:;ll ai, " (i € ny) is the eigenvector
Xip @ 1ny
corresponding to mi-repeated eigenvalue r in Va,, where arbitrary constants a1, a;,, @iy, "+, @iy, are not all zero. So
my
N 0 B 0
T _ ny 1 — [T my T T
EMTR=\"g, = [o S, XE @@ 82)] #0, (B7)
! ;72::1 P Xip, ®1n, 0 In, ® B2 " v P "2
due to 2;":11 a, X;I;) # 0 (since XlT1 v XiTm1 are the orthogonal left eigenvectors) and Bs # 0 (since (L2, B2) is controllable).
. . . . . . - . . . . 0n,
Case (3). Consider the eigenvalues in V3. Firstly, if each r 4+ n; in V3 is single, its corresponding eigenvector is §; =
eq ® Zj
(7 =2,3,...,n2). Then
T
0 B1 0
e&'B= ™1 = [051 er ® (ZJTB2)] #£0, (B8)
eq® Zj 0 I"l ® Ba
since (L2, Bz) is controllable.
Secondly, if » + n; in V3 is k"' -repeated, that is, r + Njp =7 +Njp =+ =1+ Nijperr € Vs, its corresponding eigenvector is
vz ny P 0ny X .
& =20k =1 Gadp (j = 2,--+,n2), where arbitrary constants ai;,,- - - @1, Gnyj,,, are not all zero. So
eq ® ij ’
ny k' T
W T 05, Bi 0
& B=22 auy
g=1p=1 eq ® Zj, 0 In, ® B2
— K"
= [0, St s ags,el @ (2] Ba)| (B9)
T K’ T K T k' T
= [0"1 p=1 lip ijB2 szl A2ip ij By - p=19Anyip ijBZ}

RN

0,

since (L2, B2) is controllable.
In summary, the NCPN (2)-(3) is controllable combining with equations (B1)-(B9).
Necessity. If the NCPN (2)-(3) is controllable, then ¢7B # 0 for all the left eigenvectors of £ and B # 0. From equation (BS8)

T
and equation (B9), if 5;8 # 0 and f?ﬂ B # 0 for j = 2,--- ,ng, obviously, Z]TBQ # 0 and Z]?;D B2 # 0. As j = 1, we can have
zrB, = 152 By # 0. Therefore, Z] By # 0 and ZJ.TPB2 #0forj=1,2,---,ng, Thus, (L2, Bz) is controllable. From equation (B3),
T
if Vi, # 0 and §£m1+1) B # 0, then 7a1n2X£‘FBl + Z:L:ll aing;Bl # 0 or alX;‘F ® (15282) # 0, for arbitrary constants a; and
Qigs s Qi (not all zero), which implies that Z;nzll ai,ng;Bl # 0 as a; = 0. Finally, from equation (B4), if V1; NV3 # 0, and
T
£§m2+1> B #0, then X{B1 # 0 or a1X{ @ (1% Ba)+> 72 501 1 agj,eq® (ijpzsz) #0 (j € na).

Appendix C Proof of Theorem 2

Sufficiency. Similar to the proof of Theorem 1, three cases will also be discussed in the following.

Case (1). Consider the eigenvalues in V3. If ¢ = r+mn;, =r+mn, = - =7+ nj, € Vs, its corresponding eigenvector is
0
{é = Z:il i)zl Aqjp " (j =2,--+ ,n2), where arbitrary constants @14y, ,Q15,, " ,Gnqj, are not all zero. So
eq ® ij
T
s 1
1 T Onl By 0
£ B= QAqj
J q;p; Pleq® 25, 0 In, ®@Bs
T . 1 T T
= {Onl Z;il 2 pe1 Ggipeq ® (ij62)] (C1)
— o7 l T i T 1 T
=[0f, Sl e, ZhB: Y_ias, 2l By oo XL ani, 20 B

AN

0,

and By # 0, since 301, 320 agj,el @ (ijsz) #0.

Case (2). Consider the eigenvalues in Vi. If Vi, # 0, then Z;":ll ai, XE;) B1 # 0 (i € n1) holds, which can be proved similar to
that of Theorem 1, here omitted.

