
SCIENCE CHINA
Information Sciences

. Supplementary File .

Policy iteration-based adaptive optimal control for
Markov jump systems: a transition-probability-free

asynchronous approach

Weidi CHENG1,2, Chengcheng REN1,2, Shuping HE1,2,3* & Changyin SUN4

1Key Laboratory of Intelligent Computing and Signal Processing (Ministry of Education),

School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China;
2Anhui Engineering Laboratory of Human-Robot Integration System and Intelligent Equipment,

School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China;
3Information Materials and Intelligent Sensing Laboratory of Anhui Province, Hefei 230601, China;

4Engineering Research Center of Autonomous Unmanned System Technology (Ministry of Education),

School of Artificial Intelligence, Anhui University, Hefei 230601, China

Appendix A Abstract
This paper proposes a policy iteration-based adaptive optimal controller for a class of continuous-time Markov jump systems with

hidden Markov model. Since the mismatched mode phenomenon between the system and the controller, the asynchronous control

scheme is considered. The internal dynamics are not available in time, and therefore the coupled algebraic Riccati equations

(CAREs) cannot be solved directly. To address the adaptive optimal control problem, we present a novel algorithm by utilizing

off-policy adaptive dynamic programming techniques to iteratively tackle the CAREs. It leverages asynchronous information from

the state and input, eliminating the need for a priori knowledge of the system matrix. By using the constructed discounted

cost function, the information on the coupled transition probabilities is also not required. Also, the convergence of the designed

algorithm has been demonstrated. Finally, an example via an RLC circuit system is provided to validate the effectiveness of the

designed algorithm.

Appendix B Introduction and discussion
In general, minimizing a predefined cost function to ensure the performance is a key feature of the optimization algorithm. Such

algorithms are usually implemented on the actor-critic mechanism [1], to acquire the optimal control policy of dynamic systems

through the function approximator. In the ideal case, the internal dynamics of the system are available to achieve optimal control.

However, in practice, the system dynamics might not be accurately identified. To handle this problem, Vrabie et al. [2] introduced an

online method that relies on adaptive critics to get the optimal control solution of linear systems, in which only partial knowledge

of the system dynamics is available. Then, Jiang and Jiang [3] designed a model-free adaptive dynamic programming (ADP)

algorithm to iteratively solve the algebraic Riccati equation (ARE) by incorporating real-time data from both state and input. Luo

et al. [4] derived a data-based policy gradient ADP algorithm relying on gathered data and the policy gradient framework. Yang

et al. [5] developed a dynamic prioritized policy gradient ADP approach to address the optimal control challenges in nonaffine

systems, with particular application to the management of wastewater treatment processes. Lian et al. [6] proposed a data-driven

inverse reinforcement learning (RL) technique for redesigning an unknown index function, eliminating the need for prior knowledge

of the control policy gain and the system dynamics. Within the domain of multi-robot systems, Huo et al. [7] devised an efficient

game-theoretic decision-making framework to handle the task allocation challenge. Nevertheless, the optimal control problem for

Markov jump systems (MJSs) has rarely been considered, especially for hidden MJSs with mismatched jumping mode phenomenon

between the system and the controller.

In recent decades, MJSs have drawn extensive interest due to the outstanding modeling capabilities for network control systems

[8], manufacturing systems [9], etc. For linear time-invariant systems, the optimal control objective design problem to be solved

is to find a unique positive definite solution for the underlying ARE. Due to the presence of the transition probabilities in the

Markovian process, the learning algorithms for handling the MJSs optimal control problem refers to address the coupled ARE

(CARE) or the coupled Lyapunov matrix equation (CLME). In [10], a necessary and sufficient condition was provided to study

the stochastic stability of MJSs in terms of the corresponding CLME. In [11], a parallel iterative algorithm for the solution of

the CLME was developed. And an implicit sequential algorithm for handling CLME of MJS was given in [12]. By introducing a

tuning parameter, an explicit iterative algorithm [13] was given to deal with the matrix equations under consideration. In [14], it

presented an integral RL tracking algorithm for MJSs, which uses an offline tracking iteration algorithm to solve CARE and avoids

the transition probability requirement. In [15], it deduced an offline parallel Kleinman algorithm and an online parallel integral

RL algorithm to obtain the suboptimal controller. It’s worth noting that the majority of current findings regarding the control of

MJSs rely on a crucial assumption that the controller has constant access to complete plant mode information; this assumption

can ensure the controller modes run synchronously with the system modes [16–18]. However, maintaining such an ideal condition

exists challenging in practical applications.

