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Networked control systems (NCSs), whose feedback loops

are connected via the communication networks, have a wide

application in computer science, medicine, telecommunica-

tions, and so on. However, communication networks may

suffer from congested network traffic due to the limited

network bandwidth. One way to solve these issues is to

use event-triggered sampling to alleviate network bandwidth

utilization.

The event-triggered sampling can reduce sampling while

maintaining the desired performance [1]. Nevertheless, there

is no guarantee of how slow the triggering can be. Worse

still, the event-triggered sampling may lead to an undesired

Zeno behavior. In this case, the efficiency and applicability

of the sampling will be degraded. To overcome the defects of

the above two approaches, some attempts have been made to

design event-triggered schemes (ETSs) satisfying dwell-time

constraints. In [2], triggering conditions are examined only

at the fixed instants. These periodic ETSs exclude Zeno be-

havior and are easy to realize, but the information of state is

not fully used when continuous measurements are available.

Indeed, the information can be used to reduce sampling and

improve performance. In [3, 4], switched ETSs are devised

to check the triggering condition after a dwell-time. The

switched scheme is proven to tolerate a smaller number of

transmissions than periodic ETS for the same triggering pa-

rameters.

Despite the aforementioned achievements in reducing the

transmission number, more possibilities remain to explore.

In this paper, the focus is to enlarge the triggering interval

to the maximum while maintaining the desired exponen-

tial stability. To achieve this, a novel switched two-stage

integral-type ETS is proposed so that the increase of the

Lyapunov function (LF) during the triggering interval does

not exceed the decrease of the LF in the sampling interval.

Thus, the LF is allowed to increase during the triggering

interval, and the ETS substantially enlarges the triggering

interval. Meanwhile, an exponential deviation function is

introduced in the switched ETS to obtain the assignable

exponential stability.

Problem statement. Consider the NCS described as the

following dynamic system:

ξ̇(t) = Āξ(t) + B̄u(t), (1)

where ξ(t) ∈ R
p is the state, u(t) ∈ R

m is the input, Ā, B̄

are known matrices with appropriate dimensions. (Ā, B̄) is

assumed to be controllable, respectively.

In this paper, to reduce the network load, the ETS based

controller is designed in the following form:

u(t) = K̄ξ(tk), t ∈ [tk, tk+1), (2)

where K̄ is the control gain and has been designed such

that all the eigenvalues of Ā + B̄K̄ have a negative real

part, and tk denotes the triggering time. To simplify, we

assume that the first triggering appears at the initial time

t0. To introduce the ETS, we define the measurement error

e(t) = ξ(tk)− ξ(t).

Applying the controller (2) to (1), designing the ETS

where the triggering occurs after some dwell-time h, and de-

noting [tk, tk +h) as the sampling interval and [tk+h, tk+1)

as the triggering interval, we can convert (1) into

ξ̇(t) =

{

Āξ(t) + B̄K̄ξ(tk), t ∈ [tk, tk + h),

(Ā+ B̄K̄)ξ(t) + B̄K̄e(t), t ∈ [tk + h, tk+1).
(3)

The purpose of this paper is to develop an ETS such

that the transmission number is reduced, and the closed-

loop augmented system (3) is exponential stable.

For the sake of clarity, we give the definition of exponen-

tially stability.

Definition 1 ([5]). The equilibrium point ξ = 0 of the sys-

tem is globally exponentially stable, if there exist constants c

and λ such that for any initial condition ξ(t0) ∈ R
p all corre-

sponding solutions to (3) satisfy ‖ξ(t)‖ 6 c‖ξ(t0)‖e−λ(t−t0)

for all t > t0.

ETS design. To guarantee a positive dwell-time while

reducing sampling, this subsection will present a novel

switched ETS which switches between the periodic sampling

and the continuous event-trigger.

Using the sampling state ξ(tk) at triggering time tk, the

next triggering time tk+1 is determined by the following

switched two-stage integral-type ETS:

tk+1 = inf

{

t > tk

∣

∣

∣

∣

∣

At time t,Events 1© and 2© hold

}

,

(4)
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where Event 1© : t − tk > h, Event 2© : f(t, e, ξ) > 0,

f(t, e, ξ) =
∫ t

tk+h
eT(s)Qe(s)ds − ϕ

∫ t

tk+h
ξT(s)Qξ(s)ds −

(e−β(t−tk) − e−2αh)ξT(tk)Pξ(tk), ϕ, α, β are some posi-

tive constants with β < 2α, Q and P are weighting matrices

to be designed.

Remark 1. The ETS (4) is divided into two stages and

consists of dual events, rather than a single event. In Event

1©, the sensor waits for h seconds, and during this period the

information transmission does not occur. In Event 2©, the

measurement error is monitored. Once the triggering condi-

tion (4) is satisfied, the current state information is sampled

and transmitted to the controller and the controller is up-

dated.

Remark 2. The designed function f(t, e, ξ) in Event 2©
of the ETS (4) has two advantages. Firstly, instead of re-

lying on the transient value e(t) and ξ(t) for the ETS de-

sign as in [1], the accumulation of the measurement error
∫ t

tk+h
eT(s)Qe(s)ds and the accumulation of system state

∫ t

tk+h
ξT(s)Qξ(s)ds are utilized. This approach takes into

consideration the frequent fluctuations of the system state

and reduces the sensitivity of ETS, which can potentially

lead to a safeguarding of data transmission and conserva-

tion of communication resource.

