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Appendix A Related works

Here, we provide comprehensive comparisons with relevant existing research to highlight the novelty of our study.

Unlike the previous findings discussed in Refs. [1–5] which primarily focused on the controllability and stability aspects of

stochastic systems with FBM, our study takes a distinctive approach to investigate asymptotic stability in the mean-square sense.

This novel perspective allows us to delve deeper into the long-term behavior and performance evaluation of MASs driven by FBM,

shedding light on a previously unexplored aspect of the problem.

It can be observed that the results reported in Refs. [6–11] focused on addressing the mean-square consensus problem of MASs

with standard Brownian motion. By contrast, FBM is neither a semimartingale nor an independent incremental process when the

Hurst parameter H 6= 0.5. Consequently, the approaches presented in Refs. [6–11] are not directly applicable to the problem in this

study. In this study, we address these challenges by developing a novel Lyapunov function technique for stability analysis using the

fractional Itô formula.

Note that [12] successfully solved the finite-time stochastic bound consensus problem for MASs under the influence of FBM.

In this study, mean-square consensus control for MASs driven by FBM is considered. Notably, an innovative approach is taken

in comparison to previous works, such as [13], where the containment control problem for MASs driven by FBM was solved using

the properties of analytic semigroups, which increases the complexity of the theoretical analysis. In this study, the mean-square

consensus control problem is addressed for MASs driven by FBM by using the fractional Itô formula and constructing the stopping

time.

Appendix B Preliminaries

Notations: Throughout this paper, let (Ω,F , {Ft}t>0, P) be a complete filtered probability space, where Ω represents the sample

space, F represents a σ-algebra, {Ft}t>0 represents a filtration, and P represents the probability measure. Let E represent

mathematical expectations. Denote L2([0, T ]) as the family of all functions f : [0, T ] → R such that
∫ T
0
f2(t)dt < ∞. Denote

Lp := Lp(Ω,F ,P) as the space of all random variables x : Ω → R such that ‖x‖p = (E‖x‖p)1/p < +∞. Let λi(M) be the ith

eigenvalue of matrix M . ⊗ represents the Kronecker product,

Definition 1 ( [14]). Let the Hurst parameter H ∈ (0, 1) and the standard FBM {BH(t), t > 0} be a continuous and centered

Gaussian process defined on (Ω,F , {Ft}t>0, P) with the following properties:

(i) BH(0) = 0, E[BH(t)] = 0, ∀t > 0.

(ii) E[BH(t)BH(r)] = 1
2 (|t|

2H + |r|2H − |t− r|2H) for t, r > 0.

(iii) BH(t) has continuous trajectory.

In this study, the FBM {BH (t), t > 0} with H ∈ (0.5, 1) is considered. Next, a Skorokhod-type stochastic integral is introduced.

Most stochastic integral results can be found in monographs [14].

Let E be the space of step functions on [0, T ]. For L2([0, T ]), the following scalar product is considered:

〈f, g〉H :=

∫

T

0

∫

T

0

f(u)g(s)φ(u, s)dsdu,

where φ(u, s) = (2H2 −H) | s− u |2H−2, Denote H1 as the closed subspace of L2, and H as the closure of the linear span of the

indicator functions {1[0,t], t ∈ [0, T ]} with respect to 〈1[0,t], 1[0,s]〉H 7→ R(t, s). The image in H1 for ψ ∈ H is denoted as BH(ψ).

We denote S the set of all polynomial functions of BH(ψj), ψ1, . . . , ψn ∈ H. For an elementG ∈ S, G = h
(

BH(ψ1), . . . , B
H (ψn)

)

,

where n > 1, h ∈ C∞
b (Rn). The Malliavin derivative for G ∈ S is defined by DH

s G :=
n
∑

i=1

∂h
∂xi

(

BH(ψ1), . . . , B
H(ψn)

)

ψi(s).