Therefore, it is important to investigate the problem of imperfect mode detection for MJSs. In recent years, Wang et al. [19]

derived a stochastic scheduled controller to solve the almost surely exponential stabilization problem in which the controller operates
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sequentially. Furthermore, an asynchronous controller based on a stochastic transfer matrix scheme was constructed to achieve

exponential almost sure stability of MJSs in [20]. Moreover, the hidden Markov model (HMM) is one of the effective tools to handle

this problem. In this way, the system mode is identified via a mode-detector. The detected mode is associated with the system

mode through conditional probabilities, but it may not be equivalent to the real mode. Some works on HMM-based asynchronous

control can be found in [21–25]. However, to the authors’ knowledge, the problem of asynchronous optimal control of HMM-based

MJSs has not been adequately addressed. There are two main challenges to be addressed during the optimal control algorithm

process for hidden MJSs, that is:

1. By the HMM, a conditional probability matrix (CPM) is used to represent the jump probability of a detected mode. This

implies the existence of a novel coupling term in the CAREs associated with the hidden MJSs. Then, how do we solve this

novel CAREs?

2. Due to the asynchronous characteristic between the system mode and the controller mode, it is difficult for the controller to

obtain the real system mode information. This requires considering how to use online measured state and input information

to iteratively design optimal control laws.

In this paper, we study a policy iteration-based adaptive optimal control scheme for MJSs by transition-probability-free asyn-

chronous approach. The main contributions are summarized in the following:

1. An asynchronous infinite horizon performance index is established, where the jumping of the weight matrix and the control

policy are based on the detected mode under conditional probability. The traditional performance index for the synchronous

Markov model in [12–15] can be considered as a special case of this work.

2. An asynchronous off-policy RL technique is presented to address the CAREs iteratively and obtain the optimal control gains

by employing the online measured state and input information without requiring the system matrix and coupled transition

probability information.

3. A model-free asynchronous adaptive optimal stabilization control approach for continuous-time hidden MJSs is presented to

ensure that the system output achieves stability. This is the first attempt to design the optimal control strategy for hidden

MJSs, to the best of our knowledge.

Notation: For the probability space (Ω,Υ,H), Υ is the σ-algebra of events, H is the probability measure, and Ω is the sample

space. R denotes the set of real numbers, Z+ denotes the set of non-negative integers. ∥·∥ represents the Euclidean norm of a

vector. The Kronecker product operator is denoted by ⊗. vec(ζ̄) = [ζT
1 , ζT

2 , . . . , ζT
n ]T is a vector-valued function of a matrix ζ̄. In

represents n-by-n identity matrix.

Appendix C Implementation of asynchronous policy iteration algorithm
The online implementation of the policy iteration approach can be achieved as:
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where Q̄(β)
l = Ql + K

(β)T
l RlK

(β)
l + γ lnµP

(β−1)
l .

Remark 1. The term BT
i P

(β)
l involving Bi is replaced by RlK

(β+1)
l , and the relevant algorithm can be implemented without

requiring the system matrices Ai and Bi.

Furthermore, to find P
(β)
l and K

(β+1)
l , for l ∈ Λ, the following two operators are given, that is, x ∈ Rn → χ̄ ∈ R

1
2
n(n+1),
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According to the Kronecker product representation, the terms on the right-hand side of (C1) satisfies
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Then, we define σxx ∈ Rε× 1
2
n(n+1), ξxx ∈ Rε×n2

, and ξxu ∈ Rε×mn where ε is a positive integer, and get


σxx = [(χ̄t1

− χ̄t0
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, . . . , χ̄tε − χ̄tε−1

]T
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x ⊗ xdτ, . . . ,
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(C4)

where 0 ⩽ t0 < t1 < · · · < tε. By substituting (C2)-(C4) into (C1), we obtain the following compact linear form:

Φ
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l (C5)
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where Φ
(β)
l ∈ Rε×[ 1

