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Appendix A Proof of Theorem 1
By substituting the RIS phase shifts in Theorem 1, the mean of `m,k for k ∈ Km is calculated as
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where (a) is due to the independence between different channels and E
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]
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√
π
2 [1], (b) follows from the identically

distributed characteristic of the random variable (RV) hm,k,n
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2) For i 6= m, we have
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where (d) exploits the independence of hp,i,m, hp,i,i, hi,k, and hi,k′ , and the last equality comes from hp,i,m,n ∼ CN (0, 1).

Then, by substituting (A2) and (A3) into (A1), it yields
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In addition, the mean of `m,k′ for k′ ∈ Km′ and m′ 6= m is calculated as
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2) For i = m′, we have

E
[
<
{

h
H
p,m′,mΘm′hm′,k′

}]
= <

{
E
[
h
H
p,m′,mΘm′hm′,k′

]}

= <

E

 N∑
n=1

h
∗
p,m′,m,ne

−j∠h∗
p,m′,m′,nhm′,k′,n

∑
k′∈K

m′
h∗
m′,k′,n∣∣∣∑k′∈K

m′
h∗
m′,k′,n

∣∣∣



= N · <

E
[
h
∗
p,m′,m,n

]
E
[
e
−j∠h∗

p,m′,m′,n
]
E

hm′,k′,n
∑
k′∈K

m′
h∗
m′,k′,n∣∣∣∑k′∈K

m′
h∗
m′,k′,n

∣∣∣

 = 0. (A7)

3) For i 6= m and i 6= m′, we have
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Then, by substituting (A6), (A7) and (A8) into (A5), it yields
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Appendix B Proof of Proposition 1

By directly applying Theorem 1 and substituting the parameters in Proposition 1 into the expectation of the estimated global

gradient ĝm,t, we have
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Therefore, the expectation of the estimated global gradient ĝm,t is equal to the ground-truth global gradient gm,t for m ∈ [M ],

which ensures the unbiasedness of gradient transmission [4]. This completes the proof.

Appendix C Proof of Proposition 2

To begin with, we formulate the MSE of gradient estimation for cluster m as
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where (a) is due to the definition of ḡm,t,k, (b) exploits the statistics of ḡm,t,k and z̄m,t, and (c) comes from the definition of `m,k.

Note that the optimization of denoising factor is an unconstrained problem. For any given power control, we derive the optimal

denoising factor, λm, by checking the following equality
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and the proof completes.

As for the optimization of power control, substituting the optimal λ∗m into (C1), we rewrite MSEm as
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Kronecker delta vector with [ek]k = 1. Now, we formulate an equivalent power control optimization problem for minimizing the

sum MSE as
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It worth noting that the problem in (C4) is known as the sum of quadratic ratios maximization, which has been addressed in

existing works via branch and bound [5], harmony search method [6] and semidefinite relaxation (SDR) technique [7–9].

Appendix D Details of the Proposed Approach

To summarize, we conclude the proposed RIS-enabled personalized AirFL approach in Algorithm D1.

Algorithm D1 Proposed RIS-enabled personalized AirFL approach

1: repeat

2: The PS broadcasts the latest personalized models {wm,t}m∈[M] to each device.

3: for each device k = 1, 2, · · · , K do

4: Identify its cluster Km.

5: Computes its local gradient gm,t,k based on wm and its local dataset Dk.

6: Normalize its local gradient as ḡm,t,k, 1
σm,t,k

(gm,t,k−um,t,k1).

7: Upload the mean um,t,k, standard deviation σm,t,k, and its cluster identity m to the PS.

8: end for

9: The PS configures N RISs according to the specific clusters {Km}Mm=1 and θm,n = −∠h∗p,m,m,n + ∠
∑
k∈Km h∗m,k,n.

10: The PS calculates the power control pk for each device and the denoising factor λm for each cluster according to the unbiased

strategy or the MMSE design, and then feedback the selected power {pk}Kk=1 to each device.

11: Each device simultaneously upload its local gradient to the PS based on the predetermined transmit power pk.

12: Based on the received signal, the PS computes an estimated global gradient of cluster m as ĝm,t=
<{ym,t}
λm

+
∑
k∈Km

um,t,k
|Km|

1.

13: The PS updates the personalized model for cluster m through wm,t+1 =wm,t−ηm,tĝm,t.
14: Set t = t+ 1.

15: until Convergence
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