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Appendix A

The matrices Ψ, Φ1, Φ2 and Ω in Theorem 1 are as follows:
(1) Ψ = [Ψij ] ∈ R2(p+q)×2(p+q) where
Ψ11 = P + hX+XT

2 , Ψ12 = hX1 − hX , Ψ22 = −hX1 − hXT
1 + hX+XT

2 .
(2) Φ1 = [Φij

1 ] ∈ R3(p+q)×3(p+q) where

Φ11
1 = Φ11 −Xα|τ(t)=0, Φ12

1 = Φ12 + hX+XT

2 , Φ13
1 = Φ13 +X1α|τ(t)=0, Φ22

1 = Φ22 + hU ,
Φ23

1 = Φ23 − h(X −X1), Φ33
1 = Φ33 −X2α|τ(t)=0.

Φ11 = PT
2 Ā+ ĀTP2 + 2αP − Y1 − Y T

1 , Φ12 = P − PT
2 + ĀTP3 − Y2,

Φ13 = PT
2 B̄K̄ + Y T

1 − T , Φ22 = −PT
3 − P3, Φ23 = PT

3 B̄K̄ + Y T
2 , Φ33 = T + TT ,

Xα = (1− 2α(h− τ(t)))X+XT

2 , X1α = (1− 2α(h− τ(t)))(X −X1),

X2α = [1− 2α(h− τ(t))](
X+XT−2X1−2XT

1

2 ).
(3) Φ2 = [Φij

2 ] ∈ R4(p+q)×4(p+q) where

Φ11
2 = Φ11 − X+XT

2 , Φ12
2 = Φ12, Φ13

2 = Φ13 +X −X1, Φ14
2 = hY T

1 ,
Φ22

2 = Φ22, Φ23
2 = Φ23, Φ24

2 = hY T
2 , Φ33

2 = Φ33 −X2α|τ(t)=h, Φ34
2 = hTT , Φ44

2 = −he−2αhU .
(4) Ω = [Ωij ] ∈ R3(p+q)×3(p+q) where
Ω11 = PT

2 (Ā+ B̄K̄) + (Ā+ B̄K̄)TP2 + φQ, Ω12 = P − PT
2 + (Ā+ B̄K̄)TP3,

Ω13 = PT
2 B̄K̄, Ω22 = Φ22, Ω23 = PT

3 B̄K̄, Ω33 = −Q.

Appendix B

The analysis for the behavior of V (t) during [tk, tk + h) is as follows:
The derivative of V1(t) along the trajectories of the system satisfies

V̇1(t) + 2αV1(t)

6 2ξT (t)P ξ̇(t) + 2αξT (t)Pξ(t) + (h− τ(t))ξ̇T (t)Uξ̇(t)− e−2αhτ(t)ϑT (t)Uϑ(t)

+ 2α(h− τ(t))ψT (t)[
X +XT

2
ψ(t) + (X1 +XT

1 )ξ(tk)]

− ψT (t)[
X +XT

2
ψ(t) + (X1 +XT

1 )ξ(tk)] + (h− τ(t))ψT (t)
X +XT

2
ξ̇(t)

+ (h− τ(t))ξ̇T (t)[
X +XT

2
ψ(t) + (X1 +XT

1 )ξ(tk)]

+ 2(ξT (t)PT
2 + ξ̇T (t)PT

3 )
[
Āξ(t) + B̄K̄ξ(tk)− ξ̇(t)

]
+ 2(ξT (t)Y T

1 + ξ̇T (t)Y T
2 + ξT (tk)T

T )
[
− ξ(t) + ξ(tk) + τ(t)ϑ(t)

]
= ηT (t)Φ̃η(t), (1)

where ϑ(t) = 1
τ(t)

∫ t

tk
ξ̇(s)ds, η(t) = col(ξ(t), ξ̇(t), ξ(tk), ϑ(t)) and Φ̃ = [Φ̃ij ] ∈ R4(p+q)×4(p+q) with