For any G ∈ S and p ∈ (0,∞), define norm ‖G‖H,1,p := ‖G‖p +

[

E
(

∫ T
0

| DH
t G |2 dt

)p/2
]1/p

. Denote DH,1,p as the Banach

space obtained by completing S with ‖ · ‖H,1,p. Denote δw as the adjoint of DH , with Dom(δw) ⊆ L2. The divergence operator

with respect to BH(t) is used as a Skorokhod-type stochastic integral. Particularly,

δw
(

n
∑

i=1

ai1[ti,ti+1)

)

=
n
∑

i=1

ai
(

BH(ti+1) − BH(ti)
)

.
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For ζ ∈ E, the operator K∗
H can be represented as (K∗

Hζ)(s) =
∫

T
s
ζ(t)KH(dt, s), the completion of E with seminorm ‖ζ‖Kr =

∫

T
0

(
∫

T
s

| ζ || KH | (dt, s))2ds is denoted by HKr . D1,2(HKr ) ⊆ Dom(δw) and

∫

t

0

usdB
H(s) := δw(u) =

∫

T

0

(K∗
Hu)sdWs,

for any u ∈ D1,2(HKr ). Moreover, E
[

∫ t
0
usdB

H(s)
]

= 0.

Lemma B1 ( [15]). Suppose that U ∈ C2(R) is twice continuously differentiable and max

{

|U(x)|, | ∂U(x)
∂x |, | ∂

2
U(x)

∂x2 |

}

6 ς1 exp(ς2|x|
2),

where ς1, ς2 > 0 such that ς2 < 1/4(sup06t6T E(BH
t )2). Let a(t) be an adaptive bounded random process in D2,4, and

X(t) =
∫ t
0
a(s)dBH(s), then

∂U(X(t))
∂X ∈ D

1,2(HKr ). For each t ∈ [0, T ], we have

U(X(t)) = U(0) +
∫ t
0

∂U(X(s))
∂X dBH(s) +

∫ t
0

∂2
U(X(s))

∂X2

(

∫ s
0

∂K(s,r)
∂s

(∫ s
0
Dr(K

∗
s a(θ))dw(θ)

)

dr
)

ds

+ 1
2

∫

t
0

∂2
U(X(s))

∂X2

∂
(

∫ s
0 (K∗

s a(r))2dr
)

∂s ds.

Graph theory( [16]). In this study, suppose that the MASs with N followers among the undirected communication topology

graph G = (V, E,A), with V = {1, 2, . . . , N} is the node set, E ⊆ V × V is the edge set, A = [aij ] is the weighted adjacency

matrix, where aij represents the communication quantity such that aij = aji > 0 if (i, j) ∈ E and aij = 0, otherwise. We denote

Ni = {j ∈ V : (i, j) ∈ E} as the set of neighbors of node i. We denote D = diag{d1, d2, . . . , dn} as the degree matrix, with

di =
∑N

j=1 aij . The Laplacian of graph G is L = D − A.

Remark 1. Malliavin analysis, introduced by Malliavin in 1976, provides a set of rules for differentiating random variables. It

considers the solutions of stochastic differential equations as “smooth” Wiener functionals, thereby tackling differentiation challenges

that cannot be resolved using traditional methods alone.

Remark 2. The Skorokhod-type stochastic integral derived from Malliavin analysis is utilized in this study because of its robust

mathematical framework for handling complex stochastic processes and its ability to integrate random variables with respect to a

broad class of adapted processes.

Appendix C The proof of Lemma 1

Because H ∈ (0.5, 1) and Σ(t) ∈ H, Υ(t) : R+ → R is continuous and well defined, that is, Υ(t) < ∞. Note that Σ = max
t>0

{|Σ(t)|}

and φH(t− s) = (2H2 −H)|t− s|2H−2. When t > 1 and H ∈ (0.5, 1), we have

Υ(t) = Σ(t)
∫ t
0
Σ(s)φH (t− s)ds

= (2H2 −H)Σ(t)
∫ t
0
Σ(s)(t − s)2H−2ds

= (2H2 −H)Σ(t)
∫

t
0
Σ(t − r)r2H−2dr

= (2H2 −H)Σ(t)
[ ∫ 1

0
Σ(t − r)r2H−2dr +

∫ t
1
Σ(t − r)r2H−2dr

]

.

When H ∈ (0.5, 1) and r > 1, r2H−2 6 1. Besides,
∫ 1
0
r2H−2dr = 1

2H−1 . Therefore,

Υ(t) 6 (2H2 −H)Σ
2 ∫ 1

0
r2H−2dr + (2H2 −H)Σ

∫ t
1
Σ(t− r)dr

6 HΣ
2
+ (2H2 −H)Σmax

t>0

{∫

t
0
Σ(t)dt

}

= ζ.

