. Supplementary File .

Controllability of neighborhood corona product networks

Bo LIU¹, Xuan LI¹, Qiang ZHANG², Junjie HUANG^{2*} & Housheng SU^{3*}

 1 Ministry of Education Key Laboratory for Intelligent Analysis and Security Governance of Ethnic Languages, School of Information Engineering, Minzu University of China, Beijng 100081, China;

 2 School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China;

 $3Key$ Laboratory of Image Processing and Intelligent Control of Education Ministry of China,

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Appendix A Mathematical preliminaries

A triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A})$ consists of a vertex set \mathcal{V} , an edge set \mathcal{E} and the adjacency matrix $\mathcal{A} = [a_{ij}] \in R^{n \times n}$, where \mathcal{D} and $\mathcal{L} \triangleq \mathcal{D} - \mathcal{A}$ are the degree matrix and the Laplacian matrix of G , respectively. Throughout this work, we consider undirected and unweighted graphs, where $a_{ij} = a_{ji} = 1$ if $(i, j) \in \mathcal{E}$, otherwise 0.

The neighborhood corona product graph $\mathcal{G} \triangleq \mathcal{G}_1 \star \mathcal{G}_2$ is a class of composite graphs generated by two smaller factor subgraphs \mathcal{G}_1 and \mathcal{G}_2 , all vertex-disjoint, with n_1 and n_2 vertices, n'_1 and n'_2 edges, respectively, which can be obtained by taking one copy of G_1 and n_1 copies of G_2 , and for each i $(i = 1, 2, \ldots, n_1)$, connecting each neighbourhood of the *i*-th vertex of G_1 to each vertex in the *i*-th copy of \mathcal{G}_2 by a new edge. It is easy to see that the graph $\mathcal{G}_1 \star \mathcal{G}_2$ has $n_1(1 + n_2)$ vertices and $n'_1(1 + 2n_2) + n_1n'_2$ edges. Generally speaking, operation \star is not commutative, that is, $\mathcal{G}_1 \star \mathcal{G}_2 \neq \mathcal{G}_2 \star \mathcal{G}_1$. And the connectivity of $\mathcal{G}_1 \star \mathcal{G}_2$ is only determined by that of G1. A visual example of the neighborhood corona product graph is illustrated as Fig. [A1.](#page-0-0)

Figure A1 Neighborhood corona product graph of \mathcal{G}_1 and \mathcal{G}_2 .

Lemma A1. (PBH Test) [\[4\]](#page-8-0) System (G, Σ) is uncontrollable if and only if there exists a left eigenvector ξ corresponding to eigenvalue λ of $\mathcal L$ such that $\xi^T \mathcal B = 0$.

Appendix B Proof of Theorem 1

Sufficiency. From Lemma [A1,](#page-0-1) to prove the controllability of the neighborhood corona product network (NCPN) (2)-(3), we need to prove that $\xi^T \mathcal{B} \neq 0$ for all the left eigenvectors of \mathcal{L} . Three cases will be discussed here.

Case (1). Consider the eigenvalues in V_1 . Firstly, if each λ_i in V_{11} is single, its corresponding eigenvector is ξ_i Г \mathbf{I} $\frac{\lambda_i-r}{\theta_i-r}X_i$ $X_i \otimes \mathbf{1}_{n_2}$ 1 \mathbf{I}

for $i \in n_1$. Then, from Lemma [A1,](#page-0-1) we can have

$$
\xi_i^T \mathcal{B} = \begin{bmatrix} \frac{\lambda_i - r}{\theta_i - r} X_i \\ X_i \otimes \mathbf{1}_{n_2} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix} = \begin{bmatrix} \frac{\lambda_i - r}{\theta_i - r} X_i^T \mathcal{B}_1 & X_i^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) \end{bmatrix} \neq 0,
$$
\n(B1)

^{*} Corresponding author (email: huangjunjie@imu.edu.cn, houshengsu@gmail.com)

due to $X_i^T \neq 0$ and $\mathbf{1}_{n_2}^T \mathcal{B}_2 \neq 0$ (since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable and $\mathbf{1}_{n_2}^T (\neq 0)$ is the left eigenvector corresponding to zero eigenvalue Subset of λ_i + 0 and $\mathbf{1}_{n_2}$ $\mathbf{1}_{n_2}$ + 0 (since $(\mathcal{L}_2, \mathcal{L}_2)$ is controllable and $\mathbf{1}_{n_2}$
of \mathcal{L}_2).

Secondly, if λ_i in V_{1_1} is k-repeated, that is, $\lambda_{i_1} = \lambda_{i_2} = \cdots = \lambda_{i_k}$ in V_{1_1} , $\xi_i^k = \sum_{p=1}^k a_{i_p} \xi_{i_p}$ is the eigenvector corresponding to $\lambda_{i_1} = \lambda_{i_2} = \cdots = \lambda_{i_k}$ ($i \in \underline{n_1}$), where arbitrary constants $a_{i_1}, a_{i_2}, \cdots, a_{i_k}$ are not all zero. So

$$
\xi_i^k \mathbf{B} = \sum_{p=1}^k a_{ip} \begin{bmatrix} \frac{\lambda_{ip} - r}{\theta_{ip} - r} X_{ip} \\ X_{ip} \otimes \mathbf{1}_{n_2} \end{bmatrix}^T \begin{bmatrix} \mathbf{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathbf{B}_2 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \sum_{p=1}^k a_{ip} \frac{\lambda_{ip} - r}{\theta_{ip} - r} X_{ip} \\ \sum_{p=1}^k a_{ip} X_{ip} \otimes \mathbf{1}_{n_2} \end{bmatrix}^T \begin{bmatrix} \mathbf{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathbf{B}_2 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} \sum_{p=1}^k a_{ip} \frac{\lambda_{ip} - r}{\theta_{ip} - r} X_{ip}^T \mathbf{B}_1 & \sum_{p=1}^k a_{ip} X_{ip}^T \otimes (\mathbf{1}_{n_2}^T \mathbf{B}_2) \end{bmatrix}
$$

\n
$$
\neq 0,
$$
 (B2)

due to $\sum_{p=1}^{k} a_{i_p} X_{i_p}^T \neq 0$ (since $X_{i_1}^T, \dots, X_{i_k}^T$ are the orthogonal left eigenvectors) and $\mathcal{B}_2 \neq 0$ (since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable).

