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Appendix A Datasets and generating sequence kernels
In this study, we used 10 protein identification datasets and plotted the sequence lengths of each dataset as box plots, as shown in

Figure A1.
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Figure A1 Boxplots of protein sequence lengths for the different datasets.

Spectral clustering, a graph theory-based clustering methodology, utilizes spectral information (i.e., eigenvectors) for data

segmentation. Renowned for its robustness and adaptability, this data partitioning technique has garnered widespread attention in

recent years.

Consider a set comprising p distinct data points, which are clustered into kc clusters through spectral clustering. We first

construct a similarity matrix S ∈ Rp×p. The most prevalent similarity measure implemented is the Gaussian kernel of the

Euclidean distance. Hence, the elements of matrix S can be computed using the following equation:

Sij = exp
(
−γ∥xi − xj∥2

)
, (A1)

where xi and xj are the data points. γ is the coefficient of the kernel function, which effectively quantifies the decay rate of the

similarity and determines how rapidly the similarity between data points diminishes as their distance increases.

Degree matrix D is defined as a diagonal matrix that satisfies D ∈ Rp×p, and its elements can be calculated as

[D]i,j =

p∑
j=1

[S]i,j . (A2)

Then, the graph Laplacian matrix L ∈ Rp×p is defined as

L = D − S. (A3)

Next, we proceed with the eigendecomposition of the Laplacian matrix. This decomposes the Laplacian matrix into a set of

eigenvalues and their corresponding eigenvectors, thereby offering a more tractable framework for our subsequent analysis. Given

that the Laplacian matrix is a real symmetric matrix, it is pertinent to note that all its eigenvalues are real numbers.

Subsequently, we select the kc smallest eigenvalues and form a matrix U ∈ Rp×kc with corresponding eigenvectors as columns.

The matrix U is row-normalized to obtain the matrix T ∈ Rp×kc . We can conceptualize each row in the matrix T as an individual

data point and then apply the K-means algorithm for clustering to derive the results.

The Calinski–Harabasz index (CHI), also known as the variance ratio criterion, is a commonly utilized metric for evaluating

the outcomes of cluster analysis. It quantifies both the compactness within clusters and the separation between clusters. A higher

value of the CHI suggests superior clustering performance.
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Our dataset comprises p elements, which have been clustered into kc clusters through spectral clustering. The evaluation metric

CHI for this particular clustering outcome can be calculated utilizing the following equation:

CHI =
trace (Bk)

trace (Wk)
×
p− kc

kc − 1
, (A4)

where Bk and Wk are the between-group dispersion matrix and within-cluster dispersion matrix, respectively.

We define the center of E as CE . For a particular cluster q, its center is represented as cq . The set of all data points contained

within cluster q is defined as Cq , with nq representing the number of elements in the set Cq . Subsequently, Bk and Wk can be

calculated using the following equations:

Bk =

k∑
q=1

nq (cq − cE)(cq − cE)
T
, (A5)

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T
. (A6)

Proteins are composed of amino acids, fundamental organic compounds in biological processes. Each amino acid molecule consists

of an amino group, a carboxyl group, a hydrogen atom, and a side chain. This particular structure of amino acids gives rise to

various physicochemical properties. We collated data on the physicochemical properties of amino acids from previous studies, which

are frequently employed in bioinformatics research, including alpha-carbon positions (ACP) [1], hydrophobicity (H) [2,3], secondary

structure (SS) [4,5], non-bonded energy (NBE) [6], membrane regions (MR) [7], polarity and bulkiness (PB) [8], chemical structure

(CS) [9], mean polarities (MP) [10], and side-chain (SC) [11,12]. These properties were numerically represented and retained for the

purpose of generating dictionaries for grouping via spectral clustering. Regrettably, the data are not fully complete, necessitating

further processing to ensure their usability and integrity. Biological factors can often result in unusable or incomplete data. For

example, the simplicity of the side chains in alanine and glycine, composed of a methyl group and a hydrogen atom, respectively,

may result in a less pronounced impact during detailed side chain analysis compared to more complex amino acids. This often

results in missing data, manifesting as not applicable (NA) in the numerical values for the physicochemical properties of these

amino acids. Directly assigning a specific value, such as zero, to missing data could result in a loss of accuracy and interpretability.

Thus, we opted to eliminate data entries for amino acids’ physicochemical properties containing ”NA.” The processed data is shown

in Table A1. For reference, the removed data entries can be found in Table A2.