In addition, Υ(t) 6 ζ for t ∈ [0, 1) is clear. The proof is completed.

Appendix D The proof of Lemma 2

This proof includes two parts, showing the construction of system (5) and the system (5) has a unique solution of form δ(t) =

eε(t)Φ(t, 0)δ0, respectively.

Part 1: First, we describe the construction of system (5). We denote the measurement error as

ei(t) = ξi(t) − ξ0(t), i = 1, 2, . . . , N,

then

dei(t) = Aei(t)dt+ Σ(t)ei(t)dB
H(t) +BG1

[

∑

j∈Ni

aij(ξi(t) − ξj(t)) + piei(t)

]

dt

= Aei(t)dt+ Σ(t)ei(t)dB
H(t) +BG1

[

∑

j∈Ni

aij(ei(t) − ej(t)) + piei(t)

]

dt.

(D1)

Let e(t) =
[

e1(t)
T , e2(t)

T , . . . , eN (t)T
]T

and P = diag{p1, p2, . . . , pN} then, the compact form of (D1) can be written as

de(t) = [IN ⊗ A+ (L + P) ⊗ BG1] e(t)dt+ Σ(t)e(t)dBH (t).
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When Assumption 2 is satisfied, from Ref. [17], then there exist a nonsingular transformation matrix Q ∈ RN×N such that

Q
−1(L + P)Q = diag{λ1(L + P), λ2(L + P), . . . , λN (L + P)} , Λ,

where 0 < λ1(L + P) 6 λ2(L + P) 6 · · · λN (L + P). Denote δ(t) = (Q−1 ⊗ In)e(t), then

dδ(t) = (Q−1 ⊗ In)de(t)

= (Q−1 ⊗ In)(IN ⊗ A)(Q ⊗ In)δ(t)dt+ (Q−1 ⊗ In)((L + Q) ⊗ BG1)(Q ⊗ In)δ(t)dt

+ (Q−1 ⊗ In)Σ(t)(Q ⊗ In)δ(t)dB
H(t)

= (IN ⊗ A+ Λ ⊗ BG1) δ(t)dt+ Σ(t)δ(t)dBH(t).

Part 2: In the following, we prove that system (5) has a unique solution of the form δ(t) = eε(t)Φ(t, 0)δ0. Set g(t, ε(t)) =

eε(t)Φ(t, 0)δ0. From Lemma B1, we obtain

δ(t) = g(t, ε(t))

= δ0 +
∫

t
0

∂g(u,ε(u))
∂u du+

∫

t
0
Σ(u) ∂g(u,ε(u))

∂ε dBH(u)

+
∫ t
0
Σ(u) ∂2g(u,ε(u))

∂ε2
[
∫ u
0

∂K(u,s)
∂u (

∫ u
0
Ds(K

∗
uΣ(θ))dω(θ))ds]du

+ 1
2

∫

t
0

∂2g(u,ε(u))

∂ε2

∂(
∫u
0 (K∗

uΣ(s))2ds)

∂u du.

According to Ref. [2] and the matrix equation (4), then

∫ u
0

∂K(u,s)
∂u (

∫ u
0
Ds(K

∗
uΣ(θ))dω(θ))ds = 0,

∂(
∫u
0 (K∗

uΣ(s))2ds)

∂u = Σ(u)
∫

u
0

Σ(s)φH (u− s)ds = Υ(u),

∂g(u,ε(u))
∂κ =

∂2g(u,κ(u))

∂ε2
= eε(u)Φ(u, 0)δ0,

∂g(u,ε(u))
∂u = eε(u)M(u)Φ(u, 0)δ0.

From the analysis above and M(u) = IN ⊗ A+ Λ ⊗ BG1 − 1
2Υ(u)Ip, we have

δ(t) = g(t, ε(t))

= δ0 +
∫ t
0
eε(u)

[

M(u)Φ(u, 0)δ0 + 1
2Υ(u)Φ(u, 0)δ0

]

du+
∫ t
0
Σ(u)eε(u)Φ(u, 0)δ0dB

H(u)

= δ0 +
∫ t
0
eε(u)

[(

IN ⊗ A+ Λ ⊗ BG1 − 1
2Υ(u)Ip

)

Φ(u, 0)δ0 + 1
2Υ(u)Φ(u, 0)δ0

]

du+
∫ t
0
Σ(u)δ(u)dBH(u)

= δ0 +
∫ t
0
(IN ⊗ A+ Λ ⊗ BG1)δ(u)du+

∫ t
0
Σ(u)δ(u)dBH (u).