Case (3). Consider the eigenvalues in V. If X; is in V3, , the proof is similar to that of Theorem 1. If Va2, # 0, then eigenvalue r in
05y

’ 0 ’
Vs, is my-repeated and in V3 (as n; = 0) is l’-repeated, and hence 53’;” =" a, " +Z:i1 2221 Aqjp =
Xis ® 1n2 eq ® ij
0,,

mq . ) ni 1 ) .
et @ig Xig @ Iny + Zq:l p=1%4qjp€q & Zj,

1 € ni, J € ng) is the eigenvector corresponding to (mi1 + [ )-repeated eigen-
i € n1, j € ny) is the ei ding t G d ei
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value 7 in Va, N V3, where arbitrary constants a; ,-- -, Qigy 5 Q15157 " 5 Onygyy " 5 Gnyjy, ATe not all zero. So

T
57".’11/TB -~ On,y ) By 0
ij m n 1
25:11 ais Xiy ® 1., + Eqil Zp:1 Ggjpeq @ ij 0 In1 ® B2
my ny U (C2)
T 77
= |0, Zalsxtb ®(1n282)+zzawp €q jpBQ)
q=1p=1
#0,

due to 7 a;, XT ® (17, B2) + 500, S0 ags, el ® (2] Ba) #0.

In summary, the NCPN (2)-(3) is controllable combmmg w1th equations (C1)-(C2).

Necessity. If the NCPN (2)-(3) is controllable, then ¢7B # 0 for all the left eigenvectors of £ and B # 0. From equation (C1),
obviously, &,"B #0 (j =2,--+ ,n2), then 301, 3L agj, el @ (2] »B2) #0(j =2, ,n2). From equation (B3), if V1, # 0 and

§(m1+1) B # 0, then 7a1n2X1 Bi + Zmll ale Bi # 0 or ale ® (lT Bz) # 0, for arbitrary constants a; and a;,, - -

s

s Qimy
T

(not all zero), which implies that Zp 1 aLpXipBl # 0 as a; = 0. Finally, from equation (C2), if V2, # 0, and 5211 B # 0, then

PN aiinS ® (lnsz) + Zq=1 p:l aquez ® (Z};Bz) # 0 for arbitrary constants ai;, =+, Gy 5 G157, * 05 Gnygps s Any gy

(not all zero).

Remark 1. Comparing with the conditions of Theorems 1-2, we can find that when G» is connected, if (L2, B2) is controllable,
the condition (i) of Theorem 2 holds, vice versa.

Remark 2. Theorems 1-2 give simple methods to analyze the controllability of larger-scale composite networks generated by
lower-dimensional factor networks via the neighbourhood corona product, which can help us to understand the properties of NCPNs
and be applied into the real scenarios.

Appendix D Proof of Proposition 1

(i) First of all, if V43 N Vo # 0, there must be \; = 5\]- € Vi N Vo, which implies that 6; + vVA; = 6; — \/A;. It is obvious to see
VA;+6; 20. And 0; — \/A; < 0, since

VA; =\/((n2 + 1)r +6;)2 — 46;((2n + 1)r — n2b;)
:\/(m +1)2r2 — 20;7(3n2 + 1) + (40 + 1)62

3ns +1 2 (377,2 =+ 1)2
= )yr — ——80; 4 1———2 )62
\/(("2 + r 2+ 1 .7) + ( na + (2 +1)2 ) 3

(D1)

>0;.

Therefore, V13 N Vo = 0.

Secondly, if Vi, N'Vz # @, then (n2 4+ 1)r = n; +r € Vi, N V3, and hence nar = n; < n2 = r < 1= 60; = r = 1, which

-1
contradicts with the fact 6; = 0 or 6; = 2, since the Laplacian matrix of G; must be as r = 1. Therefore, V12 NVs =0.
-1
Thirdly, it is obvious to know that Vi, =0 & 0; #r (i =1,2,--- ,n1).
Fourthly, if Vi; N Vi, # 0, then 6; = r from the definition of Vi,. Conversely, if §; = r, it is obvious to know (nz + 1)r € Vi,.