Thirdly, if $V_{12} \neq \emptyset$, eigenvalue $(n_2+1)r$ in V_{11} (as $\theta_1 = 0$) is single and in V_{12} is m_1 -repeated. Thus $\xi_i^{(m_1+1)} = a_1$ $\sqrt{ }$ $\overline{1}$ $-n_2X_1$ $X_1\otimes \mathbf{1}_{n_2}$ ı $|+$ Г ٦

 $\sum_{p=1}^{m_1} a_{i_p}$ X_{ip} $\overline{0_{n_1n_2}}$ $(i \in \underline{n_1})$ is the eigenvector corresponding to $(m_1 + 1)$ -repeated eigenvalue $(n_2 + 1)r$ in V_1 , where arbitrary constants $a_1, a_{i_1}, a_{i_2}, \cdots, a_{i_{m_1}}$ are not all zero. So

$$
\xi_i^{(m_1+1)T} \mathcal{B} = \begin{bmatrix} -a_1 n_2 X_1 + \sum_{p=1}^{m_1} a_{ip} X_{ip} \\ a_1 X_1 \otimes \mathbf{1}_{n_2} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix}
$$

=
$$
\begin{bmatrix} -a_1 n_2 X_1^T \mathcal{B}_1 + \sum_{p=1}^{m_1} a_{ip} X_{ip}^T \mathcal{B}_1 & a_1 X_1^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) \\ \neq 0, \end{bmatrix}
$$
 (B3)

due to $\sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \mathcal{B}_1 \neq 0$, $X_i^T \neq 0$ and $\mathcal{B}_2 \neq 0$ (since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable).

Fourthly, if $V_{1_1} \cap V_3 \neq \emptyset$, from proposition 1, there must exist a common eigenvalue $\tau = \eta_{j_1} + r = \eta_{j_2} + r = \cdots = \eta_{j_{m_2}} + r =$ $n_2 + 1 \in V_{1_1} \cap V_3$. Then $\xi_j^{(m_2+1)} = a_1$ Г \mathbf{I} $\frac{\lambda_1-r}{\theta_1-r}X_1$ $X_1\otimes \mathbf{1}_{n_2}$ ٦ $+ \sum_{p=1}^{m_2} \sum_{q=1}^{n_1} a_{qj_p}$ $\sqrt{ }$ $\begin{bmatrix} \mathbf{0}_{n_1} \\ \vdots \\ \mathbf{0}_{n_n} \end{bmatrix}$ $e_q\otimes Z_{j_{\bm{\mathcal{p}}}}$ ı \vert = Γ $\overline{1}$ $-a_1n_2X_1$ $a_1X_1 \otimes \mathbf{1}_{n_2} + \sum_{p=1}^{m_2} \sum_{q=1}^{n_1} a_{qj}{}_{p} e_q \otimes Z_{j p}$ 1 \mathbf{I} $(j \in \underline{n_2})$ is the eigenvectors corresponding to eigenvalue $n_2 + 1$, where arbitrary constants $a_1, a_{1j_1}, \dots, a_{1j_{m_2}}, \dots, a_{n_1j_{m_2}}$ are not all zero. So

$$
\xi_j^{(m_2+1)T} \mathcal{B} = \begin{bmatrix} -a_1 n_2 X_1 \\ a_1 X_1 \otimes \mathbf{1}_{n_2} + \sum_{p=1}^{m_2} \sum_{q=1}^{n_1} a_{qj_p} e_q \otimes Z_{j_p} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix}
$$

=
$$
\begin{bmatrix} -a_1 n_2 X_1^T \mathcal{B}_1 & a_1 X_1^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) + \sum_{p=1}^{m_2} \sum_{q=1}^{n_1} a_{qj_p} e_q^T \otimes (Z_{j_p}^T \mathcal{B}_2) \end{bmatrix}
$$

 $\neq 0,$ (B4)

since $X_1^T \mathcal{B}_1 \neq 0$ or $a_1 X_1^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) + \sum_{p=1}^{m_2} \sum_{q=1}^{n_1} a_{qj}{}_{p} e_q^T \otimes (Z_{j}^T \mathcal{B}_2) \neq 0$.

Case (2). Consider the eigenvalues in V_2 . Firstly, if each $\hat{\lambda}_i$ in V_{21} is single, its corresponding eigenvector is $\hat{\xi}_i = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \mathbf{I} $\frac{\hat{\lambda}_i-r}{\theta_i-r}X_i$ $X_i \otimes \mathbf{1}_{n_2}$ 1 \mathbf{I} for $i \in n_1$. Then

$$
\hat{\xi}_i^T \mathcal{B} = \begin{bmatrix} \frac{\hat{\lambda}_i - r}{\hat{\theta}_i - r} X_i \\ X_i \otimes \mathbf{1}_{n_2} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix} = \begin{bmatrix} \frac{\hat{\lambda}_i - r}{\hat{\theta}_i - r} X_i^T \mathcal{B}_1 & X_i^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) \end{bmatrix} \neq 0,
$$
\n(B5)

due to $X_i^T \neq 0$ and $\mathcal{B}_2 \neq 0$ (since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable).

Secondly, if $\hat{\lambda}_i$ in V_{21} is k'-repeated, that is, $\lambda_{i_1} = \lambda_{i_2} = \cdots = \lambda_{i_{k'}}$ in V_{21} , its corresponding eigenvector is $\hat{\xi}_i^{k'} = \sum_{p=1}^{k'} a_{ip} \hat{\xi}_{ip}$ $(i \in \underline{n_1})$, where arbitrary constants $a_{i_1}, a_{i_2}, \cdots, a_{i_{k'}}$ are not all zero. So

$$
\hat{\xi}_{i}^{k'}{}^{T} \mathcal{B} = \sum_{p=1}^{k'} a_{i p} \begin{bmatrix} \frac{\hat{\lambda}_{i p} - r}{\theta_{i p} - r} X_{i p} \\ X_{i p} \otimes \mathbf{1}_{n_2} \end{bmatrix}^{T} \begin{bmatrix} \mathcal{B}_{1} & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_{2} \end{bmatrix} \n= \begin{bmatrix} \sum_{p=1}^{k'} a_{i p} \frac{\hat{\lambda}_{i p} - r}{\theta_{i p} - r} X_{i p}^{T} \mathcal{B}_{1} & \sum_{p=1}^{k'} a_{i p} X_{i p}^{T} \otimes (\mathbf{1}_{n_2}^{T} \mathcal{B}_{2}) \end{bmatrix} \n\neq 0,
$$
\n(B6)

due to $\sum_{p=1}^{k'} a_{i_p} X_{i_p}^T \neq 0$ (since $X_{i_1}^T, \cdots, X_{i_{k'}}^T$ are the orthogonal left eigenvectors) and $\mathcal{B}_2 \neq 0$ (since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable).