From Definition 1, the stochastic process δ(t) = eε(t)Φ(t, 0)δ0 is a unique continuous strong solution to stochastic system (5). The

proof is completed.

Appendix E The proof of Theorem 1

Consider the auxiliary function of the form

U(δ(t)) = δ(t)
T
(IN ⊗ P )δ(t) =

(

e
ε(t)

Φ(t, 0)δ0
)T

(IN ⊗ P )
(

e
ε(t)

Φ(t, 0)δ0
)

.

Clearly, U(δ(t)) is a symmetric positive definite and U(0) = 0. For each ℵ > ‖δ0‖, we define the stopping time as follows:

τℵ = inf{t > 0 : ‖δ(t)‖ > ℵ}. Note that τℵ → ∞ is ℵ → ∞ a.s. By Lemma B1 and the matrix equation (4), we obtain

eℓ(t∧τℵ)U(t ∧ τℵ, ε(t ∧ τℵ)) − U(0, ε(0))

=
∫ t∧τℵ
0 ℓeℓsU(s, ε(s))ds +

∫ t∧τℵ
0 eℓs ∂U(s,ε(s))

∂s ds+ 1
2

∫ t∧τℵ
0 eℓs ∂2

U(s,ε(s))

∂ε2

∂(
∫ s
0 (K∗

sΣ(u))2du)

∂s ds

+
∫ t∧τℵ
0 eℓsΣ(s) ∂2

U(s,κ(s))

∂κ2 (
∫ s
0

∂K(s,u)
∂s (

∫ s
0
Du(K

∗
sΣ(θ))dω(θ))du)ds+

∫ t∧τℵ
0 eℓs ∂U(s,ε(s))

∂ε Σ(s)dBH(s),

(E1)
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where
∫ s
0

∂K(s,u)
∂s (

∫ s
0
Du(K

∗
sΣ(θ))dω(θ))du = 0,

∂(
∫ s
0 (K∗

sΣ(u))2du)

∂s = Σ(s)
∫

s
0
Σ(u)φH (s− u)du = Υ(s),

∂U(s,ε(s))
∂ε = 2[eε(s)M(s, 0)δ0]

T (IN ⊗ P )[eε(s)M(s, 0)δ0] = 2δ(s)T (IN ⊗ P )δ(s),

∂2
U(s,ε(s))

∂ε2
= 4[eε(s)M(s, 0)δ0]

T (IN ⊗ P )[eε(s)M(s, 0)δ0] = 4δ(s)T (IN ⊗ P )δ(s),

∂U(s,ε(s))
∂s = eε(s)δT0

∂M(s,0)T

∂s (IN ⊗ P )[eε(s)M(s, 0)δ0] + [eε(s)M(s, 0)δ0]
T (IN ⊗ P )eε(s) ∂M(s,0)

∂s δ0

= eε(s)δT0 M(s, 0)T
(

IN ⊗ A+ Λ ⊗ BG1 − 1
2Υ(s)Ip

)T (IN ⊗ P )
[

eε(s)M(s, 0)δ0
]

+ [eε(s)M(s, 0)δ0]
T (IN ⊗ P )eε(s)

(

IN ⊗ A+ Λ ⊗ BG1 − 1
2Υ(s)Ip

)

M(s, 0)δ0

= δ(s)T
(

IN ⊗ ATP + Λ ⊗GT
1 B

TP − 1
2Υ(s)IN ⊗ P

)

δ(s)

+ δ(s)T
(

IN ⊗ PA+ Λ ⊗ PBG1 − 1
2Υ(s)IN ⊗ P

)

δ(s).