2
n(n+1)+mn] and Ψ

(β)
l ∈ Rε given by:

{
Φ

(β)
l = [σxx,−2ξxx(In ⊗ K

(β)T
l Rl) − 2ξxu(In ⊗ Rl)]

Ψ
(β)
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l )
(C6)

Inspired by [3], to maintain the persistence of excitation condition, the rank condition rank([ξxx, ξxu]) =
n(n+1)

2 +mn needs to

be fulfilled to guarantee the existence and uniqueness of solution to (C5). When the full column rank condition is met, the solution

to equation (C5) is given by:  Γ̄
(β)
l
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Then, we have the transition-probability-free adaptive asynchronous optimal control Algorithm 1.

Remark 2. Due to the asynchronous property between the system mode and the controller mode, the information of the system

mode available to the controller is often imprecise. Therefore, in (4), the term xT (Ã
(β)T
i P

(β)
l +P

(β)
l Ã

(β)
i )x is replaced by xT Q̄(β)

l x,

the term BT
i P

(β)
l is replaced by RlK

(β+1)
l . After these transformations, both Ai and Bi do not appear explicitly in the policy

update. The necessity for the system matrices can be substituted by the online measurement of the state and the input data.

Remark 3. It should also be noted that in (4), the requirement of the coupled transition probability ϕijτil is avoided. By

introducing the discount factor µ, the term γ lnµP
(β−1)
l in (4) contains information about the coupled transition probability∑N

j=1

∑M
l=1 ϕijτilPj , that is, Pl, for the previous step contains information about the coupled transition probability updated by

Q̄(β)
l iterations.

Appendix D Simulation study
In this section, a practical example via a RLC circuit system [26,27] is shown in the following Fig. D1. We present three simulation

cases to illustrate the effectiveness of the proposed algorithm, where Case 1 and Case 2 are used to exhibit the generality of the

proposed algorithm in both asynchronous and synchronous situations, Case 3 further expresses the practicality and universality of

the algorithm by considering the asynchronous case of a different transfer probability matrix.

C1

R

L1

2
3

1 S

C2
L2

u(t)
-

+

Figure D1 The RLC circuit.

The switch S has two positions with randomly transitions. Assume a Markov process with hidden system modes Λ = {1, 2} is

driving the state transitions between the two modes Ξ = {1, 2}.
Given that IL represents the current of inductance L, uC is the voltage of capacitance C, apply the Kirchhoff laws for i = 1, 2,

and get

dIL

dt
=

uL

Li

=
u − uC − IL

Li

;
duC

dt
=

IL

Ci

(D1)

Then, letting x = [uC , IL]T , the state space model is

ẋ =

 0 1
Ci

− 1
Li

− R
Li

 x +

 0

1
Li

u (D2)

where the parameters of the RLC circuit system are given as L1= 0.5H, C1= 5F , L2 = 0.8H, C2 = 8F and R = 1.5Ω.

Regarding the parameters of the proposed asynchronous optimal algorithms, the discount factor µ and the parameter γ are

given by µ = 0.5, γ = 0.1, respectively. The state and the input are gathered at intervals of 0.01s. The recursive iteration begins

at t = 2s. Before that, the exploration noise θ is given by θ =
∑100

i=1 sin(ϖit) as the system input, where ϖi is randomly chosen

from [−50, 50]. Moreover, the stopping criterion is established as ∥P (β)
l − P

(β−1)
l ∥ ⩽ 1 × 10−12. After t = 2s, the asynchronous

control law obtained after iteration serves as the actual control signal to the system until the end of the simulation.

Moreover, the weighting matrices are given as Q1 = diag[1 1], Q2 = diag[1 0.1], R1 = 0.5 and R2 = 1. The initial control gain

matrix is considered as K
(0)
l = [1 1]. To verify the applicability of the developed algorithm in both asynchronous and synchronous

cases, two scenarios are considered in the simulation results.

