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Federated learning (FL) is a promising distributed learning

approach due to its privacy-enhancing characteristic [1–3].

To enhance communication efficiency of FL, over-the-air

computation (AirComp) has emerged as a key technique

by exploiting the waveform superposition property of mul-

tiple access channels [4, 5]. Although AirComp-enabled FL

(AirFL) offers significant performance gains, it does not ad-

dress the data heterogeneity in most real-life FL scenar-

ios with non-independent and identically distributed local

datasets. Such data heterogeneity hinders the generaliza-

tion of a single global consensus model. To this end, prelim-

inary works have been made to develop a personalized AirFL

framework via clustering algorithms, where different models

are trained for different clusters under the orchestration of

the parameter server (PS) [6,7]. However, this personalized

framework requires large-scale antennas to combat interfer-

ence, leading to a significant escalation in hardware cost.

As a cost-effective physical-layer technology, reconfig-

urable intelligent surface (RIS) has been extensively stud-

ied to support various communication applications due to

its capability for smart channel reconstruction [8]. In this

paper, we introduce low-cost RIS to achieve statistical inter-

ference elimination across different clusters and facilitate si-

multaneous multi-cluster computation over-the-air, thereby

enhancing the efficiency of personalized AirFL.

Learning and communication model. We consider a per-

sonalized AirFL system consisting of K distributed devices,

which are partitioned into M (M < K) disjoint clusters

K1, . . . ,KM . A specific clustering method can be found

in [6], which is not the focus of this article. Our goal is to

find the optimal personalized model parameters wm ∈ RD

for each cluster m ∈ [M ] to minimize the loss function

Lm(wm) = 1
|Km|

∑

k∈Km
Fk (wm,Dk), where Fk (·,Dk) is

the loss function of device k with local dataset Dk.

Distributed stochastic gradient descent (SGD) is adopted

to optimize wm in an iterative manner. First, at each train-

ing round t, the PS broadcasts the latest personalized mod-

els {wm,t}m∈[M] to each device. Then, based on the clus-

tering mechanism, each device k ∈ Km computes its local

gradient gm,t,k ∈ RD based on wm and its local dataset

Dk, and reports it to the PS. Finally, after receiving all

the local gradients, the PS calculates the global gradient of

cluster m as

gm,t =
1

|Km|
∑

k∈Km

gm,t,k, (1)

and updates the personalized model for cluster m through

wm,t+1=wm,t−ηm,tgm,t, where ηm,t is a chosen learning

rate at the t-th training round. The above steps iterate until

a convergence condition is met.

Note that the operation in (1) requires the PS to sum

the local gradients of devices in each cluster separately. By

applying AirComp, all devices simultaneously upload the

analog signals of local gradients to the PS, achieving sum-

mation over-the-air. However, the analog nature of AirFL

makes the PS cannot distinguish between the gradients of

different clusters. In the following, we introduce an RIS-

enabled personalized AirFL framework to address this chal-

lenge. Each cluster is assisted by an RIS with N reflecting

elements to help realize the personalized model aggregation.

To support simultaneous multi-cluster gradient estimation,

at least M receiving antennas are required. Without loss

of generality, we consider a PS equipped with M receiving

antennas. Then, the received signal at the PS in the t-th

round, Yt=
[

y1,t,y2,t, · · ·,yM,t

]H ∈CM×D, is given by

Yt =
K
∑

k=1

√
pk

(

M
∑

i=1

βi,kH
H
p,iΘihi,k

)

ḡH
m,t,k + Zt, (2)

where ḡm,t,k,
1

σm,t,k
(gm,t,k−um,t,k1) represents the nor-

malized gradient, um,t,k and σm,t,k denote the mean and

standard deviation of all entries in gm,t,k, pk is the trans-

mit power of device k, βi,k is the cascaded large-scale fad-

ing coefficient from device k to the PS through the i-th

RIS, Hp,i =
[

hp,i,1,hp,i,2, · · · ,hp,i,M

]

∼ CN (0, IN ⊗ IM )

and hi,k ∼ CN (0, IN ) denote the small-scale fading chan-

nel from the i-th RIS to the PS and device k to the i-

th RIS, respectively, Zt =
[

z1,t, z2,t, · · · , zM,t

]H
is addi-

tive white Gaussian noise whose entries follow CN (0, σ2),

Θi ,diag
{

ejθi,1 , . . . , ejθi,n , . . . , ejθi,N
}

is the reflection ma-

trix of the i-th RIS, and θi,n ∈ [0, 2π) is the phase shift

introduced by the n-th RIS reflecting element. Then, based
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on the signal ym,t at the m-th receiving antenna, the