Noted that E
[

∫ t∧τℵ
0 eℓs ∂U

∂ε (s, ε(s))Σ(s)dBH (s)
]

= 0, then taking mathematical expectation on Eq. (E1) together with Lemmas

1-2, one obtain

E
[

eℓ(t∧τℵ)U(t ∧ τℵ, ε(t ∧ τℵ))
]

= U(0, ε(0)) + E

[

∫ t∧τℵ
0

(

ℓeℓsδ(s)T (IN ⊗ P )δ(s) + eℓsδ(s)T (IN ⊗ ATP + IN ⊗ PA

+ Λ ⊗GT
1 B

TP + Λ ⊗ PBG1)δ(s) + eℓsΥ(s)δ(s)T (IN ⊗ P )δ(s)

)

ds

]

6 U(0, ε(0)) + E

[

∫ t∧τℵ
0

(

eℓsδ(s)T ((ℓ+ ζ)IN ⊗ P + IN ⊗ ATP + IN ⊗ PA

+ Λ ⊗GT
1 B

TP + Λ ⊗ PBG1)δ(s)

)

ds

]

, U(0, ε(0)) + E

[

∫ t∧τℵ
0

(

eℓsδ(s)T Jδ(s)

)

ds

]

,

where J = IN ⊗ ATP + IN ⊗ PA+ Λ ⊗GT
1 B

TP + Λ ⊗ PBG1 + (ℓ+ ζ)IN ⊗ P. Denote

Ji = ATP + PA + λi(L + P)GT
1 B

TP + λi(L + P)PBG1 + (ℓ+ ζ)P, i = 1, 2, . . . , N.

Since 0 < λ1(L + P) 6 λ2(L + P) 6 · · ·λN (L + P) under Assumption 2, then γ1λi(L + P) >
λi(L+P)

λ1(L+P)
> 1 for all i = 1, 2, . . . , N .

When condition (6) is satisfied, take G1 = −γ1B
TP with γ1 >

1
λ1(L+P)

, then

Ji < A
T
P + PA− 2PBB

T
P + (ℓ+ ζ)P < 0, ∀i = 1, 2, . . . , N,

such that J < 0. Therefore,

eℓ(t∧τℵ)
E [U(t ∧ τℵ, ε(t ∧ τℵ))] 6 U(0, ε(0)).

We denote λmin(P ) = min{λi(P ), i = 1, . . . , n} and λmax(P ) = max{λi(P ), i = 1, . . . , n}. Noted that

λmin(P )‖δ(t)‖2 6 U(t, ε(t)) 6 λmax(P )‖δ(t)‖2,

such that

eℓ(t∧τℵ)λmin(P )E‖δ(t ∧ τℵ)‖
2 6 λmax(P )‖δ0‖

2.

By allowing ℵ → +∞, we obtain

E‖δ(t)‖2 6
λmax(P )

λmin(P )
‖δ0‖

2e−ℓt.

Therefore, lim
t→+∞

E ‖δ(t)‖2 = 0, such that lim
t→+∞

E ‖e(t)‖2 = lim
t→+∞

E ‖(Q ⊗ In)δ(t)‖
2 = 0. Therefore,

lim
t→+∞

E‖ξi(t) − ξ0(t)‖
2 = 0, ∀i = 1, 2, . . . , N.

The proof is completed.

Remark 3. Suppose that Q ∈ Rn×n is a positive definite symmetric matrix. From Ref. [18], when the pair (A,B) is stabilizable

and the pair (A,Q) is detectable, then there must exists a unique positive definite symmetric matrix P ∈ Rn×n to the following

equation:

ATP + PA− 2PBBTP +Q = 0.

such that when pair (A,B) is stabilizable, there must exists at least one positive definite symmetric matrix P ∈ Rn×n satisfying

ATP + PA − 2PBBTP < 0.
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In this study, the influence of FBM is reflected in ζ = HΣ
2
+(2H2 −H)Σmax

t>0

{∫ t
0
Σ(t)dt

}

, which depends on the Hurst parameter

H and noise intensity Σ(t). To design a controller to counteract the impact of noise on the system stability, it is necessary to

guarantee the existence of matrix P in the proof of Theorem 1.

ATP + PA+ λi(L + P)GT
1 B

TP + λi(L + P)PBG1 + (ℓ+ ζ)P

= Ji < ATP + PA− 2PBBTP + (ℓ+ ζ)P < 0, ∀i = 1, 2, . . . , N,

which is guaranteed by the assumption that pair (Θ, Bi) is stabilizable. Therefore, under Assumption 1, there exists a symmetric

positive definite matrix P ∈ Rn×n that satisfies Eq. (6).

