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The integration of artificial intelligence (AI) and digital twin

(DT) technology has revolutionized the industrial Internet

of Things (IIoT), enabling advanced automation and intelli-

gent manufacturing [1]. Through sophisticated interactions

between physical entities and their virtual counterparts,

AI-driven DTs facilitate performance monitoring, analysis,

simulation, and optimization of physical assets, enabling

predictive maintenance and informed decision-making [2].

However, state-of-the-art deep neural network (DNN) archi-

tectures that demand substantial computational resources

result in prolonged execution times, posing challenges for

IIoT networks that necessitate timely completion of each

processing step during manufacturing [3, 4]. Furthermore,

the extensive data requirements of AI-driven DTs render

IIoT networks vulnerable to device malfunctions and cyber-

attacks. Integrating blockchain technology in DT-assisted

IIoT networks mitigates these risks by ensuring transpar-

ent and secure data tracking, promoting trustworthy in-

teractions among DTs. Nevertheless, blockchain-enabled

DTs for IIoT networks face two primary challenges: 1)

lightweight IIoT devices lack sufficient computing power for

resource-intensive DNN inference tasks, and 2) conventional

blockchain consensus algorithms, such as proof of work

(PoW), are computationally prohibitive for these resource-

constrained devices.

To address these challenges, we propose a novel three-

tier blockchain-enabled DT (B-DT) framework for wireless

IIoT networks. Our main contributions are as follows: 1) a

DNN partitioning scheme where gateways execute bottom-

layer inference tasks and offload top-layer tasks to access

points (APs); 2) a reputation-based consensus mechanism

that evaluates the off-chain reputation of each AP based on

its computational contributions to DNN tasks and utilizes

the off-chain reputation as a stake to adjust the block gen-

eration difficulty of the on-chain PoW; 3) a Dynamic DNN

Partitioning and Resource Allocation (DPRA) algorithm

to jointly optimize communication (i.e., partition point)

and computation resource allocation (i.e., computation fre-

quency of APs for top-layer DNN inference and block gener-

ation) for a communication and computation efficient wire-

less B-DT system; and 4) an analysis of the DPRA algorithm

demonstrating its asymptotic optimality and characterizing

an [O(1/V ), O(V )] trade-off between system scalability and

trustworthiness.

System model. We consider a blockchain-enabled DT (B-

DT) system in wireless IIoT networks. The B-DT system

consists of three tiers: the physical twin tier with multiple

IIoT devices, the digital twin tier with multiple gateways,

and the edge server tier with multiple APs. Each device

holds a local dataset that is continuously collected from

its equipped sensors and running applications, and keeps

synchronizing its collected data with the corresponding DT

maintained on its associated gateway. Considering that the

system operates in slotted time, we denote the set of time in-

dices by T = {1, 2, ..., t, ..., T}, where t represents an individ-

ual time slot index, and T is the total number of time slots.

At the beginning of each time slot, each gateway runs its

locally maintained DTs to perform the bottom-layer DNN

inference, and transmits the forward output of the bottom-

layer DNN inference to its associated AP. Upon receiving the

forward output of the bottom-layer DNN inference from the

gateways, each AP performs the top layers of the DNN in-

ference, and finally outputs its inference results. Then, each

AP encrypts its DNN inference results by a unique digital

signature, and exchanges the DNN inference results with

the other APs over the peer-to-peer network. After that,

the APs add the verified inference results to their respective

candidate block, and compete to generate a new block with

the proposed consensus mechanism.

Let N = {1, 2, ...,N}, M = {1, 2, ...,M}, and J =

{1, 2, ..., J} denote the index sets of the devices, gateways,

and APs, respectively. Define an N × M connection ma-

trix a with entries an,m ∈ {0, 1}, ∀n ∈ N and m ∈ M. If

an,m = 1, the n-th device is deployed with the m-th gate-
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way on the same factory floor and communicates with the

m-th gateway to maintain its corresponding DT, referred to

as the n-th DT. Note that each device’s corresponding DT

is maintained by a single gateway, i.e.,
∑M

m=1 an,m = 1,

∀n ∈ N .