PS computes an estimated global gradient of cluster m as

ĝm,t=
ℜ{ym,t}

λm
+
∑

k∈Km

um,t,k

|Km| 1, where λm>0 is a denois-

ing factor introduced by the PS. It is rewritten as

ĝm,t =
∑

k∈Km

ℓm,kḡm,t,k +
∑

k∈Km

um,t,k

|Km| 1

+
∑

16m′6M

m′ 6=m

∑

k′∈K
m′

ℓm,k′ ḡm′,t,k′+ z̄m,t, (3)

where ℓm,k =
√

pk
λm

∑M
i=1 βi,kℜ

{

hH
p,i,mΘihi,k

}

, ∀m, k, and

z̄m,t ,
ℜ{zm,t}

λm
is the equivalent noise. Note that the esti-

mated gradient is interfered by signals from other clusters

and these interference cannot be eliminated since M < K.

To this end, we propose an RIS phase shift configuration

scheme that fortunately eliminates the interference from a

statistical perspective in the following theorem.

Theorem 1. Statistical interference elimination, i.e.,

E[ℓm,k] > 0, ∀k ∈ Km and E[ℓm,k′ ] = 0, ∀k′ /∈ Km, can be

achieved by setting

θm,n = −∠h∗
p,m,m,n + ∠

∑

k∈Km

h∗
m,k,n, (4)

for m∈ [M ] and n∈ [N ], where hp,m,m,n and hm,k,n are

the n-th elements of channel vectors hp,m,m and hm,k , re-

spectively.

Proof. See Appendix A.

According to Theorem 1, we conclude that favorable

propagation can be achieved through phase matching us-

ing low-cost RIS reflecting elements, thereby eliminating the

need for expensive large-scale receiving antennas. After the

statistical interference elimination, we focus on joint design

of power control and denoising factors from the following

two perspectives to enhance the FL convergence.

1) Unbiased design: From the perspective of first-order

moment, ensuring unbiased gradient estimation is of pivotal

significance for guaranteeing FL convergence [4]. Hence, we

consider the following unbiasedness-oriented method.

Proposition 1. By setting pk = σ2
m,t,k

β−2
m,k

ζ2m, ∀k ∈

Km, and λm =
πN

√
|Km|ζm
4

, the gradient estimation in (3)

is unbiased, where ζm= min
k∈Km

√
Pkβm,k

σm,t,k

√
D

and Pk is the maxi-

mum transmit power.

Proof. See Appendix B.

2) Minimum mean squared error (MMSE) design: Apart

from unbiasedness of the first-order moment, the second-

order moment, known as MSE, also plays a decisive role in

FL convergence [9]. For any given power control of pk, we

derive the optimal denoising factors in closed form in the

following proposition.

Proposition 2. The optimal denoising factor of cluster m

for minimizing MSE is equal to

λ∗
m= |Km|

∑M
i=1

∑

k∈Ki
pkh̄

2
m,k

σ2
i,t,k

+ σ2

2
∑

k∈Km

√
pkh̄m,kσ

3
m,t,k

, (5)

where h̄m,k ,
∑M

i=1 βi,kℜ
{

hH
p,i,mΘihi,k

}

.

Proof. See Appendix C.

Substituting the optimal λ∗
m, we formulate a power con-

trol optimization problem for minimizing the sum MSE,

which can be solved via typical optimization methods and

please refer to Appendix C for details.

Figure 1 (Color online) NMSE versus N with K = 100 and

M = 5.

The detailed implementation of the proposed RIS-based

personalized AirFL approach is summarized in Appendix D.

Numerical Results. Assuming that the distances between

the PS and each RIS are 200 m, and all the devices in each

cluster m ∈ [M ] are uniformly distributed within a disk of

radius 300 m centered at the m-th RIS. The path loss expo-

nent for all the links is 2.2. Figure. 1 depicts the normalized

MSE (NMSE) as a function ofN for different values of Pk. It

is observed that as Pk increases, the improvement in NMSE

performance is marginal. This is due to the fact that an in-

crease in transmit power amplifies not only the useful signals

but interference. Furthermore, the NMSE of our proposed

designs decreases linearly with large N on a log-log scale.

This phenomenon becomes more obvious as Pk increases,

owing to the diminishing impact of noise error. In addition,

the NMSE curves with corrupted RIS phase shifts (i.e., 1-bit

phase noise) are presented to validate the robustness of our

proposed designs. The baseline utilizing random RIS phase

shifts fails to obtain any effective performance enhancements

as N and Pk increases, which demonstrates the importance

of RIS phase shift configuration in Theorem 1.
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