Table A1 Summary of processed physicochemical properties of amino acids.

ACP H1 SS1 NBE SS2 MR PB CS MP H2

Amino acid P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Ala (A) 1.6 87 0.8 -0.491 16 9.36 9.9 0.33 -0.06 -0.26

Arg (R) 0.9 81 0.96 -0.554 -70 0.27 4.6 -0.176 -0.84 0.08

Asn (N) 0.7 70 1.1 -0.382 -74 2.31 5.4 -0.233 -0.48 -0.46

Asp (D) 2.6 71 1.6 -0.356 -78 0.94 2.8 -0.371 -0.8 -1.3

Cys (C) 1.2 104 0 -0.67 168 2.56 2.8 0.074 1.36 0.83

Gln (Q) 0.8 66 1.6 -0.405 -73 1.14 9 -0.254 -0.73 -0.83

Glu (E) 2 72 0.4 -0.371 -106 0.94 3.2 -0.409 -0.77 -0.73

Gly (G) 0.9 90 2 -0.534 -13 6.17 5.6 0.37 -0.41 -0.4

His (H) 0.7 90 0.96 -0.54 50 0.47 8.2 -0.078 0.49 -0.18

Ile (I) 0.7 105 0.85 -0.762 151 13.73 17.1 0.149 1.31 1.1

Leu (L) 0.3 104 0.8 -0.65 145 16.64 17.6 0.129 1.21 1.52

Lys (K) 1 65 0.94 -0.3 -141 0.58 3.5 -0.075 -1.18 -1.01

Met (M) 1 100 0.39 -0.659 124 3.93 14.9 -0.092 1.27 1.09

Phe (F) 0.9 108 1.2 -0.729 189 10.99 18.8 -0.011 1.27 1.09

Pro (P) 0.5 78 2.1 -0.463 -20 1.96 14.8 0.37 0 -0.62

Ser (S) 0.8 83 1.3 -0.455 -70 5.58 6.9 0.022 -0.5 -0.55

Thr (T) 0.7 83 0.6 -0.515 -38 4.68 9.5 0.136 -0.27 -0.71

Trp (W) 1.7 94 0 -0.839 145 2.2 17.1 -0.011 0.88 -0.13

Tyr (Y) 0.4 83 1.8 -0.656 53 3.13 15 -0.138 0.33 0.69

Val (V) 0.6 94 0.8 -0.728 123 12.43 14.3 0.245 1.09 1.15

The SW algorithm is a widely used sequence alignment method in bioinformatics for identifying optimal local alignments between

two sequences. Using this method, the similarity between proteins can be calculated.

To perform sequence alignment between two protein sequences, denoted as Sxi and Syi, and compute their Smith-Waterman

(SW) scores, we employ the SW algorithm. The core of this algorithm can be formulated using a scoring matrix A, where each

element Ai,j represents the best score for aligning the prefixes of the two sequences up to positions i and j. The equation for

calculating the elements of the scoring matrix A is as follows:

[A]i,j = max


[A]i,j−1 − g, if j > 0 and i ⩾ 0

[A]i−1,j − g, if j ⩾ 0 and i > 0

[A]i−1,j−1 + p (i, j) , if j > 0 and i > 0,

(A7)
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Table A2 Summary of processed physicochemical properties of amino acids.

SC1 SC2

Amino acid P11 P12

Ala (A) 0.54 NA

Arg (R) -0.16 0.62

Asn (N) 0.38 0.76

Asp (D) 0.65 0.66

Cys (C) -1.13 0.83

Gln (Q) 0.05 0.59

Glu (E) 0.38 0.73

Gly (G) NA NA

His (H) -0.59 0.92

Ile (I) -2 0.88

Leu (L) -1.08 0.89

Lys (K) 0.48 0.77

Met (M) -0.97 0.77

Phe (F) -1.51 0.92

Pro (P) -0.22 0.94

Ser (S) 0.65 0.58

Thr (T) 0.27 0.73

Trp (W) -1.61 0.86

Tyr (Y) -1.13 0.93

Val (V) -0.75 0.88

where Ai,j−1 denotes a gap at position j of sequence Sy, Ai−1,j denotes a gap at position i of sequence Sx, and Ai−1,j−1 indicates

an alignment without gaps at positions i and j. The pij is a function that allocates scores based on matches or mismatches at

positions i and j. It is defined as follows:

p (i, j) =

m1, if Sxi = Syj

m2, if Sxi ̸= Syj ,
(A8)

where m1 and m2 represent the scores for a match and a mismatch between elements at positions i and j, respectively.