Thirdly, if $V_{2_2} \neq \emptyset$, eigenvalue r in V_{2_2} is m₁-repeated. Thus $\hat{\xi}_i^{m_1} = \sum_{p=1}^{m_1} a_{i_p}$ Е $\begin{bmatrix} \mathbf{0}_{n_1} \\ x \end{bmatrix}$ $X_{i_p}\otimes \mathbf{1}_{n_2}$ ٦ $(i \in \underline{n_1})$ is the eigenvector corresponding to m_1 -repeated eigenvalue r in V_{22} , where arbitrary constants $a_1, a_{i_1}, a_{i_2}, \cdots, a_{i_{m_1}}$ are not all zero. So

$$
\hat{\xi}_i^{m_1 T} \mathcal{B} = \sum_{p=1}^{m_1} a_{i_p} \begin{bmatrix} \mathbf{0}_{n_1} \\ X_{i_p} \otimes \mathbf{1}_{n_2} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{n_1}^T & \sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) \end{bmatrix} \neq 0,\tag{B7}
$$

due to $\sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \neq 0$ (since $X_{i_1}^T, \cdots, X_{i_{m_1}}^T$ are the orthogonal left eigenvectors) and $\mathcal{B}_2 \neq 0$ (since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable).

Case (3). Consider the eigenvalues in V_3 . Firstly, if each $r + \eta_j$ in V_3 is single, its corresponding eigenvector is $\xi_j =$ Г $\begin{bmatrix} \mathbf{0}_{n_1} \\ \vdots \\ \mathbf{0}_{n_n} \end{bmatrix}$ $e_q\otimes Z_j$ 1 \mathbf{I} $(j = 2, 3, \ldots, n_2)$. Then

$$
\xi_j^T \mathcal{B} = \begin{bmatrix} \mathbf{0}_{n_1} \\ e_q \otimes Z_j \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{n_1}^T & e_q^T \otimes (Z_j^T \mathcal{B}_2) \end{bmatrix} \neq 0,
$$
 (B8)

since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable.

Secondly, if $r + \eta_j$ in V_3 is k''-repeated, that is, $r + \eta_{j_1} = r + \eta_{j_2} = \cdots = r + \eta_{j_{k'}} \in V_3$, its corresponding eigenvector is Е

$$
\xi_j^{k''} = \sum_{q=1}^{n_1} \sum_{p=1}^{k''} a_{qj_p} \begin{bmatrix} \mathbf{0}_{n_1} \\ e_q \otimes Z_{j_p} \end{bmatrix} (j = 2, \dots, n_2), \text{ where arbitrary constants } a_{1j_1}, \dots, a_{1j_{k''}}, \dots, a_{n_1j_{k''}} \text{ are not all zero. So}
$$

$$
\xi_j^{k''T} \mathcal{B} = \sum_{q=1}^{n_1} \sum_{p=1}^{k''} a_{qj_p} \begin{bmatrix} \mathbf{0}_{n_1} \\ e_q \otimes Z_{j_p} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes B_2 \end{bmatrix}
$$

$$
= \begin{bmatrix} \mathbf{0}_{n_1}^T & \sum_{q=1}^{n_1} \sum_{p=1}^{k''} a_{qj_p} e_q^T \otimes (Z_{j_p}^T \mathcal{B}_2) \end{bmatrix}
$$

$$
= \begin{bmatrix} \mathbf{0}_{n_1}^T & \sum_{p=1}^{k''} a_{1i_p} Z_{j_p}^T \mathcal{B}_2 & \sum_{p=1}^{k''} a_{2i_p} Z_{j_p}^T \mathcal{B}_2 & \dots & \sum_{p=1}^{k''} a_{n_1i_p} Z_{j_p}^T \mathcal{B}_2 \end{bmatrix}
$$

$$
\neq 0,
$$
 (B9)

since $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable.

In summary, the NCPN (2)-(3) is controllable combining with equations [\(B1\)](#page-0-2)-[\(B9\)](#page-2-0).

Necessity. If the NCPN (2)-(3) is controllable, then $\xi^T \mathcal{B} \neq 0$ for all the left eigenvectors of \mathcal{L} and $\mathcal{B} \neq 0$. From equation [\(B8\)](#page-2-1) and equation [\(B9\)](#page-2-0), if $\xi_j^T \mathcal{B} \neq 0$ and $\xi_j^{k''T} \mathcal{B} \neq 0$ for $j = 2, \dots, n_2$, obviously, $Z_j^T \mathcal{B}_2 \neq 0$ and $Z_{j_p}^T \mathcal{B}_2 \neq 0$. As $j = 1$, we can have $Z_1^T \mathcal{B}_2 = 1_{n_2}^T \mathcal{B}_2 \neq 0$. Therefore, $Z_j^T \mathcal{B}_2 \neq 0$ and $Z_{j_p}^T \mathcal{B}_2 \neq 0$ for $j = 1, 2, \dots, n_2$, Thus, $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable. From equation [\(B3\)](#page-1-0), if $V_{12} \neq \emptyset$ and $\xi_i^{(m_1+1)^T} \mathcal{B} \neq 0$, then $-a_1 n_2 X_1^T \mathcal{B}_1 + \sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \mathcal{B}_1 \neq 0$ or $a_1 X_1^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) \neq 0$, for arbitrary constants a_1 and $a_{i_1}, \dots, a_{i_{m_1}}$ (not all zero), which implies that $\sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \mathcal{B}_1 \neq 0$ as $a_1 = 0$. Finally, from equation [\(B4\)](#page-1-1), if $V_{1_1} \cap V_3 \neq \emptyset$, and $\xi_j^{(m_2+1)T} \mathcal{B} \neq 0$, then $X_1^T \mathcal{B}_1 \neq 0$ or $a_1 X_1^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) + \sum_{p=1}^{m_2} \sum_{q=1}^{n_1} a_{qj}{}_{p} e_q^T \otimes (Z_{j_p}^T \mathcal{B}_2) \neq 0$ $(j \in \underline{n_2})$.