Φ̃11 = PT
2 Ā+ ĀTP2 + 2αP − Y1 − Y T

1 −Xα,
Φ̃12 = P − PT

2 + ĀTP3 − Y2 + (h− τ(t))X+XT

2 ,
Φ̃13 = PT

2 B̄K̄ + Y T
1 − T + 1

2 (X1α +XT
1α),

Φ̃14 = τ(t)Y T
1 , Φ̃22 = −PT

3 − P3 + (h− τ(t))U ,
Φ̃23 = PT

3 B̄K̄ + Y T
2 + (h− τ(t))(−X+XT

2 + 1
2 (X1 +XT

1 )),
Φ̃24 = τ(t)Y T

2 , Φ̃33 = T + TT −X2α, Φ̃34 = τ(t)TT , Φ̃44 = −τ(t)e−2αhU .
It follows from Φ1 < 0 and Φ2 < 0 that Φ̃ < 0, which implies V̇1(t) 6 −2αV1(t) by (1). Further, one has

V1(t) 6 e−2α(t−tk)V1(tk), t ∈ [tk, tk + h). (2)
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Appendix C

The calculations for the derivative of V2(t) along the trajectories of the system are

V̇2(t) = 2ξT (t)P ξ̇(t) + φξT (t)Qξ(t)

+ 2(ξT (t)PT
2 + ξ̇T (t)PT

3 )
[
(Ā+ B̄K̄)ξ(t) + B̄K̄e(t)− ξ̇(t)

]
− eT (t)Qe(t) + eT (t)Qe(t)− φξT (t)Qξ(t)

= η̃T (t)Ωη̃(t) + eT (t)Qe(t)− φξT (t)Qξ(t), (3)

where η̃(t) = col(ξ(t), ξ̇(t), e(t)).

Appendix D

Considering the definition of V1(t) and U > 0, one has

V1(t) > ξT (t)Pξ(t) + (h− τ(t))ψT (t)
[X +XT

2
ψ(t) + (X1 +XT

1 )ξ(tk)
]

=
h− τ(t)

h
ζT (t)Ψζ(t) +

τ(t)

h
ξT (t)Pξ(t), (4)

where ζ(t) = col(ξ(t), ξ(tk)). Due to Ψ > 0 and P > 0, there exists ς satisfying Ψ > ςI2(p+q) and P > ςIp+q .
Then, by (4), it follows that V1(t) > ς∥ξ(t)∥2. Recalling the definition of V (t) and V2(t), one has V2(t) > ς∥ξ(t)∥2
and V (t0) = ξT (t0)Pξ(t0) 6 λmax(P )∥ξ(t0)∥2. Thus, it can be obtained that

∥ξ(t)∥ 6 ce−
β
2 (t−t0)∥ξ(t0)∥, ∀t > t0. (5)

Appendix E

In this section, one example is presented to verify the effectiveness of the presented ETS.
Example 1. Consider the system (3) with

Ā =


0 1 0 0 0
0 0 −2 0 0
0 0 0 1 0
0 0 3 0 0
0 0 0 0 −3

 , B̄ =


0
0.1
0

−0.03
0

 . (6)

A stabilizing controller is given by K̄ = [2 15 400 200 − 3]. Choose h = 0.15, φ = 0.35, α = 0.12, β = 0.1,
which satisfy the conditions in Theorem 1. To better illustrate the advantages, we perform the simulation for
multiple initial conditions to obtain the average transmission number (ATN). Table 1 provides the comparison
results on the ATNs under our ETS (4), periodic sampling, periodic ETS methods and switched ETS in [3]. We
point out that the periodic sampling is achieved by choosing φ = 0, α = β in ETS (4). By comparison, our
ETS (4) clearly reduces the ATN. Besides, under the initial condition col(0.98, 0, 0.2, 0, 3.8), the evolution of the
LF of the system (3) in ETS (4) are shown by Figure 1, and the state response of the system (3) under our ETS
(4), periodic sampling, periodic ETS methods and switched ETS in [3] are respectively shown by Figure 2. From
Figure 1 and 2, it can be concluded that even V (t) is non-monotonic, exponential stability can be maintained.

Table 1: The ATNs under different sampling methods.

Periodic sampling Periodic ETS ETS in [3] Our ETS (4)
ATN 64 58.34 56.67 45.67
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Figure 1 Evolution of the LF V (t).
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Figure 2 Figure 2 (a) State response under the periodic sampling. (b) State response under the periodic ETS. (c) State response under the switching ETS in [3].
(d) State response under the ETS (4).


