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Appendix A

The matrices ¥, ®;, ®5 and €2 in Theorem 1 are as follows:
(1) ¥ = [W¥] € R2P+a)x2(P+a) where
Ul = P4 pXEXT 912 = pX — BX, 022 = —h X, — hXT 4 h XX
(2)®, = [®7] € R3(P+‘1)X3(P+‘1) where
P! = @11 — Xajr(t)—0> P17 =12 + WA 13 = @y + Xiajr(=0, PF* = @22 + hU,
PP = D23 — h(:X — X1), 8P = P33 — Xoa|r(1)=0 )
O =P A+ ATP +2aP - Y, - Y, @1 =P - P{ + ATP; — Vs,
Q13 =PfBK + YT — T,y = —P§ — P3, ®93 = PTBK + Y}/, &35 =T + T7,

T
Xo =(1—2a(h—7(1) X, X10 = (1 —2a(h — 7(t)))(X — X1),

T_ _ T

Xoo = [1 = 2a(h — (1)) (50220,
(3) By = [®Y] € RAPFTI)*4(P+4) where
O = @y — XX B12 = By, BYF = By3 + X — X, D = Y/,
DZ? = Doy, P3° = o3, P3* = AY", B3 = B33 — Xoa|r(—p, P3* = WTT, 3 = —he >V,
4) Q = [Q¥] € R3PHa)*x3(r+a) where
O =PI (A+BK)+ (A+ BK)"Py+ ¢Q, Q02 = P — PI'+ (A+ BK)" Ps,
Q% = PYBK, Q22 = 85, 0% = P BK, Q% = —Q.

Appendix B

The analysis for the behavior of V' (¢) during [tx, tx, + h) is as follows:
The derivative of V; (t) along the trajectories of the system satisfies
Vi(t) + 2aVA(t)
<26 () PE(L) + 20T () PE() + (h —7(0)ET(OUE() — e ()9 (1)U(1)
X+ X7
+20a(h = 7(t)Y" ()= (t) + (X1 + X{)&(te)]

2
O 00 + (6 XDt + (b= )07

T
+ (=) O w0 + (50 XTe(w)
+2(7(t

7(
P + &7 ()P [AL(t) + BKE(te) — £(1)]
2T YT + ET YL + €T (t)TT)[ — €(t) + E(t) + T(£)0(1)]
" (t)@n(t),

X+XT.
= dw)

where 9(t) = {5 J& €(s)ds, n(t) = col(&(t), £(t), £(tx), ¥(t)) and & = [¥7] € RUP+0)¥4(w+0) with
Pl = P2TA + ATPy+2aP - Y, — YT — X,

12 =P PI + ATPy — Yy + (b — 7(t)) X£X°,

1 = PIBK + Y — T+ 4(X1a + XL,

M =7(t)Y, 02 = —Pf — Py + (h—7(t))U,

82 — PTBEK + Y + (h— 7(1))(- X555 + 1(x, + XT)),

M = ()Y, 8% =T+ TT — Xoo, @ = 7()TT, * = —7(t)e V.

It follows from ®; < 0 and ®; < 0 that & < 0, which implies V; (t) < —2aV; (t) by (1). Further, one has

Vi(t) < e 220MVi(8),  t € [tr, tr + h).
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Appendix C

The calculations for the derivative of V5(¢) along the trajectories of the system are

Va(t) = 267 (1) PE(E) + €T (H)QE(1)
+ 2T WP + €T ()P [(A+ BR)E(t) + BKe(t) — (1))
—e"()Qe(t) + e (1)Qe(t) — €™ ()QE(t)
=" ()Qq(t) + eT(t)Qe(t) — pET(HQE(), 3)

where 7j(t) = col(£(t), £(t), e(t)).

Appendix D

Considering the definition of V4 (¢) and U > 0, one has

V() > €70 PE() + (h =m0 (022000 + (X + XT)e(00)]
=20 we + Wer o) @

where ((t) = col(&(t),&(tx)). Due to W > 0 and P > 0, there exists ¢ satisfying ¥ > ¢l5(,4q) and P = ¢l 1.
Then, by (4), it follows that V; (£) > <]||£(#)]|?. Recalling the definition of V' (¢) and Va (¢ ) one has V5(t) > §H§( )2
and V (to) = €7 (to) P£(to) < Amax(P)||€(t0)]|?. Thus, it can be obtained that

@) < ce™ 2E0le(to)]l, Vit = to. ©)

Appendix E

In this section, one example is presented to verify the effectiveness of the presented ETS.
Example 1. Consider the system (3) with

0100 0 0

oo -20 0 ) 0.1

A=|l00 o0 10|, B=| 0 |. (6)
00 3 0 0 —0.03
00 0 0 —3 0

A stabilizing controller is given by K = [2 15 400 200 — 3]. Choose h = 0.15, ¢ = 0.35, a = 0.12, 3 = 0.1,
which satisfy the conditions in Theorem 1. To better illustrate the advantages, we perform the simulation for
multiple initial conditions to obtain the average transmission number (ATN). Table 1 provides the comparison
results on the ATNs under our ETS (4), periodic sampling, periodic ETS methods and switched ETS in [3]. We
point out that the periodic sampling is achieved by choosing ¢ = 0, @« = § in ETS (4). By comparison, our
ETS (4) clearly reduces the ATN. Besides, under the initial condition co0l(0.98,0,0.2, 0, 3.8), the evolution of the
LF of the system (3) in ETS (4) are shown by Figure 1, and the state response of the system (3) under our ETS
(4), periodic sampling, periodic ETS methods and switched ETS in [3] are respectively shown by Figure 2. From
Figure 1 and 2, it can be concluded that even V (¢) is non-monotonic, exponential stability can be maintained.

Table 1: The ATNs under different sampling methods.

Periodic sampling Periodic ETS ETS in [3] Our ETS (4)
ATN 64 58.34 56.67 45.67
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Figure 1 Evolution of the LF V().
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Figure 2 Figure 2 (a) State response under the periodic sampling. (b) State response under the periodic ETS. (c) State response under the switching ETS in [3].

(d) State response under the ETS
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