Appendix C Proof of Theorem 2

Sufficiency. Similar to the proof of Theorem 1, three cases will also be discussed in the following.

Case (1). Consider the eigenvalues in V₃. If $\varsigma = r + \eta_{j1} = r + \eta_{j2} = \cdots = r + \eta_{j1} \in V_3$, its corresponding eigenvector is $\xi_j^l = \sum_{q=1}^{n_1} \sum_{p=1}^{l} a_{qj}$ $\sqrt{ }$ $\begin{bmatrix} \mathbf{0}_{n_1} \\ \vdots \\ \mathbf{0}_{n_n} \end{bmatrix}$ $e_q\otimes Z_{j_{\bm{\mathcal{p}}}}$ ٦ $(j = 2, \dots, n_2)$, where arbitrary constants $a_{1j_1}, \dots, a_{1j_l}, \dots, a_{n_1j_l}$ are not all zero. So ξ_j^l ^T $\beta = \sum_{i=1}^{n_1}$ $q=1$ \sum $\sum_{p=1} a_{qj}$ Г $\begin{bmatrix} \mathbf{0}_{n_1} \\ \vdots \\ \mathbf{0}_{n_n} \end{bmatrix}$ $e_q\otimes Z_{j_{\scriptscriptstyle\mathcal{P}}}$ ٦ \mathbf{I} T [\mathbf{I} \mathcal{B}_1 0 0 $I_{n_1} \otimes B_2$ 1 \mathbf{I} $=\begin{bmatrix} \textbf{0}^{T}_{n_1} & \sum_{q=1}^{n_1}\sum_{p=1}^{l}a_{qj_p}e_q^T\otimes (Z_{j_p}^T{\mathcal{B}}_2)\end{bmatrix}$ $= \begin{bmatrix} {\bf 0}^T_{n_1} & \sum_{p=1}^l a_{1i_p} Z_{j_p}^T {\bf \mathcal{B}}_2 & \sum_{p=1}^l a_{2i_p} Z_{j_p}^T {\bf \mathcal{B}}_2 & \cdots & \sum_{p=1}^l a_{n_1 i_p} Z_{j_p}^T {\bf \mathcal{B}}_2 \end{bmatrix}$ $\neq 0,$ (C1)

and $\mathcal{B}_2 \neq 0$, since $\sum_{q=1}^{n_1} \sum_{p=1}^l a_{qj}{}_{p} e_q^T \otimes (Z_{j}^T \mathcal{B}_2) \neq 0$.

Case (2). Consider the eigenvalues in V_1 . If $V_{12} \neq \emptyset$, then $\sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \mathcal{B}_1 \neq 0$ ($i \in \underline{n_1}$) holds, which can be proved similar to that of Theorem 1, here omitted.

Case (3). Consider the eigenvalues in V_2 . If $\hat{\lambda}_i$ is in V_{21} , the proof is similar to that of Theorem 1. If $V_{22} \neq \emptyset$, then eigenvalue r in V_{22} is m_1 -repeated and in V_3 (as $\eta_j = 0$) is l'-repeated, and hence $\xi_{ij}^{m_1 l'} = \sum_{s=1}^{m_1} a_{i_s}$ $\sqrt{ }$ $\begin{bmatrix} \mathbf{0}_{n_1} \\ x \end{bmatrix}$ $X_{i_S}\otimes \mathbf{1}_{n_2}$ ı $+ \sum_{q=1}^{n_1} \sum_{p=1}^{l'} a_{qj}$ Г $\begin{bmatrix} \mathbf{0}_{n_1} \\ \vdots \\ \mathbf{0}_{n_n} \end{bmatrix}$ $e_q\otimes Z_{j_{\scriptscriptstyle\mathcal{P}}}$ 1 \vert =

$$
\left[\begin{array}{c}\n\mathbf{0}_{n_1} & \mathbf{0}_{n_2} \\
\sum_{s=1}^{m_1} a_{i_s} X_{i_s} \otimes \mathbf{1}_{n_2} + \sum_{q=1}^{n_1} \sum_{p=1}^{l'} a_{qj_p} e_q \otimes Z_{j_p}\n\end{array}\right] (i \in \underline{n_1}, j \in \underline{n_2})
$$
 is the eigenvector corresponding to $(m_1 + l')$ -repeated eigen-

value r in $V_{22} \cap V_3$, where arbitrary constants $a_{i_1}, \dots, a_{i_{m_1}}, a_{1j_1}, \dots, a_{n_1j_1}, \dots, a_{n_1j_{l'}}$ are not all zero. So

$$
\xi_{ij}^{m_1 l'}^T \mathcal{B} = \begin{bmatrix} 0_{n_1} & 0_{n_2} \\ \sum_{s=1}^{m_1} a_{i_s} X_{i_s} \otimes 1_{n_2} + \sum_{q=1}^{n_1} \sum_{r=1}^{l'} a_{qj_p} e_q \otimes Z_{j_p} \end{bmatrix}^T \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_{n_1} \otimes \mathcal{B}_2 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0_{n_1}^T & \sum_{s=1}^{m_1} a_{i_s} X_{i_s}^T \otimes (1_{n_2}^T \mathcal{B}_2) + \sum_{q=1}^{n_1} \sum_{p=1}^{l'} a_{qj_p} e_q^T \otimes (Z_{j_p}^T \mathcal{B}_2) \end{bmatrix}
$$

$$
\neq 0,
$$
 (C2)

due to $\sum_{s=1}^{m_1} a_{i_s} X_{i_s}^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) + \sum_{q=1}^{n_1} \sum_{p=1}^{l'} a_{qj}{}_{p} e_q^T \otimes (Z_{j_p}^T \mathcal{B}_2) \neq 0.$

In summary, the NCPN $(2)-(3)$ is controllable combining with equations $(C1)-(C2)$ $(C1)-(C2)$ $(C1)-(C2)$.