After computing the scoring matrix, a traceback can be performed. In contrast to the Needleman–Wunsch algorithm used for

global alignment, which backtracks from the bottom right corner of the scoring matrix to the bottom left corner, the SW algorithm

initiates the traceback from the highest value within the scoring matrix and stops when it reaches a score of zero, thereby identifying

the optimal local alignment. However, our primary goal in incorporating the SW algorithm is to obtain the SW score. Therefore,

we do not need to perform the traceback process. Instead, we simply choose the maximum value from the scoring matrix as the

SW score.

The schematic diagram of the SW algorithm is shown in Figure A2. In the example diagram, a gap is introduced at the fifth

position of protein sequence Sx. Starting from the second amino acid of both proteins, a local alignment region comprising seven

amino acids emerges, resulting in a final SW score of 4.
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Figure A2 Schematic of the SW algorithm.

Appendix B Introduction of Hilbert–Schmidt Independence Criterion
We define X = {x1,x2, · · · ,xN}T ∈ RN×d as the original feature of d dimensions of samples, and Y ∈ RN×1 is the label of these

samples. We can derive a series of observations from the probability distribution Prxy, defined as

Z ≡ {(x1, y1) , (x2, y2) , · · · , (xN , yN )} ⊆ X × Y (B1)
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HSIC calculates the cross-covariance operator on the domain X × Y to determine the independence between X and Y. The

feature set X and label set Y can be mapped to F and G by the mapping ϕ : X → F and ψ : Y → G. Then, we defined their

expectations as µx and µy , respectively. The kernel function is as follows:

k (xi,xj) = ⟨ϕ (xi) , ϕ (xj)⟩ (B2)

Similarly, the kernel function of Y is defined as

l (yi, yj) = ⟨ψ (yi) , ψ (yj)⟩ (B3)

The following equation can be used to determine the cross-covariance operator Cxy :

Cxy = Ex,y [ϕ (x) ⊗ ψ (y)] − µxµy (B4)

where Ex,y denotes the common expectation of x and y. Then, we can write the HSIC operator is:

HSIC (F,G,Prxy) = ∥Cxy∥2
HS (B5)

Then, we define as the I identity matrix, and it satisfies I ∈ RN×N . By defining e = [1, 1, · · · , 1]T ∈ R1×N , we can obtain

H ≡ I −
eeT

N
(B6)

Note that H is the centering matrix, and it satisfies H ∈ RN×N . Then, we can make an empirical estimate of Z set as

HSIC (F,G,Z) = 1
N2 tr(KU) − 2

N3 eTKUe + 1
N4 eTKeeTUe

= 1
N2

[
tr (KU) − 1

N tr
(
KUeeT

)
− 1

N tr
(
UKeeT

)
+ 1

N2 tr(UeeTKeeT )
]

= 1
N2 tr

[
K

(
I − 1

N eeT
)
U

(
I − 1

N eeT
)]

= 1
N2 tr(KHUH)

∆
= HSIC(K,U)

(B7)

where K,U ∈ RN×N are kernel matrices, k (xi,xj) and l (yi, yj).

Appendix C Dictionaries for grouping

Through the PSD process, spectral clustering results for 10 different physicochemical properties of amino acids were obtained,

resulting in 10 dictionaries used for grouping. In each dictionary, the correspondence between amino acids and group numbers is

shown in Tables C1 to C10. Using LS distance and SW scoring, two amino acid similarity measurement methods, we evaluate the

effectiveness of different dictionaries. The detailed results are shown in Table C11 and C12.

Table C1 Dictionaries for grouping D1.

Dictionary Group Amino Acid

D1

G1 A, W

G2 D

G3 R, Q, G, F, S

G4 E

G5 L, Y

G6 N, H, I, P, T, V

G7 C, K, M

Table C2 Dictionaries for grouping D2.

Dictionary Group Amino Acid

D2

G1 R, S, T, Y

G2 C, I, L, M, F

G3 Q, K

G4 P

G5 W, V

G6 N, D, E

G7 A, G, H
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Table C3 Dictionaries for grouping D3.