Since ; = 0 € (L) for some 7, A; %' = (n2 + 1)r € V1, . Therefore, V1; N Vi, 75 0.
(n2+1)r+e +A;
Fifthly, if Vi, N V3 # 0, there exist A; € V1; and n; +r € V3, such that \; = ——5—"—— = r 4+ 7n;. And we can know

VA; =\/((n2 + D)r + 6,)2 — 46,((2n2 + Dr — n26;)
:\/((n2 —1)r 4 0;)2 + dna(r — 0;)2 (D2)
>(ne — 1)r+6; > 0.

Based on equation (D2) we can have 21; = (n2—1)r+0; +v/A;>2(na—1)r+26;, and (no—1)r+60; < n; < n2 = (ne—1)r+0,<ns =
(n2 — 1)r<ng = r<4 21 = r =1, since 0 < n; < ng and 0 < 6;. Because G; is connected and r = 1, o(£(G1)) = {0,2}, but
6; = 2 should be glven up, which contradicts with the fact that (ny — 1)r + 2 = (n2 — 1)1 4+ 2<nq,therefore, §; = 0. Furthermore,
put » = 1 and 6; = 0 into \; M = r + 1, we can have \; = na + 1 = 1+ 7n;, so n; = na. Therefore, the result
holds. Conversely, Vi; N V3 # (B is clcarly true if r = 1, n; = n2 and 0; = 0 with multiplicity-1. Specially, if G> is a disconnected
graph, it is easy to get 0 < n; <ng, which implies that Vi, NV = 0.
R % (o )r46,—/A; _
(47) Firstly, If Vo, NV, # 0, then 3A; € Vo, such that \; = ~———5—"—— =1 € V2, NVa,, and hence (n2—1)r+0;,—V/A; = 0,
which contradicts with equation (D2).
S (712+1)r+9 —\/7 o
econdly, if V2, NV3 # 0, 3/\ € V2, and r +n; € V3, such that /\ ——————"——"* =r+mn; € V2; NV, which implies that
2n; = (na — 1)r 4+ 0; — v/A; < 0 from equation (D2). It contradicts with the fact n; = 0.
Thirdly, from the definition of Va,, it is easy to get Vo, =0 < 0; #r (i =1,2,--- ,n1).
Fourthly, if V2, NV # 0, EIS\i € Va, and n; + 7 € V3, such that j\i = w =r=mn;+r € Va2, N V3, then n; =0 for
j € na, so Gz is disconnected, and we can get Vo, NV3 = ® when G5 is connected. Conversely, if G» is disconnected, then n; = 0 for

j €ngand r=mn;+r € Vo, NV # (), therefore we can get Gz is connected when Va2, N V3 = 0. In summary, Vo, N V3 = 0 < G is
connected.
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Appendix E Proof of Lemma 2

Since X1, X2, -+, Xy, are the orthogonal eigenvectors of A; corresponding to eigenvalues 1, p2,- -« , un,, we can have XiT.Al =
T
piX,; . Then

X7~ XJ AL = XLy — X

= X[ (rlny — A1) (E1)

= (r—m)X/,
and hence XiTﬁl = (r — M)XiT = QiX,iT, which implies that X1, X2,--+, X, are also the eigenvectors of £; corresponding to
eigenvalues 01,0z, - ,0,,. Therefore, A; and £; have the same orthogonal eigenvectors, which means that the controllability of

(A1, B1) is equivalent to that of (L1, B1).

Remark 3. Note that if det(A1) # 0 < i # 0 < 0; # r, then we can know that Vi, =0, Vo, =0 and V1, N V3 = 0 (asr#1)
according to proposition 1. Based on these, combining with Lemma 2, Theorems 1-2, some simpler controllable conditions of the
NCPN (2)-(3) can be obtained, which are easier to check, compute and design the network structures.

Appendix F Examples and simulations
Example 1. A NCPN shown is shown in Fig. F1, where Gs is connected.

G, G, G, *G,

Figure F1 A NCPN of G; and G5 for Example 1.