Necessity. If the NCPN (2)-(3) is controllable, then $\xi^T \mathcal{B} \neq 0$ for all the left eigenvectors of \mathcal{L} and $\mathcal{B} \neq 0$. From equation [\(C1\)](#page-2-2), obviously, $\xi_j^l^T \mathcal{B} \neq 0$ $(j = 2, \dots, n_2)$, then $\sum_{q=1}^{n_1} \sum_{p=1}^l a_{qj}{}_{p} e_q^T \otimes (Z_{jp}^T \mathcal{B}_2) \neq 0$ $(j = 2, \dots, n_2)$. From equation [\(B3\)](#page-1-0), if $V_{12} \neq \emptyset$ and $\xi_i^{(m_1+1)T} \mathcal{B} \neq 0$, then $-a_1 n_2 X_1^T \mathcal{B}_1 + \sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \mathcal{B}_1 \neq 0$ or $a_1 X_1^T \otimes (\mathbf{1}_{n_2}^T \mathcal{B}_2) \neq 0$, for arbitrary constants a_1 and $a_{i_1}, \cdots, a_{i_{m_1}}$ (not all zero), which implies that $\sum_{p=1}^{m_1} a_{i_p} X_{i_p}^T \mathcal{B}_1 \neq 0$ as $a_1 = 0$. Finally, from equation [\(C2\)](#page-3-0), if $V_{2_2} \neq \emptyset$, and $\xi_{ij}^{m_1 l'}$ ij $T^T B \neq 0$, then $\begin{split} \sum_{s=1}^{m_1}a_{i_s}X_{i_s}^T\otimes(\mathbf{1}_{n_2}^TB_2)+\sum_{q=1}^{n_1}\sum_{p=1}^{l'}a_{qj_p}e_q^T\otimes(Z_{j_p}^TB_2)\neq0\text{ for arbitrary constants }a_{i_1},\;\cdots,\;a_{i_{m_1}},\;a_{1j_1},\;\cdots,\;a_{n_1j_1},\;\cdots,\;a_{n_1j_{l'}} \end{split}$ (not all zero).

Remark 1. Comparing with the conditions of Theorems 1-2, we can find that when \mathcal{G}_2 is connected, if $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable, the condition (i) of Theorem 2 holds, vice versa.

Remark 2. Theorems 1-2 give simple methods to analyze the controllability of larger-scale composite networks generated by lower-dimensional factor networks via the neighbourhood corona product, which can help us to understand the properties of NCPNs and be applied into the real scenarios.

Appendix D Proof of Proposition 1

(i) First of all, if $V_1 \cap V_2 \neq \emptyset$, there must be $\lambda_i = \hat{\lambda}_j \in V_1 \cap V_2$, which implies that $\theta_i + \sqrt{\Delta_i} = \theta_j - \sqrt{\Delta_j}$. It is obvious to see $\overline{\Delta_i} + \theta_i \geqslant 0$. And $\theta_j - \sqrt{\Delta_j} < 0$, since

$$
\sqrt{\Delta_j} = \sqrt{((n_2 + 1)r + \theta_j)^2 - 4\theta_j((2n_2 + 1)r - n_2\theta_j)}
$$

= $\sqrt{(n_2 + 1)^2 r^2 - 2\theta_j r (3n_2 + 1) + (4n_2 + 1)\theta_j^2}$
= $\sqrt{\left((n_2 + 1)r - \frac{3n_2 + 1}{n_2 + 1}\theta_j\right)^2 + \left(4n_2 + 1 - \frac{(3n_2 + 1)^2}{(n_2 + 1)^2}\right)\theta_j^2}$
> θ_j . (D1)

Therefore, $V_1 \cap V_2 = \emptyset$.

Secondly, if $V_{1_2} \cap V_3 \neq \emptyset$, then $(n_2 + 1)r = \eta_j + r \in V_{1_2} \cap V_3$, and hence $n_2r = \eta_j \leqslant n_2 \Rightarrow r \leqslant 1 \Rightarrow \theta_i = r = 1$, which contradicts with the fact $\theta_i = 0$ or $\theta_i = 2$, since the Laplacian matrix of \mathcal{G}_1 must be $\sqrt{ }$ $\Big\}$ 1 −1 −1 1 ı as $r = 1$. Therefore, $V_{1_2} \cap V_3 = \emptyset$.

Thirdly, it is obvious to know that $V_{12} = \emptyset \Leftrightarrow \theta_i \neq r$ $(i = 1, 2, \dots, n_1)$.

Fourthly, if $V_{11} \cap V_{12} \neq \emptyset$, then $\theta_i = r$ from the definition of V_{12} . Conversely, if $\theta_i = r$, it is obvious to know $(n_2 + 1)r \in V_{12}$. Since $\theta_i = 0 \in \sigma(\mathcal{L}_1)$ for some $i, \lambda_i = \frac{(n_2+1)r+\theta_i+\sqrt{\Delta_i}}{2} = (n_2+1)r \in V_{11}$. Therefore, $V_{11} \cap V_{12} \neq \emptyset$.

Fifthly, if $V_{11} \cap V_3 \neq \emptyset$, there exist $\lambda_i \in V_{11}$ and $\eta_j + r \in V_3$, such that $\lambda_i = \frac{(n_2+1)r+\theta_i+\sqrt{\Delta_i}}{2} = r + \eta_j$. And we can know

$$
\sqrt{\Delta_i} = \sqrt{((n_2 + 1)r + \theta_i)^2 - 4\theta_i((2n_2 + 1)r - n_2\theta_i)}
$$

= $\sqrt{((n_2 - 1)r + \theta_i)^2 + 4n_2(r - \theta_i)^2}$
 $\geq (n_2 - 1)r + \theta_i > 0.$ (D2)