Appendix F The proof of Corollary 2

Let ξ(t) = [ξ1(t)
T , . . . , ξN (t)T ]T then,

dξ(t) = (IN ⊗ A)ξ(t)dt+ (L ⊗ BG2)ξ(t)dt+ Σ(t)ξ(t)dBH (t). (F1)

When Assumption 4 is satisfied, from Ref. [19], there exists an orthogonal matrix Q̃ =
[

1
N 1N Q̄

]

∈ RN×N , with Q̄ ∈ RN×(N−1)

and Q̃T = Q̃−1, such that Q̃TLQ̃ = diag{λ1(L), λ2(L), . . . , λN (L)} , Λ, with 0 = λ1(L) < λ2(L) 6 · · · 6 λN (L). Denote

ξ̄(t) =
(

Q̃
T ⊗ In

)

ξ(t), (F2)

then

dξ̄(t) = (IN ⊗ A+ Λ ⊗ BG2) ξ̄(t)dt+ Σ(t)ξ̄(t)dBH(t). (F3)

Let η(t) = [ξ̄2(t)
T , . . . , ξ̄N (t)T ]T and Λ̄ = diag{λ2(L), . . . , λN (L)}, then

dξ̄1(t) = Aξ̄1(t)dt+ Σ(t)ξ̄1(t)dB
H(t), (F4)

dη(t) =
(

IN−1 ⊗ A+ Λ̄ ⊗ BG2

)

η(t)dt+ Σ(t)η(t)dB
H
(t), (F5)

with η(0) = η0. Let M̄(t) = IN−1 ⊗ A+ Λ̄ ⊗ BG2 − 1
2Υ(t)Ip̄ where p̄ = n× (N − 1). Suppose that Φ̄(t, 0) ∈ Rp̄×p̄ is the solution

matrix for the following matrix equation:






˙̄Φ(t, 0) = M̄(t)Φ(t, 0), t > 0,

Φ̄(0, 0) = Ip̄×p̄.
(F6)

Set

η(t) = eε(t)Φ̄(t, 0)η0, with ε(t) =

∫

t

0

Σ(s)dBH (s), t > 0. (F7)

Similar to the proof of Lemma 2, the stochastic process {η(t), t > 0} in form (F7) is a unique continuous strong solution to the

stochastic system (F5). Consider the auxiliary function of the form

U(t, ε(t)) =
(

eε(t)Φ̄(t, 0)η0
)T

(IN−1 ⊗ P̄ )
(

eε(t)Φ̄(t, 0)η0
)

.

For each ℵ > ‖η0‖, we define the stopping time as follows: τℵ = inf{t > 0 : ‖η(t)‖ > ℵ}. Note that τℵ → ∞ as ℵ → ∞ a.s. By

Lemma B1 and the matrix equation (F6),

eℓ̄(t∧τℵ)U(t ∧ τℵ, ε(t ∧ τℵ)) − U(0, ε(0))

=
∫ t∧τℵ
0 ℓ̄eℓ̄sU(s, ε(s))ds +

∫ t∧τℵ
0 eℓ̄s ∂U(s,ε(s))

∂s ds+ 1
2

∫ t∧τℵ
0 eℓ̄s ∂2

U(s,ε(s))

∂ε2

∂(
∫ s
0 (K∗

sΣ(u))2du)

∂s ds

+
∫ t∧τℵ
0 eℓ̄sΣ(s) ∂2

U(s,κ(s))

∂κ2 (
∫

s
0

∂K(s,u)
∂s (

∫

s
0
Du(K

∗
sΣ(θ))dω(θ))du)ds+

∫ t∧τℵ
0 eℓ̄s ∂U(s,ε(s))

∂ε Σ(s)dBH(s),

where
∫

s
0

∂K(s,u)
∂s (

∫

s
0
Du(K

∗
sΣ(θ))dω(θ))du = 0,

∂(
∫ s
0 (K∗

sΣ(u))2du)

∂s = Σ(s)
∫ s
0
Σ(u)Φ̄H (s− u)du = Υ(s),

∂U(s,ε(s))
∂ε = 2[eε(s)M̄(s, 0)η0]

T (IN−1 ⊗ P̄ )[eε(s)M̄(s, 0)η0] = 2η(s)T (IN−1 ⊗ P̄ )η(s),

∂2
U(s,ε(s))

∂ε2
= 4[eε(s)M̄(s, 0)η0]

