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This study addresses a mean-square prescribed finite-time

output consensus problem of high-order linear multi-agent

systems with communication noises and thus further gen-

eralizes the results in [1–4]. The main contributions in-

clude three aspects: (i) It is challenging to analyze and

display the finite-time stability due to the presence of com-

munication noises in the sign function and the absence of

communication noises in the quadratic Lyapunov function.

(ii) A stochastic approximation-type protocol, based on the

relative states of neighboring agents, is proposed novelly.

(iii) We extend to consider the case where the noise intensi-

ties are unknown and bounded.

Problem formulation. Each agent has the following linear

dynamics:

ẋi = Axi + Bui, yi = Cxi, (1)

where xi = col(xi1, . . . , xin) ∈ R
n, yi ∈ R and ui ∈ R are

the state, the output, and the control input, respectively.

A = ( 0
0

In−1

0
), B = col(0, . . . , 0, 1), C = (1 0 · · · 0).

The desired trajectory of the leader is given by

v̇ = Sv, yv = Rv, (2)

where v ∈ R
nv is the state and yv denotes the output.

The purpose of this study is to achieve the mean-square

prescribed finite-time output consensus, i.e., lim
t→T

E‖yi(t) −

yv(t)‖2 = 0, where T denotes a-priori given and a user-

defined finite time.

An undirected graph G = (V , E,A) is utilized, where

V = {1, . . . , N} and E ⊆ V × V are the sets of nodes

and edges, respectively. A = [Aij ] is an adjacency matrix.

L = Cr−A, Cr = diag(cr,11, . . . , cr,NN ), cr,ii =
∑N

j=1 Aij .

Ḡ = (V̄, Ē) is used, where V̄ = {0}
⋃

V , Ē ⊆ V̄ ×V̄, and node

0 is the leader. Br = diag(A10, . . . ,AN0), Ai0 > 0 if node i

can obtain information from node 0; otherwise, Ai0 = 0.

Assumption 1. The graph Ḡ contains a spanning tree

with the root being the leader.

Assumption 2. All the eigenvalues of S are on the imag-

inary axis.

Assumption 3. For any λ̄ ∈ σ(S), where σ(S) is the

spectrum of S, rank(A−λ̄I
C

B
0
) = n+ 1.

Remark 1. If Assumption 3 holds, then the following reg-

ulator equation [5] is solvable:

XS = AX + BU, CX = R. (3)

Let θ0 = x0−Xv. On the time interval [0, T ), a controller

for the leader is designed as

u0 = −K(t)θ0, (4)

where K(t) is designed as

K(t) =
(

b̄1a
n(t) · · · b̄na(t)

)

,

b̄i ∈ R, i = 1, · · · , n, are positive design parameters and

a(t) = 1
T−t

.

On the time interval [0, T ), the following controller is de-

signed for each follower:

ui = −µ1c(t)
(

∑

j∈Ni

Aij(K1(t)xi − (K1(t)xj+

ρijnij)) +Ai0(K1(t)xi − (K1(t)x0 + ρi0ni0))
)

,

(5)

where

K1(t) =
(

b̂1a
n(t)c−1(t) · · · b̂na(t)c−1(t)

)

,

b̂i > 0, µ1 > 0, c(t) = 1

ln T

T−t
+µ

, µ > 0, and nij(t) ∈ R

and ρij > 0 are independent standard white noises and the

noisy intensities, respectively.

Because L+Br > 0, there exists a nonsingular matrix T̂

satisfying T̂ (L + Br)T̂T = Ω, where Ω = diag(λ1, . . . , λN )

and λi > 0 are the eigenvalues of L + Br . Because all the

eigenvalues of A − BK(t) and A − µ1λic(t)BK1(t) can be

negative and have algebraic multiplicity values, by properly

selecting K(t), K1(t) and µ1, there exist nonsingular matri-

ces Ui(t) ∈ R
n×n such that

U−1
0 (t)(A −BK(t))U0(t) = Λ0(t),

U−1
i (t)(A − µ1λic(t)BK1(t))Ui(t) = Λi(t),

where Λi(t) = a(t)Λi1 , Λi1 = diag(−k
[i]
1 , . . . ,−k

[i]
n ), and

k
[i]
j > 0.
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Let ei = xi − x0, e = col(e1, . . . , eN ), ξ̄ =

col(ξ̄1, . . . , ξ̄N ) = (T̂ ⊗ In)e, ξ̂i = U−1
i (t)ξ̄i, θ̄0 =

col(θ0, . . . , θ0), θ̂0 = (IN ⊗ U−1
0 (t))θ̄0. One has

˙̂
ξi =(U̇−1

i (t)Ui(t) + Λi(t))ξ̂i + µ1c(t)U
−1
i (t)×

(

T̂i ⊗ B
)

Dη + U−1
i (t)(T̂i ⊗ (BK(t)U0(t)))θ̂0 ,

˙̂
θ0 =IN ⊗ (U̇−1

0 (t)U0(t) + Λ0(t))θ̂0

− IN ⊗ (U−1
0 (t)BU)v̄,

(6)

where v̄ = col(v, . . . , v), T̂i ∈ R
1×N is the ith row of T̂ ,

D = diag(d1, . . . , dN ) ∈ R
N×N(N+1),

di = (Ai0,Ai1, . . . ,AiN ) ∈ R
1×(N+1),

ni = col(ni0, ni1, . . . , niN ) ∈ R
N+1,

η = col(n1, . . . , nN ) ∈ R
N(N+1).

Lemma 1. U̇−1
i (t)Ui(t) + Λi(t) = a(t)Λ̄i, where Λ̄i ∈

R
n×n is a constant matrix and can be Hurwitz stable for

i = 0, 1, . . . , N .

Proof. See the Appendix A.

The matrices U−1
i (t)(T̂i ⊗ (BK(t)U0(t))) and U−1

0 (t)BU

can be written as a(t)∆i and a−(n−1)(t)Π, respectively. In

addition, we obtain that U−1
i (t)(T̂i ⊗ B)D = a(t)Di(t),

where

Di = a−n(t)
(

Di1 · · · Di,N(N+1)

)

.

Next, we introduce a time transformation method. Let

θ(s) = T (1 − e−s), t = θ(s), and ν(t) is a solution

of system (2). Let ζi(t) and ζ0(t) represent the solu-

tions of system (6). Define vs(s) = ν(t), ψ̄i(s) = ζi(t),

ψ0(s) = ζ0(t), v̄s(s) = col(vs(s), . . . , vs(s)), and ψ̄0(s) =

col(ψ0(s), . . . , ψ0(s)). Based on Lemma 1, one has

ψ̄
′

i(s) = Λ̄iψ̄i(s) + ∆iψ̄0(s)

+ µ1c(θ(s))Di(θ(s))η(θ(s)),

ψ̄
′

0(s) = IN ⊗ Λ̄0ψ̄0(s)

− θ
′

(s)a−(n−1)(θ(s))(IN ⊗Π)v̄s(s),

v
′

s(s) = Te−sSvs(s),

(7)

where

c(θ(s)) =
1

s+ µ
, v

′

s(s) =
dvs(s)

ds
,

ψ̄
′

i(s) =
dψ̄i(s)

ds
, ψ̄

′

0(s) =
dψ̄0(s)

ds
,

v̄s(s) = col(vs(s), . . . , vs(s)) ∈ R
Nnv .

(8)

Theorem 1. Consider the multi-agent system (1)–(2).

Suppose that Assumptions 1–3 hold. Under the controllers

(4) and (5), all the followers achieve the mean-square pre-

scribed finite-time output consensus.

Proof. See Appendix B.
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