Based on equation [\(D2\)](#page-3-1), we can have $2\eta_j = (n_2-1)r + \theta_i + \sqrt{\Delta_i} > 2(n_2-1)r + 2\theta_i$, and $(n_2-1)r + \theta_i < \eta_j \leqslant n_2 \Rightarrow (n_2-1)r + \theta_i < n_2 \Rightarrow$ $(n_2 - 1)r < n_2 \Rightarrow r < \frac{n_2}{n_2 - 1} \Rightarrow r = 1$, since $0 \leq \eta_j \leq n_2$ and $0 \leq \theta_i$. Because \mathcal{G}_1 is connected and $r = 1$, $\sigma(\mathcal{L}(\mathcal{G}_1)) = \{0, 2\}$, but $\theta_i = 2$ should be given up, which contradicts with the fact that $(n_2 - 1)r + 2 = (n_2 - 1)1 + 2 < n_2$, therefore, $\theta_i = 0$. Furthermore, put $r = 1$ and $\theta_i = 0$ into $\lambda_i = \frac{(n_2+1)r+\theta_i+\sqrt{\Delta_i}}{2} = r + \eta_j$, we can have $\lambda_i = n_2 + 1 = 1 + \eta_j$, so $\eta_j = n_2$. Therefore, the result holds. Conversely, $V_{1_1} \cap V_3 \neq \emptyset$ is clearly true if $r = 1$, $\eta_j = n_2$ and $\theta_i = 0$ with multiplicity-1. Specially, if \mathcal{G}_2 is a disconnected graph, it is easy to get $0 \leq \eta_j \leq n_2$, which implies that $V_{1_1} \cap V_3 = \emptyset$.

(ii) Firstly, If $V_{21} \cap V_{22} \neq \emptyset$, then $\exists \hat{\lambda}_i \in V_{21}$, such that $\hat{\lambda}_i = \frac{(n_2+1)r+\theta_i-\sqrt{\Delta_i}}{2} = r \in V_{21} \cap V_{22}$, and hence $(n_2-1)r+\theta_i-\sqrt{\Delta_i} = 0$, which contradicts with equation [\(D2\)](#page-3-1).

Secondly, if $V_{21} \cap V_3 \neq 0$, $\exists \lambda_i \in V_{21}$ and $r + \eta_j \in V_3$, such that $\hat{\lambda}_i = \frac{(n_2+1)r+\theta_i-\sqrt{\Delta_i}}{2} = r + \eta_j \in V_{21} \cap V_3$, which implies that $2\eta_j = (n_2 - 1)r + \theta_i - \sqrt{\Delta_i} < 0$ from equation [\(D2\)](#page-3-1). It contradicts with the fact $\eta_j \geqslant 0$.

Thirdly, from the definition of V_{2_2} , it is easy to get $V_{2_2} = \emptyset \Leftrightarrow \theta_i \neq r$ $(i = 1, 2, \dots, n_1)$.

Fourthly, if $V_{2} \cap V_3 \neq \emptyset$, $\exists \hat{\lambda}_i \in V_{22}$ and $\eta_j + r \in V_3$, such that $\hat{\lambda}_i = \frac{(n_2+1)r+\theta_i-\sqrt{\Delta_i}}{2} = r = \eta_j + r \in V_{22} \cap V_3$, then $\eta_j = 0$ for $j \in n_2$, so \mathcal{G}_2 is disconnected, and we can get $V_{2} \cap V_3 = \emptyset$ when \mathcal{G}_2 is connected. Conversely, if \mathcal{G}_2 is disconnected, then $\eta_j = 0$ for $j \in n_2$ and $r = \eta_j + r \in V_{2_2} \cap V_3 \neq \emptyset$, therefore we can get G_2 is connected when $V_{2_2} \cap V_3 = \emptyset$. In summary, $V_{2_2} \cap V_3 = \emptyset \Leftrightarrow G_2$ is connected.

Appendix E Proof of Lemma 2

Since X_1, X_2, \dots, X_{n_1} are the orthogonal eigenvectors of \mathcal{A}_1 corresponding to eigenvalues $\mu_1, \mu_2, \dots, \mu_{n_1}$, we can have $X_i^T \mathcal{A}_1 = \mu_i X_i^T$. Then

$$
rX_i^T - X_i^T A_1 = X_i^T r I_{n_1} - \mu_i X_i^T
$$

= $X_i^T (r I_{n_1} - A_1)$
= $(r - \mu_i) X_i^T$, (E1)

and hence $X_i^T \mathcal{L}_1 = (r - \mu_i) X_i^T = \theta_i X_i^T$, which implies that X_1, X_2, \dots, X_{n_1} are also the eigenvectors of \mathcal{L}_1 corresponding to eigenvalues $\theta_1, \theta_2, \cdots, \theta_{n_1}$. Therefore, \mathcal{A}_1 and \mathcal{L}_1 have the same orthogonal eigenvectors, which means that the controllability of (A_1, B_1) is equivalent to that of $(\mathcal{L}_1, \mathcal{B}_1)$.

Remark 3. Note that if $det(A_1) \neq 0 \Leftrightarrow \mu_i \neq 0 \Leftrightarrow \theta_i \neq r$, then we can know that $V_{12} = \emptyset$, $V_{22} = \emptyset$ and $V_{11} \cap V_3 = \emptyset$ (as $r \neq 1$) according to proposition 1. Based on these, combining with Lemma 2, Theorem NCPN (2)-(3) can be obtained, which are easier to check, compute and design the network structures.

Appendix F Examples and simulations

Example 1. A NCPN shown is shown in Fig. [F1,](#page-4-0) where \mathcal{G}_2 is connected.

Figure F1 A NCPN of \mathcal{G}_1 and \mathcal{G}_2 for Example [1.](#page-4-1)

Let

$$
\mathcal{A}_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \quad \mathcal{L}_1 = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}, \quad \mathcal{L}_2 = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}, \quad \mathcal{B}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{B}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$

then

$$
\mathcal{L} = \begin{bmatrix} \mathcal{L}_1 + 6I_4 & -\mathcal{A}_1 \otimes \mathbf{1}_3^T \\ -\mathcal{A}_1 \otimes \mathbf{1}_3 & I_4 \otimes (\mathcal{L}_2 + 2I_3) \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_4 \otimes \mathcal{B}_2 \end{bmatrix}.
$$

By calculation, the eigenvalues and the corresponding eigenvectors of \mathcal{L}_1 and \mathcal{L}_2 are respectively

$$
\begin{cases} \theta_1=0,\\ \theta_{2_1}=2,\\ \theta_{2_2}=2,\\ \theta_3=4, \end{cases} \qquad \begin{cases} X_1=e_1+e_2+e_3+e_4,\\ X_{2_1}=-e_1+e_2-e_3+e_4,\\ X_{2_2}=e_1+e_2-e_3-e_4,\\ X_3=e_1-e_2-e_3+e_4, \end{cases}
$$

and

$$
\begin{cases}\n\eta_1 = 0, \\
\eta_2 = 1, \\
\eta_3 = 3,\n\end{cases}\n\qquad\n\begin{cases}\nZ_1 = e_1 + e_2 + e_3, \\
Z_2 = e_1 - e_3, \\
Z_3 = e_1 - 2e_2 + e_3.\n\end{cases}
$$

