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The controller and filter design problems of Markov jump

systems (MJSs) have gained significant attention over the

past few decades. These studies include various aspects,

including stochastic stabilization [1], optimal tracking con-

trol [2], and dissipative filter design [3]. Although numer-

ous publications address the optimal controller design for

MJSs, the issue of hidden MJSs, particularly those with mis-

matched jumping modes between the system and the con-

troller, has rarely been explored.

In this study, we propose a policy iteration-based adap-

tive optimal control scheme for MJSs using a transition-

probability-free asynchronous approach. The main contri-

butions are as follows: First, an asynchronous infinite hori-

zon performance index is established, the weight matrix and

control policy jumping are based on the detected mode un-

der conditional probability. Second, an asynchronous pol-

icy iteration technique is introduced to iteratively solve the

coupled algebraic Riccati equations (CAREs) using online

measured state and input information without the need for

system matrices and coupled transition probability informa-

tion.

Preliminaries. Consider a probability space (Ω,Υ,H).

We examine a class of continuous-time MJSs described by

ẋ = Aρ(t)x+ Bρ(t)u, (1)

where x ∈ R
n is the system state, u ∈ R

m is the con-

trol input. Aρ(t) ∈ R
n×n and Bρ(t) ∈ R

n×m are un-

known constant matrices. Here, {ρ(t)} denotes the system

mode, characterized by a homogeneous Markovian process

with right-continuous trajectories in a finite discrete state

space Ξ = {1, 2, . . . ,N} with a transition probability ma-

trix Π = {φij}N×N . The probabilities Π are defined by

P{ρ(t+ ι) = j|ρ(t) = i} =

{

φij ι+∆(ι), i 6= j,

1 + φiiι+∆(ι), i = j,
(2)

where ι > 0, limι→0∆(ι)ι−1 = 0, and φij > 0 is the tran-

sition rate from mode i to j when i 6= j; i, j ∈ Ξ, and

φii = −∑N
j=1,j 6=i φij .

Considering potential inaccuracies in detecting the sys-

tem mode ρ(t), a hidden Markov model is employed to de-

scribe the connection between the detected mode and the

actual system mode. The detected mode is denoted by η(t),

with values in Λ = {1, 2, . . . ,M}. It is ensured that Λ ⊆ Ξ

and Λ 6= ∅. The conditional probability matrix Θ defines

the relationship between the detected mode and the system

mode as P{η(t) = l|ρ(t) = i} = τil in which τil ∈ [0, 1],
∑M

l=1 τil = 1, ∀l ∈ Λ and i ∈ Ξ.

To achieve asynchronous optimal control for MJSs (1),

the objective is to identify a mode-independent control pol-

icy based on the detected mode η(t) rather than the ac-

tual mode ρ(t). Consequently, uη(t) can be expressed as

uη(t)
∆
= −ξη(t)(t, x) = −Kη(t)x, where ξη(t) : [0,∞) ×

R
n × Λ → R

m represents the admissible control policy.

The asynchronous infinite horizon performance index related

MJSs (1) is then defined as Vη(t)(t, x) = E{
∫∞
0 [xTQη(t)x+

uT
η(t)

Rη(t)uη(t)]dt|x0, η0} with Qη(t) ≻ 0 and Rη(t) ≻ 0.

Subsequently, the infinite horizon asynchronous optimal

control problem is reduced to finding an admissible control

policy, denoted as u∗
η(t)

∆
= argmin

uη(t),t06t6∞
Vη(t)(t0, xt0 , uη(t)).

For simplicity, when ρ(t) = i, i ∈ Ξ, let Aρ(t) denote Ai.

Similarly, when η(t) = l, l ∈ Λ, Kη(t) is represented as Kl.

These notations apply to other functions as well.

Lemma 1 ( [4]). Consider any initial stabilizing gain

matrix K0 ∈ R
m×n, β ∈ Z+ and let P (β) denote the

symmetric positive definite solution of the following Lya-

punov equation [A−BK(β)]TP (β) + P (β)[A − BK(β)] +

(K(β))TRK(β) + Q = 0 with K(β) = R−1BTP (β−1).

Then, the following statements hold: (1) A−BK(β) is Hur-

witz; (2) P ∗ 6 P (β+1) 6 P (β); (3) limβ→∞K(β) = K∗,

limβ→∞P (β) = P ∗.

Remark 1. It is evident from ul = −Klx = −R−1
l

BT
i Plx

that precise knowledge of the original jump system matrix
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Bi remains necessary for the iterations. Therefore, the main

challenge addressed in this study is proposing a data-driven

learning strategy to achieve an asynchronous optimal con-

trol policy without relying on the original jump system mode

matrices Ai and Bi.

Assumption 1. The precise values of {ρ(t)} and {η(t)}
are known. The expectation in Vη(t)(t, x) is computed over

the joint process {x, ρ(t), η(t)}, confirming the stochastic

controllability of the MJSs described by (1).

Assumption 2. The system (Ai, Bi,
√
Ql), i ∈ Ξ, l ∈ Λ

is stochastically detectable.

Algorithm implementation. We reconstruct the MJSs de-

scribe by (1) as follows:

ẋ = Ã
(β)
i x+ Bi(K

(β)
l

x+ ul), (3)

where Ã
(β)
i = Ai − BiK

(β)
l

.