Case 1 (Asynchronous case): The transition probability matrix Π is given by Π =

−4 4

5 −5

, and the observation probability

matrix Θ is given by Θ =

0.5 0.5

0.4 0.6

. By applying Algorithm 1, after 12th iterations, one can get

P
(12)
1 =

−16.8816 −1.6630

−1.6630 0.0838

 , K
(12)
1 =

[
−8.6052 0.2800

]
, P

(12)
2 =

−9.1488 −0.0272

−0.0272 0.0038

 , K
(12)
2 =

[
−0.1436 0.0086

]
.
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Figure D2 The modes of ρ(t) and η(t) modes in Case 1.
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Figure D3 Convergence of P1 and P2 in Case 1. Figure D4 The system states in Case 1.
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Figure D5 The modes of ρ(t) and η(t) modes in Case 2.
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Figure D6 Convergence of P1 and P2 in Case 2. Figure D7 The system states in Case 2.

The asynchronous properties between the system mode ρ(t) and the controller mode η(t) are exhibited in Fig. D2. Further,

Fig. D3 exhibits the iteration process of the matrix parameters P1 and P2 by CAREs, revealing evident convergence throughout

the iterative learning process. This illustrates that Algorithm 1 successfully achieves the optimal asynchronous control solution. In

Fig. D4, the system state trajectory is depicted with the initial state matrix x0 = [0.2 0.1]T , showing the ideal control performance

and achieving system stabilization.

Case 2 (Synchronous case): In synchronization case, we give the relevant observation probability matrix Θ as Θ =

1 0

0 1

, and

the transition probability matrix Π is still given by Π =

−4 4

5 −5

. By applying Algorithm 1, after 14th iterations, one can get:

P
(14)
1 =

 5.3993 −1.7516

−1.7516 0.0702

 , K
(14)
1 =

[
−4.1123 0.2217

]
, P

(14)
2 =

 0.0699 −0.1779

−0.1779 0.0051

 , K
(14)
2 =

[
−0.2737 0.0089

]
.

From Fig. D5, it can be observed that the system mode ρ(t) and the controller mode η(t) are synchronous. From Fig. D6 and

Fig. D7, the convergence of P1 and P2 are provided, and the developed optimal control scheme stabilize the system. It shows that

the presented adaptive optimal Algorithm 1 can also be adapted in synchronous case.

Case 3 (Asynchronous case of another transition probability matrix): In this case, The transition probability matrix Π is

given by Π =

−1 1

3 −3

. The observation probability matrix Θ is given by Θ =

0.5 0.5

0.4 0.6

, which is equal to Case 1. By applying
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Figure D8 The modes of ρ(t) and η(t) modes in Case 3.

0 2 4 6 8 10 12 14

Number of iterations

-150

-100

-50

0

50

100

P
1
(1,1)

P
1
(1,2)

P
1
(2,1)

P
1
(2,2)

P
2
(1,1)

P
2
(1,2)

P
2
(2,1)

P
2
(2,2)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-100

-50

0

50

100

150

200

250

300

x
1

x
2

Figure D9 Convergence of P1 and P2 in Case 3. Figure D10 The system states in Case 3.

Algorithm 1, after 15th iterations, one can get:

P
(15)
1 =

−60.5695 −3.7249

−3.7249 0.0166

 , K
(15)
1 =

[
−9.3594 0.0420

]
, P

(15)
2 =

16.8285 −0.6444

−0.6444 0.0069

 , K
(15)
2 =

[
−1.7679 0.0133

]
.

From Figs. D8-D10 it can be seen that different transfer probability matrices do not affect the effectiveness of the algorithm,

the practicality and universality of the presented algorithm are verified.

Remark 4. Based on the results of the simulation study, it can be seen that the proposed asynchronous optimal control scheme

achieves the desired control performance regardless of whether the system model and controller model are asynchronous or syn-

chronous. In this study, an asynchronous infinite horizon performance index is established, where the jumping of the weight matrix

and the control policy are based on the detected mode under conditional probability, which means that the traditional performance

index for the synchronous Markov model can be considered as a special case of this work.

According to the observed simulation results, the developed algorithm achieves convergence and obtains the optimal matrix

Pl and Kl. And there is not required a prior information about the system dynamics Ai, Bi, i ∈ Ξ and the coupled transition

probabilities ϕijτil, l ∈ Λ. It also exhibits the effectiveness of our constructed adaptive asynchronous control scheme and policy

policy iteration algorithm.
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