T (IN−1 ⊗ P̄ )[eε(s)M̄(s, 0)η0] = 4η(s)T (IN−1 ⊗ P̄ )η(s),

∂U(s,ε(s))
∂s = eε(s)ηT0

∂M̄(s,0)T

∂s (IN−1 ⊗ P̄ )[eε(s)M̄(s, 0)η0] + [eε(s)M̄(s, 0)η0]
T (IN−1 ⊗ P̄ )eε(s) ∂M̄(s,0)

∂s η0

= eε(s)ηT0 M̄(s, 0)T
(

IN−1 ⊗ A+ Λ̄ ⊗ BG2 − 1
2Υ(s)Ip̄

)T (IN−1 ⊗ P̄ )
[

eε(s)M̄(s, 0)η0
]

+ [eε(s)M̄(s, 0)η0]
T (IN−1 ⊗ P̄ )eε(s)

(

IN−1 ⊗ A+ Λ̄ ⊗ BG2 − 1
2Υ(s)Ip̄

)

M̄(s, 0)η0

= η(s)T
(

IN−1 ⊗ AT P̄ + Λ̄ ⊗GT
2 B

T P̄ − 1
2Υ(s)IN−1 ⊗ P̄

)

η(s)

+ η(s)T
(

IN−1 ⊗ P̄A+ Λ̄ ⊗ P̄BG2 − 1
2Υ(s)IN−1 ⊗ P̄

)

η(s).
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From the above analysis, we obtain

E
[

eℓ̄(t∧τℵ)U(t ∧ τℵ, ε(t ∧ τℵ))
]

6 U(0, ε(0)) + E

[

∫ t∧τℵ
0

(

eℓ̄sη(s)T ((ℓ̄+ ζ)IN−1 ⊗ P̄ + IN−1 ⊗ AT P̄ + IN−1 ⊗ P̄A

+ Λ̄ ⊗GT
2 B

T P̄ + Λ̄ ⊗ P̄BG2)η(s)

)

ds

]

, U(0, ε(0)) + E

[

∫ t∧τℵ
0

(

eℓ̄sη(s)T J̄η(s)

)

ds

]

,

where J̄ = IN−1 ⊗ AT P̄ + IN−1 ⊗ P̄A+ Λ̄ ⊗GT
2 B

T P̄ + Λ̄ ⊗ P̄BG2 + (ℓ̄+ ζ)IN−1 ⊗ P̄ . Denote

J̄i = AT P̄ + P̄A+ λi(L)GT
2 B

T P̄ + λi(L)P̄BG2 + (ℓ̄+ ζ)P̄ , i = 2, 3, . . . , N.

Since 0 = λ1(L) < λ2(L) 6 · · ·λN (L) under Assumption 4, then γ2λi(L) >
λi(L)

λ2(L)
> 1, for all i = 2, 3, . . . , N . When condition (9)

is satisfied, take G2 = −γ2B
T P̄ with γ2 >

1
λ2(L)

, then

J̄i < A
T
P̄ + P̄A− 2P̄BB

T
P̄ + (ℓ̄+ ζ)P̄ < 0, ∀i = 2, 3, . . . , N,

such that J̄ < 0. Therefore,

eℓ̄(t∧τℵ)
E [U(t ∧ τℵ, ε(t ∧ τℵ))] 6 U(0, ε(0)).

By allowing ℵ → +∞, we obtain

E‖η(t)‖2 6
λmax(P̄ )

λmin(P̄ )
‖η0‖

2e−ℓ̄t,

such that lim
t→+∞

E ‖η(t)‖2 = 0. From the inverses of Eq. (F2), then

ξ(t) = (Q̃ ⊗ In)





ξ̄1(t)

η(t)



 =
[

1
N (1N ⊗ In) Q̄ ⊗ In

]





ξ̄1(t)

η(t)



 =
1

N
(1N ⊗ In) ξ̄1(t) + (Q̄ ⊗ In)η(t).

Furthermore, one has

lim
t→+∞

E

∥

∥

∥

∥

ξ(t) −
1

N
(1N ⊗ In) ξ̄1(t)

∥

∥

∥

∥

2

= lim
t→+∞

E
∥

∥(Q̄ ⊗ In)η(t)
∥

∥

2
= 0,

such that

lim
t→+∞

E ‖ξi(t) − ξj(t)‖
2 = 0, ∀i, j = 1, 2, . . . , N.