Let K
(0)
l

be a known initial stabilizing gain for (3). The

corresponding asynchronous infinite horizon performance

index is designed as Vl(t, x) = E{
∫ ∞
t

µγ(τ−t)(xTQlx +

uT
l
Rlul)dτ |xt, ηt}, where µ ∈ (0, 1) represents the discount

factor, γ is a positive parameter, Rl ≻ 0, Ql ≻ 0 are the

weight matrices. Consequently, the relevant CAREs with

ul = −K
(β)
l

x yields [Ã
(β)
i − BiK

(β)
l

]TP
(β)
l

+ P
(β)
l

[Ã
(β)
i −

BiK
(β)
l

] = −(K
(β)
l

)TRlK
(β)
l

− ∑N
j=1

∑M
l=1 φijτilPj −

γ lnµP
(β−1)
l

− Ql. For each iteration β ∈ Z+ and de-

tected mode l ∈ Λ, we seek a sequence of symmetric posi-

tive definite matrices P
(β)
l

that satisfies the CAREs. We

also derive a feedback gain matrix K
(β+1)
l

∈ R
m×n us-

ing K
(β+1)
l

= R−1
l

BT
i P

(β)
l

. Along the solution of (3) by

Lemma 1, we consider the initial stabilizing control signal

u
(0)
l

= −K
(0)
l

x+θ where θ denotes the exploration noise [5].

The online implementation of the policy iteration approach

is achieved as follows:

x(t + o(t))TP
(β)
l

x(t+ o(t)) − x(t)TP
(β)
l

x(t)

= −
∫ t+o(t)

t

xTQ̄(β)
l

xdτ

+ 2

∫ t+o(t)

t

(ul +K
(β)
l

x)
T
RlK

(β+1)
l

xdτ,

(4)

where Q̄(β)
l

= Ql +K
(β)T
l

RlK
(β)
l

+ γ lnµP
(β−1)
l

.

Using the Kronecker product representation, we de-

rive the following transition-probability-free adaptive asyn-

chronous optimal control as Algorithm 1.

Algorithm 1 Adaptive asynchronous optimal control algorithm

via policy iteration

1: Set the iteration step β = 0, the convergence error α > 0,

the initial control input u
(0)
l

= −K
(0)
l

x+ θ.

2: Compute σxx, ξxx and ξxu until rank([ξxx, ξxu]) =
n(n+1)

2 + mn holds.

3: repeat

4: For l ∈ Λ do

5: Update Φ
(β)
l

and Ψ
(β)
l

based on Φ
(β)
l

= [σxx,−2ξxx(In⊗

K
(β)T
l

Rl)− 2ξxu(In ⊗ Rl)], Ψ
(β)
l

= −ξxxvec(Q̄
(β)
l

).

6: Solve P
(β)
l

and K
(β+1)
l

from





Γ̄
(β)
l

vec(K
(β+1)
l

)



 = (Φ
(β)T
l

Φ
(β)
l

)−1Φ
(β)T
l

Ψ
(β)
l

. (5)

7: β ← β + 1.

8: until ‖P
(β)
l
− P

(β−1)
l

‖ 6 α.

9: Update ul = −K
(β)
l

x as the asynchronous optimal policy.

Remark 2. In Algorithm 1, x ∈ R
n → χ̄ ∈ R

1
2
n(n+1),

Pl ∈ R
n×n → Γ̄l ∈ R

1
2
n(n+1), Φ

(β)
l

∈ R
ε×[ 1

2
n(n+1)+mn],

Ψ
(β)
l

∈ R
ε. For 0 6 t0 < t1 < · · · < tε, we define

σxx = [(χ̄t1 − χ̄t0), . . . , (χ̄tε − χ̄tε−1)]
T ∈ R

ε× 1
2
n(n+1),

ξxx = [
∫ t1
t0

x⊗ xdτ , . . . ,
∫ tε
tε−1

x⊗ xdτ ]T ∈ R
ε×n2

, ξxu =

[
∫ t1
t0

x⊗ uldτ , . . . ,
∫ tε
tε−1

x⊗ uldτ ]
T ∈ R

ε×mn where ε is a

positive integer. More details can be found in Appendix C.

Theorem 1 (Convergence analysis). For any detected

mode η(t) = l ∈ Λ, under Assumptions 1 and 2, and start-

ing from an initial stabilizing policy K
(0)
l

, when the full

column rank condition is satisfied, the sequence of solution

pair {[P (β)
l

], [K
(β)
l

]} is uniquely determined by the equality

in (5) and converges to the optimal pair (P ∗
l
,K∗

l
).

Proof. For any detected mode l ∈ Λ, consider a stabiliz-

ing policy K
(β)
l

; if P
(β)
l

= (P
(β)
l

)T is the solution of the

CAREs, which satisfies Lemma 1, then K
(β+1)
l

is uniquely

determined by K
(β+1)
l

= R−1
l

BT
i P

(β)
l

. Using equation

(4), we obtain P
(β)
l

and K
(β+1)
l

that satisfy the equal-

ity in (5). Let Pl = PT
l

∈ R
n×n and Kl ∈ R

m×n, so

that Φ
(β)
l

[

Γ̄l
vec(Kl)

]

= Ψ
(β)
l

holds. Then, Γ̄l = Γ̄
(β)
l

and

vec(Kl) = vec(K
(β+1)
l

). Based on the full column rank

condition, Pl = PT
l

and Kl are unique. Therefore, accord-

ing to the definitions of Γ̄l and vec(Kl), P
(β)
l

= Pl and

K
(β+1)
l

= Kl are uniquely determined. Consequently, the

convergence is established by Lemma 1.

Conclusion. A policy iteration-based adaptive optimal

control algorithm using a transition-probability-free asyn-

chronous approach has been developed for a class of MJSs.

This algorithm approximates the optimal CARE solution

without requiring prior knowledge of the system matrices.

By employing a constructed discounted cost function, the

coupled transition probabilities are no longer necessary. Fi-

nally, the convergence of the proposed algorithm is verified.
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