Furthermore, $V_{1_1} = \{8, 6 + 2\sqrt{7}\}, V_{1_2} = \{8, 8\}, V_{2_1} = \{0, 6 - 2\sqrt{7}\}, V_{2_2} = \{2, 2\}, V_3 = \{3, 3, 3, 5, 5, 5, 5\}$ and $\text{rank}(\mathcal{L}_2, \mathcal{B}_2) = 3$, hence $V_{1_1} \cap V_{1_2} \neq \emptyset$, $V_{1_1} \cap V_3 = \emptyset$, $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable, and $(a_{2_1} X_{2_1}^T + a_{2_2} X_{2_2}^T) \mathcal{B}_1 = \begin{bmatrix} -a_{2_1} + a_{2_2} & a_{2_1} + a_{2_2} & 0 & 0 \end{bmatrix} \neq 0$, which satisfy the conditions of Theorem 1, therefore, this NCPN is controllable.

Fig. [F2](#page-5-0) represents the all agents' movement trajectories from the arbitrary initial state to the desired state, where agents are denoted as \star in \mathcal{G}_1 and \circ in \mathcal{G}_2 , respectively, and Letter 'N' shows the final configuration (the desired state, denoted as \triangleright).

Figure F2 Letter 'N' configuration for G in Example [1.](#page-4-1)

Example 2. A NCPN shown is shown in Fig. [F3](#page-5-1) where \mathcal{G}_2 is connected. Let

Figure F3 A NCPN of \mathcal{G}_1 and \mathcal{G}_2 for Example [2.](#page-5-2)

$$
\mathcal{A}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathcal{L}_1 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad \mathcal{L}_2 = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}, \quad \mathcal{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathcal{B}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$
\n
$$
\mathcal{L} = \begin{bmatrix} \mathcal{L}_1 + 3I_2 & -\mathcal{A}_1 \otimes \mathbf{1}_3^T \\ -\mathcal{A}_1 \otimes \mathbf{1}_3 & I_2 \otimes (\mathcal{L}_2 + I_3) \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_2 \otimes \mathcal{B}_2 \end{bmatrix}.
$$
\nisomulus and the corresponding eigenvectors of \mathcal{L} , and \mathcal{L} , are respectively.

then

By calculation, the eigenvalues and the corresponding eigenvectors of \mathcal{L}_1 and \mathcal{L}_2 are respectively ϵ ^{α}

$$
\begin{cases}\n\theta_1 = 0, & \begin{cases}\nX_1 = e_1 + e_2, \\
\theta_2 = 2,\n\end{cases} \\
\begin{cases}\n\eta_1 = 0, & \begin{cases}\nZ_1 = e_1 + e_2 + e_3, \\
\eta_2 = 1, \\
\eta_3 = 3,\n\end{cases} \\
\end{cases}\n\begin{cases}\nZ_1 = e_1 + e_2 + e_3, \\
Z_2 = e_1 - e_3, \\
Z_3 = e_1 - 2e_2 + e_3.\n\end{cases}\n\end{cases}
$$

 θ

and

Furthermore, $V_{11} = \{4, 3 + \sqrt{7}\}$, $V_{21} = \{0, 3 - \sqrt{7}\}$, $V_3 = \{2, 2, 4, 4\}$ and $\text{rank}(\mathcal{L}_2, \mathcal{B}_2) = 3$, hence $V_{12} = \emptyset$, $V_{22} = \emptyset$, $V_{11} \cap V_3 \neq \emptyset$.
So we can know that $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable,

$$
a_1 X_1^T \otimes (\mathbf{1}_3^T B_2) + \sum_{q=1}^2 a_{q3} e_q^T \otimes (Z_3^T B_2)
$$

= $\begin{bmatrix} a_1 & a_1 & 0 & a_1 & a_1 & 0 & a_1 & a_1 & 0 \end{bmatrix} + \begin{bmatrix} a_{13} & -2a_{13} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & a_{23} & -2a_{23} & 0 & 0 & 0 & 0 \end{bmatrix}$
= $\begin{bmatrix} a_1 + a_{13} & a_1 - 2a_{13} & 0 & a_1 + a_{23} & a_1 - 2a_{23} & 0 & a_1 & a_1 & 0 \end{bmatrix}$
 $\neq 0$,

which satisfy the conditions of Theorem 1, therefore, this NCPN is controllable.

Fig. [F4](#page-6-0) represents the all agents' movement trajectories from the arbitrary initial state to the desired state, where agents are denoted as \star in \mathcal{G}_1 and \circ in \mathcal{G}_2 , respectively, and a 'rectangle' shows the final configuration (the desired state, denoted as \rangle).

Figure F4 A rectangle configuration for G in Example [2.](#page-5-2)

Example 3. A NCPN is shown in Fig. [F5,](#page-6-1) where \mathcal{G}_2 is disconnected.

Figure F5 A NCPN of \mathcal{G}_1 and \mathcal{G}_2 for Example [3.](#page-6-2)

$$
\mathcal{A}_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \quad \mathcal{L}_1 = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}, \quad \mathcal{L}_2 = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{B}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{B}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},
$$

Let

then

$$
\mathcal{L} = \begin{bmatrix} \mathcal{L}_1 + 6I_4 & -\mathcal{A}_1 \otimes \mathbf{1}_3^T \\ -\mathcal{A}_1 \otimes \mathbf{1}_3 & I_4 \otimes (\mathcal{L}_2 + 2I_3) \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_4 \otimes \mathcal{B}_2 \end{bmatrix}.
$$

