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A significant proportion of noticeable improvement in ma-

chine learning architectures actually benefits from the con-

sistent inspiration of the way human learning [1]. For in-

stance, curriculum learning [2] is inspired by highly or-

ganized human education systems, i.e., training the algo-

rithms with easy samples first and gradually transforming

to the hard examples can contribute to faster convergence

and lower generalization error. Similarly, the evaluation of

machine learning (ML) algorithms (including large language

models) may also benefit from the more comprehensive and

fine-grained measurement of human learning. To this end,

in this study, inspired by the psychometric theories from

human measurement [3], we propose a general cognitive di-

agnosis framework for machine learning algorithm evalua-

tion (Camilla). Under this framework, a multi-dimensional

diagnostic metric Ability is defined for collaboratively mea-

suring the multifaceted strength of each algorithm. Specifi-

cally, given the response logs from different well-trained al-

gorithms to data samples, we leverage cognitive diagnosis

assumptions [1] and neural networks to learn the complex

interactions among algorithms, samples, and the required

skills (e.g., explicit category in Figure 1(b) or latent factors)

for algorithms correctly responding to each sample. For sim-

plicity, we call ML algorithms to be evaluated as learners,

and the cognitive diagnosis method as diagnoser. Our goal

in developing the diagnoser is to estimate the learners’ multi-

dimensional Ability on specific skills. The definition of Abil-

ity and skills is defined as follows.

Definition 1. Ability is a multi-dimensional metric for

quantifying the proficiency of learners on specific skills.

Each entry represents one skill, and the skill can be explic-

itly given or pre-defined as latent factors.

Each learner after training may perform well on some of

the samples (or skills) while performing poorly on others.

Similarly, one learner may outperform another learner on

the part of the samples (or skills) while failing on the other

samples. Therefore, we propose a multi-dimensional diag-

nostic metric Ability to quantify such internal and external

performance differences. Note that, our Ability is not simply

a skill-specific version of the traditional metrics like Accu-

racy, because we also collaboratively consider the learning

difficulty and discrimination of different data samples. Here,

the discrimination indicates the capability of samples to dif-

ferentiate the proficiencies of learners. Finally, Ability needs

to follow the monotonicity assumption.

Assumption 1. The probability of correct response to the

sample is monotonically increasing with the Ability of learn-

ers. Conversely, this probability for one learner is monoton-

ically decreasing with the sample difficulty.

To design our task-agnostic diagnoser, we consider a well-

trained learner set S = {s1, . . . , sN} and a data sample

set E = {e1, . . . , eM}. After running each learner si on

E we can get response logs R, denoted as a set of triple

(si, ej , rij), where si ∈ S, ej ∈ E, and rij is the response

score. Specifically, in the case of classification tasks, rij = 1

if learner si answers the class label of sample ej correctly

and rij = 0 otherwise. Meanwhile, an explicitly or implic-

itly pre-defined sample-skill relevancy matrix Q should also

be given. Q = {Qij}M×K , where K is the number of skills,

Qij = 1 represents the sample ei is 100% related to the skill

kj and Qij = 0 otherwise. Formally, the cognitive diagnosis

problem for machine learning can be defined as follows.

Definition 2. Given the learner-sample response matrix

R and the sample-skill relevancy matrix Q, the cognitive di-

agnosis task aims to train a diagnoser which can assess the

Ability of different learners on different skills (Figure 1(a)).

With the help of a diagnoser, not only the Ability of each

learner on specific skills can be quantified but also some

of the sample factors (e.g., sample difficulty) are collabora-

tively quantified. Before introducing our diagnoser Camilla,

we should note that the performance of a diagnoser is diffi-

cult to evaluate as we cannot obtain the ground-truth pro-

ficiency of learners. Therefore, we will investigate the re-

liability of diagnosers indirectly through their performance

in predicting the response of learners on unknown samples.