Let
0110 2 -1 -1 0 1000
1001 12 0 -1 toro 0100 1oo
Ay = , L= , Lo= (-1 2 —-1{, Bi1= , B2=1000],
1001 -1 0 2 -1 0000
0 —1 1 000
0110 0o —1 -1 2 0000
then
= Ly + 61, 7A1®1§ B— B1 0
—A1 ®13 I4 ® (L2 + 213) ' 0 I, ® B2

By calculation, the eigenvalues and the corresponding eigenvectors of £; and Ly are respectively

01 =0, X1 =e1+ex+e3+ey,
02, =2, X2, = —e1+e2 —e3 +eaq,
02, = 2, X2, =e1+e2 —e3 —eq,
03:4, X3 =e; —ex —es3 + ey,
and

m =0, Z1 =e1+extes,

n2 =1, Zy =e1 —e3,

n3 = 3, Z3 = ey — 2es + e3.

Furthermore, Vi, = {8,6 + 2V7}, V1, = {8,8}, V2, ={0,6 — 2V/7}, Vo, = {2,2}, Vs = {3,3,3,3,5,5,5,5} and rank(L2, B2) = 3,
hence Vi, NVi, # 0, Vi, NVz = 0, (L2, B2) is controllable, and (1121X2T1 +a22X2TQ)Bl = {7(121 +az, az; +az, 0 0} # 0, which
satisfy the conditions of Theorem 1, therefore, this NCPN is controllable.
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Fig. F2 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are
denoted as % in G1 and o in G, respectively, and Letter ‘N’ shows the final configuration (the desired state, denoted as 1>).

35 L] L] L] L] L] L] L] ! |

agent1(G1)
agent2(G1)
agent3(G1) |
agent4(G1)
agent5(G2)
agent6(G2) |
agent7(G2)
agent8(G2)
agent9(G2) R
agent10(G2),
agent11(G2),
agent12(G2)|]
agent13(G2),
agent14(G2),
agent15(G2), 1

30

0000000000004

Figure F2 Letter ‘N’ configuration for G in Example 1.

Example 2. A NCPN shown is shown in Fig. F3 where G> is connected. Let

®—@ - O—0—0-= M

G, G, G, *G,

Figure F3 A NCPN of G; and G2 for Example 2.

1 -1 0 100
01 1 -1 10
A = , L= , Lo=|—-1 2 =1, Bi= , B2=1010],
10 -1 1 01
0 -1 1 000
then
- L1+ 31> —A1 ® 1? B— B4 0
—A1®13 I> ® (L2 + I3) ' 0 I> ® B2
By calculation, the eigenvalues and the corresponding eigenvectors of £; and L2 are respectively
61 =0, X1 =e1 +e2,
02 =2, X2 = —e1 +e2,
and
m =0, Z1 =e1+ex+es,
n2 =1, Zy =e1 — ez,
ns =3, Z3 = e1 — 2e2 + e3.
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Furthermore, Vi, = {4,3 + V7}, Vo, = {0,3 — V7}, V3 = {2,2,4,4} and rank(Lz, B2) = 3, hence Vi, = 0, V2, =0, V1, N V3 # 0.
So we can know that (Lz, Bz) is controllable, X7 B; = [1 2] # 0 and

2
aleT ® (1;62) + Z aqgez @ (Z:;TBQ)
=1

=[a1a10a1a10a1a10]+[a13 72a130000000]+[000a237204230000]

=la1 + a13 a1 — 2a13 0 a1 + a23 a1 — 2a23 0 a1 a1 0]

#0,

which satisfy the conditions of Theorem 1, therefore, this NCPN is controllable.
Fig. F4 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are
denoted as % in G1 and o in G2, respectively, and a ‘rectangle’ shows the final configuration (the desired state, denoted as ).

IT T T T T T T T T T
a6 -
44 F g
a2 -
a0k -
>
38 = agent1(G1) n
agent2(G1)
36 O agen3G2)|
o agent4(G2)
34k ° agent5(G2)|
agent6(G2)
32k ° agent7(G2)| =
© agents(G2)
30 = -
L 1 1 1 1 1 1 1 1 1
38 40 42 44 46 48 50 52 54 56

Figure F4 A rectangle configuration for G in Example 2.

Example 3. A NCPN is shown in Fig. F5, where G2 is disconnected.