Secondly, distinguishing from the existing important

integral-type ETSs, for example [4], the exponential devia-

tion function (e−β(t−tk)−e−2αh)ξT(tk)Pξ(tk) is introduced

to achieve the assignable exponential rate of convergence.

Stability analysis. Consider the closed-loop augmented

system (3) with the ETS (4). The exponential stability con-

dition is described by Theorem 1.

Theorem 1. Suppose that there exist p× p-matrices P >

0, Q > 0, U > 0, X1, X, P2, P3, Y1, Y2, T such that

Ψ > 0,Φ1 < 0,Φ2 < 0,Ω < 0, (5)

where Ψ, Φ1, Φ2 and Ω are symmetric matrices given in Ap-

pendix A. Then the equilibrium point ξ = 0 of the closed-

loop augmented system (3) is exponentially stable under the

ETS (4).

Proof. Define a function as follows:

V (t) =

{

V1(t), t ∈ [tk, tk + h),

V2(t), t ∈ [tk + h, tk+1),
(6)

where V1(t) = ξT(t)Pξ(t) + (h − τ(t))ψT(t)[X+XT

2
ψ(t) +

(X1 +XT
1 )ξ(tk)] + (h− τ(t))

∫ t

tk
e2α(s−t) ξ̇T(s)Uξ̇(s)ds with

τ(t) = t− tk , ψ(t) = ξ(t)−ξ(tk), and V2(t) = ξT(t)Pξ(t). In

what follows, because of the switching characteristic of the

ETS (4), we will analyze the behavior of V (t) in detail in

two parts.

Part I: The behavior of V (t) during [tk, tk + h).

The derivative of V1(t) along the trajectories of the sys-

tem (3) satisfies V̇1(t) 6 −2αV1(t) following from Φ1 < 0,

Φ2 < 0 and the detailed calculations in Appendix B. Fur-

ther, one has

V1(t) 6 e−2α(t−tk)V1(tk), t ∈ [tk, tk + h). (7)

Part II: The behavior of V (t) during t ∈ [tk + h, tk+1).

By calculating the derivative of V2(t) along the trajecto-

ries of the system (3) in Appendix C, taking into account

Ω < 0, integrating both sides of the derivative of V2(t) from

tk +h to t and using the triggering condition (4), one yields

V2(t) − V2(tk + h)

6

∫ t

tk+h

[eT(s)Qe(s)− ϕξT(s)Qξ(s)]ds

6 (e−β(t−tk) − e−2αh)V2(t
−

k
). (8)

Since the state of the system does not jump at tk+h and tk ,

and V (t) is continuous, one infers V1((tk+h)
−) = V2(tk+h),

V2(t
−

k
) = V1(tk). Then, (8) can turn into

V2(t) 6 (e−β(t−tk) − e−2αh)V1(tk) + V2(tk + h)

6 (e−β(t−tk) − e−2αh)V1(tk) + e−2α(tk+h−tk)V1(tk)

6 e−β(t−tk)V1(tk), t ∈ [tk + h, tk+1). (9)

Combining β < 2α, (7) and (9), one obtains that V (t) 6

e−β(t−tk)V (tk), ∀t ∈ [tk, tk+1). By an iterative process,

V (t) can be rewritten as

V (t) 6 e−β(t−t0)V (t0), ∀t > t0. (10)

Through detail calculations in Appendix D, it can be ob-

tained from (10) that ‖ξ(t)‖ 6 ce−
β
2
(t−t0)‖ξ(t0)‖, ∀t > t0,

where c =
√

λmax(P )/
√
ς. Consequently, we can conclude

that the equilibrium point ξ = 0 of the system (3) is expo-

nentially stable under the ETS (4).

Remark 3. In Theorem 1, the constructed LF V (t) is

analyzed in two stages. During Event 1©, covering the in-

terval [tk, tk + h), it can be inferred from (7) that V (t) is

decreasing with an exponential decay rate 2α. On the other

hand, during Event 2©, covering the interval [tk + h, tk+1),

there is no requirement for V (t) to decrease, and it only

needs to satisfy (8). It is also known from (8) that the value

of V (t) at tk+1 is allowed to exceed that at tk + h. This is

in contrast to [4] where V (tk+1) is smaller than V (tk + h).

In the second stage, by designing the integral-type ETS,

the variation of the increase of V (t) is shown. The triggering

only occurs when the increase of V (t) in the second stage

exceeds the decrease of V (t) in the first stage. This ensures

stability, even though the ETS (4) allows V (t) to increase

during the triggering interval. Unlike the usual ETS in [1],

the ETS (4) relaxes the monotonic decreasing limitation on

the LF and reduces the transmission number.

Simulation example. The simulation examples are in-

cluded in Appendix E.
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event-triggered control for networked control systems based

on non-monotonic Lyapunov functions. Automatica, 2019,

106: 35–46

3 Li F, Liu Y. Adaptive event-triggered output-feedback con-

troller for uncertain nonlinear systems. Automatica, 2020,

117: 109006

4 Li H, Zhang L, Zhang X, et al. A switched integral-based

event-triggered control of uncertain nonlinear time-delay

system with actuator saturation. IEEE Trans Cyber, 2021,

52: 335–347

5 Khalil H K. Nonlinear Systems. Prentice-Hall: New Jersey,

1996

info.scichina.com
link.springer.com
link.springer.com