Reputation based consensus mechanism. We develop a

reputation-based hybrid consensus mechanism by integrat-

ing PoS and PoW. Calculating the top-layer DNN reference

tasks offloaded to each AP, we evaluate the off-chain repu-

tation of the j-th AP in the t-th time slot as

Uj(t) = g (Oj(t)) , (1)

where g(·) is a generic off-chain reputation evaluation func-

tion, which can be further customized according to specific

reputation evaluation rules in diverse networks,

Oj(t) =
∑M

m=1

∑N

n=1
bm,jan,mDn(t)

∑Ln

l=ln(t)+1
χl
n, (2)

is the top-layer DNN reference tasks offloaded from the asso-

ciated gateways to the j-th AP, and χl
n denotes the FLOPs

required by the n-th DT to perform the l-th layer of the DNN

inference for each data point. From (1), the AP with more

computational contributions to the DNN inference tasks can

achieve higher off-chain reputation values. The core of the

proposed reputation-based consensus mechanism is that the

off-chain reputation can be used as the stake to adjust the

block generation difficulty of on-chain PoW. In this way,

the degradation of PoW consensus security is compensated

by off-chain reputation stake, which improves the consensus

efficiency while ensuring the trustworthiness on the chain.

The block generation difficulty is inversely proportional to

the off-chain reputation of the APs. From [5], the relation-

ship between the block generation difficulty and off-chain

reputation is represented as

γj(t) = e−αUj(t)−β , (3)

where α and β control the influence of the off-chain rep-

utation values on block generation difficulty and the final

convergence of block generation difficulty, respectively.

Problem formulation. To obtain a communication and

computation efficient wireless B-DT system, we jointly op-

timize the communication resource (i.e., DNN partition

point) and the computation resource (i.e., computation

frequency for DNN inference and block generation) allo-

cation. Let X(t) = [l(t), fA(t), fbloc(t)], where l(t) =

[l1(t), l2(t), ..., lN (t)] denotes the number of bottom lay-

ers of the DNN inference tasks performed at the gate-

ways at time slot t, fA(t) =
[

fA
1 (t), fA

2 (t), ..., fA
M (t)

]

de-

notes the computation frequency of the APs for DNN infer-

ence tasks offloaded from each gateway at time slot t, and

fbloc(t) =
[

fbloc
1 (t), fbloc

2 (t), . . . , fbloc
M (t)

]

denotes the com-

putation frequency of APs for block mining at time slot t,

respectively. The stochastic optimization problem is formu-

lated as

P0 : min
X(t)

τ =
1

T

∑T

t=1
τ(t) (4)

s.t. C1 : 1 6 ln(t) 6 Ln,∀n ∈ N , t ∈ T ,

C2 : 0 6
∑M

m=1
bm,jf

A
m(t) 6 fmax

j ,∀j ∈ J , t ∈ T ,

C3 : 0 6 fbloc
j (t) 6 fmax

j , ∀j ∈ J , t ∈ T ,

C4 : 0 6 eGm(t) 6 EG
m(t), ∀m ∈ M, t ∈ T ,

C5 : 0 6 eAj (t) 6 EA
j (t), ∀j ∈ J , t ∈ T ,

C6 : Umin
6

1

T

∑T

t=1
Uj(t) 6 Umax, ∀j ∈ J ,

where the constraints C1–C3 bound the ranges of the vari-

ables l(t), fA(t), and fbloc(t), respectively. C4 and C5 are

the energy consumption constraints for devices and gate-

ways in each time slot, respectively. In order to guarantee

both the scalability and trustworthiness of the B-DT sys-

tem, the long-term constraint C6 is adopted to bound the

average off-chain reputation of each AP.

Problem solution. We propose a dynamic DNN parti-

tioning and resource allocation (DPRA) algorithm to solve

the long-term stochastic optimization problem formulated

in P0. By leveraging the Lyapunov optimization method,

DPRA first transforms the long-term stochastic optimiza-

tion problem into a sequence of one-shot static optimiza-

tion problems. Subsequently, the algorithm solves the trans-

formed deterministic problem in each time slot.

Experimental results. For comparison purpose, we simu-

late two baselines as follows: (a) computation resource al-

location policy without DNN partitioning point optimiza-

tion (WDPO), and (b) DNN partitioning point optimization

and computation resource allocation policy without reputa-

tion based consensus mechanism (WTCM). DPRA shows

a lower system latency than baseline schemes. Compared

with WTCM, DPRA adjusts the block generation difficulty

according to the off-chain reputation, which reduces the sys-

tem latency while guaranteeing the trustworthiness of the

B-DT system.

Conclusion. This paper proposes a communication and

computation efficient B-DT framework for wireless IIoT net-

works, incorporating a DNN partitioning method. Experi-

mental results demonstrate DPRA’s superiority in reduc-

ing latency and ensuring B-DT system trustworthiness com-

pared to baseline approaches. Future work includes conduct-

ing real-world experiments to measure DNN inference task

latency and energy consumption, and developing lightweight

consensus mechanisms for resource-constrained IoT devices

to enhance blockchain efficiency and security.
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