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In recent years, robot teleoperation systems have been

widely used in assembly tasks due to their ability to com-

bine human control with robotic execution, addressing lim-

itations in precision, perception, and intelligence faced by

fully automated robots. However, robot teleoperation for

assembly tasks still encounters several challenges. In com-

plex and unstructured environments, telerobots must reg-

ulate the posture of their manipulators to avoid obstacles

and singularities, ensuring the safety of human operators [1].

Moreover, to ensure the effective execution of precise assem-

bly tasks and to achieve rapid and accurate posture regula-

tion, the tracking performance of the teleoperation system

must be guaranteed [2].

To solve the abovementioned problems, an assembly tele-

operation system based on shared control and a broad learn-

ing neural network is designed to reduce operator workload,

enhance task efficiency, and ensure robot tracking perfor-

mance, as shown in Figure 1. The proposed system com-

prises three controllers: the null-space controller for posture

regulation, the barrier Lyapunov function-based joint con-

troller for ensuring the predefined transient tracking perfor-

mance, and the adaptive torque controller for compensating

dynamic uncertainty and achieving precision assembly.

The main contributions of this study are listed below.

(1) Three functions for posture regulation are introduced:

manipulability optimization, obstacle avoidance, and joint

limit prevention, which are integrated through shared con-

trol, allowing telerobots to adjust joint positions automat-

ically while the operator concentrates solely on assembly

manipulation.

(2) A barrier Lyapunov function (BLF)-based joint con-

troller is employed to confine transient tracking errors within

a prescribed region.

(3) An improved broad learning neural network (BLNN)-

based torque controller is developed. Compared to the tra-

ditional radial basis function neural network, which depends

on empirically preset nodes, the BLNN dynamically gener-

ates nodes, making it more accurate for estimating manip-

ulator uncertainties and reducing computation time.

Posture regulation. To minimize kinematic energy con-

sumption during the manipulability optimization process,

we define the manipulability performance criterion C(θ) as
1
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Md, where Md is the derivative of

joint angles θ with respect to the manipulability measure.

Thus, the optimizing problem can be transformed into min-

imizing C(θ) using the gradient descent technique to obtain

the negative gradient of C(θ), denoted as ∇C(θ). To avoid

excessive joint accelerations, the convergence rate coefficient

is designed as Km(t) = exp(0.5t)−exp(−0.5t)
exp(0.5t)+exp(−0.5t)

, where t is time

variable. Consequently, the vector zm for the manipulability

optimization function is given by

zm = Km∇C(θ). (1)

In complex and unstructured environments, a point-

cloud-based obstacle detection algorithm is introduced [3],

leveraging the K-means clustering and the robot skeleton

modeling to identify collision points, denoted as po for the

obstacle and pr for the robot arm. Hence, the desired col-

lision avoidance velocity can be obtained as ẋo = pr − po.

Additionally, to revert the manipulator to its initial posture

after obstacle removal, a parallel inverse kinematic system

provides the joint restoring velocity ẋr = ζer , where ζ is

a positive coefficient and er denotes the position error be-

tween the parallel system and the real system. Thus, the

vector zo for obstacle avoidance and the vector zr for pos-

ture restoration are derived and combined into zor as
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†
eJe)]†(ẋo − JoJ

†
e ẋe),

zr = [Jr(I6 − J
†
eJe)]†(ẋr − JrJ

†
e ẋe),

zor = Kozo + (1 −Ko)zr ,

(2)

where Je, Je, and Jr are the Jacobian matrices of the end-

effector, the collision point pr , and the restoration point,

respectively. I6 is a 6 × 6 identity matrix, † indicates the

Moore-Penrose pseudo-inverse, ẋe is the real velocity vector,

and Ko is a variable parameter dependent on the distance

between the robot arm and the obstacle.

To prevent configurations of the manipulator from get-

ting close to its mechanical joint limits, a vector zj is de-

signed. We define θmax,i (θmin,i) as the maximum (mini-

mum) angle and qmax,i (qmin,i) as the user-defined maxi-

mum (minimum) angle for the ith joint, forming joint buffer

zones. If the joint angles enter the ranges (qmax,θmax] or

[θmin,qmin), zj increases, guiding the joint towards the safe

interval [qmin,qmax]. Otherwise, zj remains 0 and does not

affect the manipulator’s motion.
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Figure 1 (Color online) Block framework of the proposed assembly teleoperation system.

To achieve automatic posture regulation, the principle

of shared control is introduced. The three functions—

manipulability optimization, obstacle avoidance, and joint

limit prevention—are integrated by exploiting the null space

of Je to maintain the commanded robot arm’s pose in the

task space, formulated as

θ̇d,shared = (I6 − J†
eJe)(w1zm +w2zor +w3zj), (3)

where w1, w2, and w3 are positive weighting factors specified

by users, reflecting the relative importance of each function

in optimizing posture adaptation.

BLF-based joint controller. In this study, the desired

end-effector command xd for the robot arm is generated

from the leader site. To ensure transient tracking perfor-

mance and confine tracking errors within a prescribed re-

gion, a symmetric BLF with an exponential decaying error

constraint [4] is selected for the joint controller. By taking

the time derivative of this BLF, the virtual control law θ̇d,

which considers the posture regulation component as formu-

lated in Eq. (3), is derived as

θ̇d = J†
e (ẋd + Γ−K1ex) + θ̇d,shared, (4)

where K1 is a 6 × 6 diagonal positive definite matrix,

ex = xe − xd represents the task space error, and Γ is the

transient tracking vector derived from the error constraint.

BLNN-based torque controller. To compensate for dy-

namic uncertainty and further enhance tracking perfor-

mance, the compensation torque is defined as Φ = Mθ̈ +

Cθ̇ + G − ëq, where M , C, and G are the robot arm’s

dynamic parameters and eq = θ − θd. Unlike [5], which

requires separate estimation of different dynamic parame-

ters, resulting in long convergence time, we regard them as

a unified entity, reducing computation time and enhancing

responsiveness for teleoperation assembly tasks. Thus, the

torque controller can be designed as

τ = Φ̂− (K2dėq +K2peq) + τext, (5)

where τ and τext are the control and the external torque,

Φ̂ is the estimate of Φ and the matrices K2d and K2p rep-

resent the proportional-derivative parameters.

We use the BLNN with θ as the input vector to esti-

mate Φ, yielding Φ̂ = ŴTZ, where Z is the feature vector

that covers the mapping layer and the enhanced layer with

weights Ŵ . For the BLNN’s update law, the initial joint

configuration is set as the first node. In subsequent sam-

pling periods T , if the distance between the current joint

position and its neighboring nodes is below the threshold,

nodes remain unaltered. Conversely, a new node µnew is

added based on the current joint position, with updates to

Z(t+ T ) and its weight W (t + T ).

Conclusion. This study presents a robot teleoperation

system for precise assembly tasks in unstructured envi-

ronments. To enhance the robots’ flexibility, adaptability

and safety, an automatic posture regulation strategy is em-

ployed. To improve the robots’ tracking accuracy and stabil-

ity, a BLF-based joint controller and a BLNN-based adap-

tive torque controller are implemented. Additionally, we

conducted a series of experiments and a comprehensive as-

sembly task to validate the effectiveness of the proposed sys-

tem (see Appendix E). In future work, we aim to enhance the

posture regulation component, focusing on achieving contin-

uous joint trajectories during obstacle avoidance in environ-

ments with multiple obstacles.
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