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The impact of generative artificial intelligence on education

is unprecedented [1]. Researchers have been exploring pos-

sibilities of combining the large multimodal model (LMM)

with the teaching process. Specifically, Luo and Yang [2]

have explored large model collaborative domain models to

support smart education, fostering personalized and adap-

tive educational experiences. However, existing studies still

lack in-depth research on generating educational resources,

especially in mathematical problem generation.

Traditional studies of mathematical problem generation

are divided into two independent subfields, namely stem

generation [3] (some studies simply record as problem gen-

eration) and problem-solving. However, we believe that

constructing high-quality mathematical problems requires

the ability to generate both stems and solutions to form

a task-closed loop. As shown in Figure 1, a high-quality

mathematical problem needs to be carefully designed by do-

main experts and meet multiple requirements. (I) Complete-

ness. During the teaching process, mathematical problems

are aimed at teachers, students, and parents concurrently.

Therefore, it should contain four logically clear parts: the

mind of design, the stem, the mind of solution, and the

answer. (II) Precision. The mathematical problem should

accurately reflect the objectives of the curriculum, be highly

related to given knowledge points, and provide the function

of exercises and tests. (III) Differentiation. For certain key

knowledge points under investigation, the problem should

differentiate in theme, problem type, and difficulty level, to

better serve complex and diverse learning needs.

LMMs offer a novel approach to mathematical problem

generation. It can not only generate coherent and logical

content on cross-modal data but also respond to diverse

queries based on in-context learning and instruction fol-

lowing capabilities. However, there are still challenges in

directly applying LMMs to generate math problems. On

the one hand, general LMMs lack the expertise for mathe-

matical problem generation and need to transfer training to

inject domain knowledge. As training modes (such as pre-

training and supervised fine-tuning) gradually solidify, the

research focus of transfer training shifts towards the con-

struction of high-quality domain datasets [4]. Previous con-

struction methods are restricted to machine mind and target

task form, resulting in issues of low data quality density and

serious homogenization. We believe that the LMM training

has the potential to analogy human learning. Drawing on

the multi-level experiences of human learning, it can guide

the design of training data at each stage with fine granu-

larity, enabling the model to acquire richer knowledge. On

the other hand, previous studies mainly focus on enhanc-

ing the individual ability of LMMs in stem generation or

problem-solving. We believe that the professional knowl-

edge and practical experience required for stem generation

and problem-solving share commonalities. Integrating both

abilities into a single model can mutually enhance them and

is more practical for educational scenarios.

To address the above issues, we propose a “cone of experi-

ence” enhanced LMM for mathematical problem generation

(COMET). Firstly, stem generation and problem-solving are

unified into mathematical problem generation tasks. To the

best of our knowledge, this is the first work to systematically

enhance mathematical problem generation on a single LMM.

Secondly, inspired by the “cone of experience” educational

theory [5], we propose a three-stage fine-turning framework.

The “cone of experience” divides human learning experience

into three levels: symbolic, iconic, and direct experience.

The different level experiences are interconnected and only

by fully integrating all three levels of experiences can high-

quality learning be achieved. Finally, a Chinese multimodal

mathematical problem dataset (CMM12K) is formulated,

filling the gap in the field of Chinese multimodal corpus and

providing a high-quality benchmark for subsequent research.

Methodology. Figure 1 shows the three-stage fine-turning

framework, more details can be found in Appendix A. The

entire fine-tuning process is guided by the “cone of experi-

ence”, injecting symbolic, iconic, and direct experience. The

three-stage fine-tuning framework is expanded according to
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Figure 1 (Color online) Diagrams of (a) mathematical problem generation and (b) the “cone of experience” guided three-stage

fine-tuning framework.

the type of injected experience, elaborating on the defini-

tions, construction methods, and training methods.

In stage-1, we define symbolic experience as the back-

ground knowledge of the target domain, or the prerequisite

knowledge for carrying out the target task. Symbolic expe-

rience does not directly help the model solve specific tasks,

but it provides strong support by supplementing conceptual

knowledge. For mathematical problem generation, we sum-

marize symbolic experience into four types for production:

book knowledge, graph knowledge, arithmetic knowledge,

and general knowledge. All the data are associated with

symbolic experience as pre-training form and are infused

into the LMM for learning, i.e., no masking of data content

is undertaken. The backpropagation of training computes

loss from the first token of the input.

In stage-2, iconic experience is defined as the data gener-

ated by the subject in the process of performing the target

task, which includes not only human experts proficient in

the target task but also other LMMs. Injecting the iconic

experience aims to allow LMM to learn mathematical prob-

lem generation from humans and improve upon the failed

reasoning data produced by other LMMs. We summarize

iconic experience into three types of production: the ex-

perience of stem generation, problem-solving, and failure.

These data pertaining to the iconic experience are learned

by the LMM in the form of instruction-tuning. All data are

arranged in a query-response pair, and a masking process

is applied to the query part. The backward propagation of

training only starts calculating loss from the first token of

the response.

In stage-3, direct experience is defined as the generated

procedural data when the fine-tuned object carries out the

target task with results feedback. Such experience aims to

correct the inference preference of the LMM with higher-

order domain values, allowing it to embodied evolve during

the practice. The training format is {task instruction, high

preference response, low preference response} and we apply

direct preference optimization as the loss function.

Experiments and results. Appendix B presents the ex-

perimental setup. We verify three capabilities of LMMs

on two public datasets (GSM8K and TAL-SCQ5K) and

one self-built dataset (CMM12K): controllable generation

(CG), analogy generation (AG), and fine-grained solving

(FS). Both CG and AG reflect the ability of LMM to stem

generation, FS reflects the problem-solving ability. We se-

lect six open-source LMMs and three closed-source LMMs

as baselines, and perform three evaluation modes under hu-

man and GPT-4V supervision, namely scoring mode, arena

mode, and objective indicators.

Appendix C presents the detailed results. Compared to

baselines of the same parameter size, the proposed model

consistently maintains significant advantages in CG, AG,

and FS. On CMM12K, the FS accuracy of COMET leads

the baseline by up to 20.67%, and the average winning rate

of AG under the arena mode is about 94.33%. Compared to

the open-source baselines with a parameter scale exceeding

7B, COMET still shows a significant advantage in FS ac-

curacy on CMM12K, ranking second on GSM8K and TAL-

SCQ5K. The average winning rate for CG under arena mode

is about 70%. For powerful closed-source models including

GPT-4o, COMET has an average winning rate of 51.0%,

55.6%, and 40.5% in the arena mode for CG, AG, and FS.

Conclusion. We propose COMET, a “cone of experience”

enhanced LMM for mathematical problem generation. To

explore the possibility of analogy LMM training to human

learning, we define the teacher growth process into three

level experiences based on the “cone of experience” educa-

tional theory and guide the construction of training data

at different stages. A three-stage fine-tuning framework is

designed to enhance the capabilities of stem generation and

problem-solving within a single LMM to meet the require-

ments of educational applications. Moreover, a CMM12K is

built to alleviate the scarcity of Chinese multimodal corpora

in this field. Extensive experiments have demonstrated the

advancement and effectiveness of the proposed model and

framework.
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