Let us take the classification task as an example for illustra-

tion. There are totally two cases for a successful prediction

of the diagnoser: (1) the diagnoser predicts that one learner
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Figure 1 (Color online) (a) Formal procedure of the cognitive diagnosis task; (b) architecture of the Camilla-Base diagnoser.

can answer the class label of this sample correctly, and the

learner does answer it correctly; (2) the diagnoser predicts

that one learner cannot answer the class label correctly, and

the learner does give a wrong answer.

Method. Based on Assumption 1 inspired by the psy-

chometric theories from human measurement [3], we intro-

duce the Camilla-Base, a basic version of Camilla, as in

Figure 1(b).

Input. The input of Camilla-Base includes the response

logs/matrix R from well-trained learners to data samples, a

pre-defined sample-skill matrix Q, and the representations

of learners and samples. Let one-hot vectors si ∈ {0, 1}1×N

and ej ∈ {0, 1}1×M denote learner si and sample ej .

Mapping layer. The mapping layer consists of factors

that depict the latent characteristics of learners and sam-

ples.

(1) Learner Ability. The meaning of multi-

dimensional Ability factor is given in Definition 1. Each

dimension of Ability corresponds to the proficiency of learn-

ers on a specific skill. We characterize the Ability factor

Ai of learner si as Ai = si × WA, where Ai ∈ R
1×K ,

WA ∈ R
N×K is a trainable transformation matrix, K is

the number of explicit skills pre-defined in the sample-skill

matrix Q.

(2) Sample factors. The sample factors characterize

the latent traits of samples consisting of three components:

skill mask factor, difficulty factor, and discrimination factor.

• Sample skill mask factor. As the proficiency of learners

is characterized by a multi-dimensional Ability, we consider

that different samples correspond to different dimensions of

the learner Ability factor, which can be evidenced by the

sample-skill matrix Q. Specifically, the skill mask factor de-

picts the skills that are most needed for the correct response

of the sample by masking the other unrelated skills. The

skill mask factor Qj of sample ej is fixed as Qj = ej × Q,

where Qj ∈ {0, 1}1×K , and ej denotes the one-hot vector of

sample ej .

• Sample difficulty factor. Intuitively, if one learner can

correctly respond to a data sample while other learners can-

not, then this sample with high difficulty should contribute

more to this learner’s corresponding Ability, and vice versa.

Therefore, capturing the relationship between the Ability

factor of learners and the difficulty factor of samples can

help to more precisely predict how sure the learner can re-

spond to the sample correctly. Let Dj = ej × WD denote

the difficulty factor of sample ej , where Dj ∈ R, and WD is

a trainable transformation matrix.

• Sample discrimination factor indicates the capability of

sample ej to differentiate the mastery degree of learners. We

represent the sample discrimination factor as bj = ej ×Wb,

where bj ∈ R
1×K , and Wb ∈ R

M×K is a trainable transfor-

mation matrix.

Note that the learner Ability and sample factors are

learnable parameters without any label, which are optimized

through the error between the ground-truth response logs

and the output of the interaction layer.

Interaction layer (output rij ∈ R). After giving the

input and mapping representation, the way to define a func-

tion for modeling the complex interactions among learners,

samples, and skills is one of the most important components

for a diagnoser. We adopt an interaction layer which out-

puts the probability rij ∈ R that the learner si responds

to the sample ej correctly via the comparison between the

multi-dimensional learner Ability Ai and the difficulty Dj

of the sample in covered skills. In this layer, we define the

diagnose function as

p (rij = 1|Ai, Qj , bj ,Dj) = 1/(1 + e−Qj⊗bj ·(Ai−Dj)), (1)

where ⊗ is element-product and · is dot-product.

The description of Camilla is shown in Appendix A.

Experiments can refer to Appendix B. The discussion

with related work can refer to Appendix C.

Conclusion. We have proposed the cognitive diagnostic

framework Camilla and a multi-dimensional metric Ability

for providing both interpretable and reliable assessment of

machine learning algorithms. To the best of our knowledge,

this is the first comprehensive attempt for measuring the

multifaceted strength of each machine learning algorithm

by exploring the connections between the research on psy-

chometric theories and machine learning evaluation.
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