The proof is completed.

Appendix G Parameter choices for simulation

Appendix G.1

Consider MASs (1) on R3 with N = 15 among the communication topologies depicted in Figure 1 (a). Suppose that agents 1, 5, 10

can obtain the state information of the leader such that Assumption 2 is satisfied. The initial values are selected as follows:

ξ1(0) = (4,−2, 8)T , ξ2(0) = (−6, 0,−5)T , ξ3(0) = (−7,−10, 2)T , ξ4(0) = (−7, 7,−3)T , ξ5(0) = (10, 7, 3)T , ξ6(0) = (−7, 1,−3)T ,

ξ7(0) = (−2, 2, 8)T , ξ8(0) = (4, 5, 4)T , ξ9(0) = (−2, 2,−5)T , ξ10(0) = (−10, 3, 7)T , ξ11(0) = (−2, 9,−7)T , ξ12(0) = (9,−3, 2)T ,

ξ13(0) = (9, 7, −6)T , ξ14(0) = (−5, 10,−4)T , ξ15(0) = (−8, 6,−4)T , ξ0(0) = (9, 1, 7)T . Suppose that H = 0.6, Σ(t) = 0.8e−0.5t,

ℓ = 0.2, A =









−1.5 0.8 −0.7

−1.2 0 −1

1.7 2.1 0.8









, B =









1 0 0

0 1 0

0 0 1









. Then Σ = 0.8 and ζ = HΣ
2
+(2H2 −H)Σ

∫

∞

0
0.8e−0.5tdt = 0.5376. Take P =









3.126 −2.3185 0.3806

−2.3185 3.1191 0.1758

0.3806 0.1758 1.2722









, such that inequality condition (6) is satisfied. By calculations, we obtain λ1(L + P) = 0.1317. We

consider γ1 = 1/λ1(L+P)+0.01 = 7.603, such that the feedback control gain matrix is taken as G1 = (−9.0326,−7.4236,−13.9027).

The state trajectories of all followers with dynamics (1) and the leader with dynamics (2) without the controller are depicted in

Figure G1. Under controller (3), the state trajectories of all agents are depicted in Figure 1 (b)?(d), which show that the leader-

following consensus control of MASs (1) is achieved in a mean-square sense.

Appendix G.2

Consider MASs (7) on R2 with N = 20 in the communication topology depicted in Figure G2 (a) such that Assumption 4 is

satisfied. The initial states are selected as follows: ξ1(0) = (10,−7)T , ξ2(0) = (1,−3)T , ξ3(0) = (6, 3)T , ξ4(0) = (−5, 7)T ,

ξ5(0) = (8,−3)T , ξ6(0) = (−3, 6)T , ξ7(0) = (2,−5)T , ξ8(0) = (1, 2)T , ξ9(0) = (−4, 5)T , ξ10(0) = (−1,−1)T , ξ11(0) = (1, 0)T ,

ξ12(0) = (9, 4)T , ξ13(0) = (0, 7)T , ξ14(0) = (−5,−1)T , ξ15(0) = (5, 7)T , ξ16(0) = (10,−1)T , ξ17(0) = (6,−4)T , ξ18(0) = (−6, 4)T ,

ξ19(0) = (2,−5)T , ξ20(0) = (−3, 5)T . Suppose that H = 0.7, Σ(t) = 0.8e−0.5t, ℓ̄ = 0.2, A =





0 1

−1 0



, B = (1, 1)T . Then,

Σ = 0.8 and ζ = HΣ
2
+ (2H2 − H)Σ

∫

∞

0
0.8 e−0.5tdt = 0.8064. Take P̄ =





4.749 −1.5985

−1.5985 1.8929



 , such that the inequality

condition (9) is satisfied. By calculating, one has λ2(L) = 0.1162. Taking γ2 = 1/λ2(L) + 0.01 = 8.6159, such that the feedback

control gain matrix is G2 = (−27.1449,−2.5371). The state trajectories of all agents with dynamics (7) and controller (8) are

depicted in Figure G2 (b)?(c), which shows that the leaderless consensus control of MASs (7) is achieved in the mean-square sense.
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Figure G1 State trajectories of all agents without controller.

Figure G2 Simulation results in Appendix G.2.
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