By calculation, the eigenvalues and the corresponding eigenvectors of \mathcal{L}_1 and \mathcal{L}_2 are respecively

$$
\begin{cases} \theta_1=0,\\ \theta_{2_1}=2,\\ \theta_{2_2}=2,\\ \theta_3=4, \end{cases} \qquad \begin{cases} X_1=e_1+e_2+e_3+e_4,\\ X_{2_1}=-e_1+e_2-e_3+e_4,\\ X_{2_2}=e_1+e_2-e_3-e_4,\\ X_3=e_1-e_2-e_3+e_4, \end{cases}
$$

and

$$
\begin{cases}\n\eta_1 = 0, \\
\eta_2 = 0, \\
\eta_3 = 2,\n\end{cases}\n\qquad\n\begin{cases}\nZ_1 = e_1 + e_2 + e_3, \\
Z_2 = \frac{1}{2}e_1 + \frac{1}{2}e_2 - e_3, \\
Z_3 = -e_1 + e_2.\n\end{cases}
$$

Furthermore, $V_{11} = \{8, 6 + 2\sqrt{7}\}, V_{12} = \{8, 8\}, V_{21} = \{0, 6 - 2\sqrt{7}\}, V_{22} = \{2, 2\}, V_{3} = \{2, 2, 2, 4, 4, 4, 4\}, \text{ so } V_{11} \cap V_{12} \neq \emptyset \text{ and } V_{13} = \{0, 0, 0, 0\}$ $V_{2_2} \cap V_3 \neq \emptyset$. We can get $Z_2 \mathcal{B}_2 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \end{bmatrix} \neq 0$, $Z_3 \mathcal{B}_2 = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \neq 0$, $(a_{2_1} X_{2_1}^T + a_{2_2} X_{2_2}^T) \mathcal{B}_1 = \begin{bmatrix} -a_{2_1} + a_{2_2} & a_{2_1} + a_{2_2} & 0 & 0 \end{bmatrix} \neq 0$, and

$$
\sum_{s=1}^{2} a_{2s} X_{2s}^{T} \otimes (\mathbf{1}_{n_{2}}^{T} \mathbf{B}_{2}) + \sum_{q=1}^{4} a_{q2} e_{q}^{T} \otimes (Z_{2}^{T} \mathbf{B}_{2})
$$
\n
$$
= \begin{bmatrix} -a_{21} & 0 & -a_{21} & a_{21} & 0 & a_{21} & -a_{21} & 0 & -a_{21} & a_{21} & 0 & a_{21} \end{bmatrix} + \begin{bmatrix} a_{22} & 0 & a_{22} & a_{22} & 0 & a_{22} & -a_{22} & 0 & -a_{22} \end{bmatrix}
$$
\n
$$
+ \begin{bmatrix} 1 & 0 & -a_{12} & \frac{1}{2} a_{22} & 0 & -a_{22} & \frac{3}{2} a_{12} & 0 & -a_{32} & \frac{1}{2} a_{42} & 0 & -a_{42} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} -a_{21} + a_{22} + \frac{1}{2} a_{12} & 0 & -a_{21} + a_{22} - a_{12} & a_{21} + a_{22} + \frac{1}{2} a_{22} & 0 & a_{21} + a_{22} - a_{22} & -a_{21} - a_{22} \end{bmatrix}
$$
\n
$$
- \frac{1}{2} a_{12} & 0 & -a_{21} - a_{22} - a_{32} & a_{21} - a_{22} + \frac{1}{2} a_{42} & 0 & a_{21} - a_{22} - a_{42} \end{bmatrix}
$$
\n
$$
\neq 0,
$$

which satisfy the conditions of Theorem 2, therefore, this NCPN is controllable.

Fig. [F6](#page-7-0) represents the all agents' movement trajectories from the arbitrary initial state to the desired state, where agents are denoted as \star in \mathcal{G}_1 and \circ in \mathcal{G}_2 , respectively, and a 'rectangle' shows the final configuration (the desired state, denoted as ρ).

Figure F6 A rectangle configuration for G in Example [3.](#page-6-2)

Example 4. A NCPN is shown in Fig. [F7.](#page-8-1)

Figure F7 A NCPN of \mathcal{G}_1 and \mathcal{G}_2 for Example [4.](#page-7-1)

ı $\vert \cdot$

$$
_{\rm Let}
$$

$$
\mathcal{A}_1 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad \mathcal{L}_1 = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \quad \mathcal{L}_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad \mathcal{B}_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{B}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
\mathcal{L} = \begin{bmatrix} \mathcal{L}_1 + 4I_3 & -\mathcal{A}_1 \otimes \mathbf{1}_2^T \\ -\mathcal{A}_1 \otimes \mathbf{1}_2 & I_3 \otimes (\mathcal{L}_2 + 2I_2) \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} \mathcal{B}_1 & 0 \\ 0 & I_3 \otimes \mathcal{B}_2 \end{bmatrix}.
$$

then

By computing, $det(A_1) = 2 \neq 0 \Leftrightarrow \theta_i \neq r$, $r = 2 \neq 1$, so $V_{12} = \emptyset$, $V_{22} = \emptyset$, $V_{11} \cap V_3 = \emptyset$, and $(\mathcal{L}_2, \mathcal{B}_2)$ is controllable (since rank $(\mathcal{L}_2, \mathcal{B}_2) = 2$, which satisfy the conditions of Corollary 2, therefore, this NCPN is controllable.

Fig. [F8](#page-8-2) represents the all agents' movement trajectories from the arbitrary initial state to the desired state, where agents are denoted as \star in \mathcal{G}_1 and \circ in \mathcal{G}_2 , respectively, and a 'rectangle' shows the final configuration (the desired state, denoted as \rangle).

Figure F8 A rectangle configuration for G in Example [4.](#page-7-1)

References

- 1 Hammack R, Imrich W, Klavžar S. Handbook of Product Graphs, 2nd Ed, Taylor & Francis Group, LLC, 2011
- 2 Chapman A, Nabi-Abdolyousefi M, Mesbahi M. Controllability and observability of network-of-networks via Cartesian products. IEEE Transactions on Automatic Control, 2014, 59(10): 2668-2679
- 3 Liu X, Zhou S. Spectra of the neighbourhood Corona of two graphs. Linear and Multilinear Algebra, 2014, 62(9): 1205-1219 4 Wang X, Hao Y, Wang Q. On the controllability of Corona product network. Journal of the Franklin Institute, 2020, 357(10): 6228-6240
- 5 Liu B, Li X, Huang J, et al. Controllability of N-duplication Corona product networks with Laplacian dynamics. IEEE Transactions on Neural Networks and Learning Systems, Early Access, 2023, DOI: 10.1109/TNNLS.2023.3336948