Gl
Figure F5 A NCPN of G; and Gs for Example 3.
Let

0110 2 -1 -1 0 1000
1 —-10 100

1001 -1 2 0 -1 0100

Ay = y L1= , L2=|-1 1 0|, B1= , Ba=[000],

1001 -1 0 2 -1 0000

0 0 O 001

0110 0 -1 -1 2 0000
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then

L1461 A ®17 B 0
= 1+ 614 1 ®13 B— 1

—A1 ®13 I4 ® (L2 + 213) ' "o LeB

By calculation, the eigenvalues and the corresponding eigenvectors of £; and Ly are respecively

61 =0, X1 =e1 +ex+e3+ey,
02, =2, X2, = —e1+e2 —e3 +eq,
02, = 2, X2, =e€1+e2 —e3 —ea,
03 =4, X3 =e1 —e2 —e3+eq,
and
m=0, Zy = e1 +e2 + ez,
n2 =0, Zy = l81 + l62 —es,
2 2
=2 Z3 = —e1 +ea.

Furthermore, Vi, = {8,6 + 27}, Vi, = {8,8}, Vo, = {0,6 — 2V/7}, Vo, = {2,2}, Va3 = {2,2,2,2,4,4,4,4}, s0o Vi; N Vi, # 0 and
Va, NV # 0. We can get ZaBs =[5 00] # 0, ZsBa = [~1 0 0] # 0, (az, XT, + a2, X1 )5y = [71121 +as, as, +as, 0 0] £0,
and

2 4
Z G.QSX2TS ® (13;282) + Z aqgeg ® (ZZTBQ)

s—=1 g=1

= [7(121 0 70.21 a21 0 agl 70.21 0 70.21 a21 0 agl] + [a22 0 a22 a22 0 a22 70422 0 70.22 70.22 0 70.22]

+ | = 0 — - 0 — - 0 — - 0 —
a a a a a a, a a.
2 12 12 2 22 22 2 12 32 2 42 42

= [—azl + a2, + %CLIQ 0 —a2; +a2, —aiz2 az; +az, + %azz 0 a2, +az2, —aze —az; —asz,
-5 02 0 —a2, —az2, —asz2 a2, —az, + 5042 0 a2, —az, — a42]
# 0,
which satisfy the conditions of Theorem 2, therefore, this NCPN is controllable.

Fig. F6 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are
denoted as % in G1 and o in Gz, respectively, and a ‘rectangle’ shows the final configuration (the desired state, denoted as ).

160 L] L] L] L] *
agent1(G1)
* agent2(G1)
W agent3(G1)
140 * agent4(G1) [T
O agent5(G2)
agent6(G2)
agent7(G2)
120 agents(G2) [T
agent9(G2)
agent10(G2),
agent11(G2),
>100fF agent12(G2)[|
agent13(G2),
agent14(G2),
80k agent15(G2)QL
60 o -
40 '] '] '] 'l
-150 -100 -50 0 50 100

Figure F6 A rectangle configuration for G in Example 3.

Example 4. A NCPN is shown in Fig. F7.
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Figure F7 A NCPN of G; and G2 for Example 4.

Let
011 2 -1 —1 000
1 -1 10
Ai=1|101|, Li=|-1 2 -1, L2= , Bi=1000|, B2= )
-1 1 01
110 -1 -1 2 000
then
_ L1+ 413 —A1® 1; _ B1 0
—A1 @15 I3 ® (Lo +212) | 0 I3 ® B2

By computing, det(A1) =2 #0 & 60; #r, 7 =2# 1,50 Vi, = 0,Va, =0, Vi; N V3 = 0, and (L2, B2) is controllable (since
rank(L2, B2) = 2), which satisfy the conditions of Corollary 2, therefore, this NCPN is controllable.

Fig. F8 represents the all agents’ movement trajectories from the arbitrary initial state to the desired state, where agents are
denoted as % in G1 and o in Gz, respectively, and a ‘rectangle’ shows the final configuration (the desired state, denoted as ).

Y agent1(G1)
agent2(G1)
agent3(G1)
agent4(G2)

O agent5(G2)f
agent6(G2)
agent7(G2)

O agent8(G2)[|

QO agento(G2

45

35

54 56

Figure F8 A rectangle configuration for G in Example 4.
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