Dictionary Group Amino Acid

D3

G1 D, Q, Y

G2 A, I, L, T, V

G3 N, F, S

G4 G, P

G5 C, W

G6 E, M

G7 R, H, K

Table C4 Grouping for amino acid D4.

Dictionary Group Amino Acid

D4

G1 R, G, H, T

G2 A, P, S

G3 W

G4 D, K

G5 C, L, M, Y

G6 I, F, V

G7 N, Q, E
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Table C5 Grouping for amino acid D5.

Dictionary Group Amino Acid

D5

G1 H, Y

G2 A, G, P, T

G3 K

G4 I, L, M, W, V

G5 R, N, D, Q, E, S

G6 C, F

Table C6 Grouping for amino acid D6.

Dictionary Group Amino Acid

D6

G1 G, S, T

G2 N, C, M, P, W, Y

G3 L

G4 I, V

G5 A, F

G6 R, D, Q, E, H, K

Table C7 Grouping for amino acid D7.

Dictionary Group Amino Acid

D7

G1 M, P, Y, V

G2 F

G3 H, S

G4 R, N, G

G5 D, C, E, K

G6 A, Q, T

G7 I, L, W

Table C8 Grouping for amino acid D8.

Dictionary Group Amino Acid

D8

G1 A, G, P

G2 C, I, L, T

G3 D, E

G4 R, H, K, M, Y

G5 F, S, W

G6 V

G7 N, Q

Table C9 Grouping for amino acid D9.

Dictionary Group Amino Acid

D9

G1 C, I, L, M, F

G2 K

G3 N, G, S, T

G4 W, V

G5 H, Y

G6 R, D, Q, E

G7 A, P
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Table C10 Grouping for amino acid D10.

Dictionary Group Amino Acid

D10

G1 L

G2 A, N, G, P, S

G3 D

G4 I, M, F, V

G5 C, Y

G6 Q, E, K, T

G7 R, H, W

Table C11 Comparison of the different dictionaries for grouping by the LS distance.

DBP T3SE PVP PTSS PSNS PLGS PCS1 PCS2 PCS3 PCS4

not 0.7419 0.7368 0.8085 0.7438 0.7378 0.8219 0.8667 0.8627 0.8616 0.8476

d1 0.7742 0.7368 0.8191 0.8063 0.7378 0.8259 0.8667 0.8638 0.8616 0.8581

d2 0.7957 0.7763 0.7979 0.7688 0.7683 0.8219 0.8667 0.8627 0.8616 0.8617

d3 0.8064 0.7632 0.8085 0.8375 0.7439 0.8259 0.8667 0.8649 0.8616 0.8593

d4 0.7957 0.7368 0.7766 0.7625 0.7378 0.8259 0.8671 0.8627 0.8616 0.8581

d5 0.7796 0.8026 0.8085 0.8063 0.7622 0.8219 0.8667 0.8649 0.8626 0.8593

d6 0.8333 0.7237 0.7872 0.7000 0.7378 0.8259 0.8667 0.8627 0.8616 0.8581

d7 0.7796 0.7895 0.8085 0.7188 0.7378 0.8219 0.8667 0.8627 0.8616 0.8581

d8 0.8172 0.7632 0.8191 0.8063 0.7378 0.8259 0.8667 0.8627 0.8626 0.8581

d9 0.8011 0.7763 0.7979 0.7625 0.7378 0.8219 0.8688 0.8660 0.8636 0.8593

d10 0.8226 0.7237 0.7872 0.8063 0.7378 0.8259 0.8667 0.8627 0.8616 0.8581

Table C12 Comparison of the different dictionaries for grouping by the SW score.

DBP T3SE PVP PTSS PSNS PLGS PCS1 PCS2 PCS3 PCS4

not 0.7957 0.7237 0.7234 0.7875 0.7012 0.8219 0.8524 0.8627 0.8616 0.8464

d1 0.8548 0.7632 0.8191 0.8000 0.7378 0.8259 0.8667 0.8627 0.8636 0.8581

d2 0.7957 0.8158 0.7872 0.8063 0.7622 0.8259 0.8519 0.8638 0.8626 0.8581

d3 0.8441 0.7895 0.8191 0.8375 0.7439 0.8300 0.8667 0.8627 0.8616 0.8581

d4 0.8817 0.7895 0.7766 0.7625 0.7378 0.8219 0.8670 0.8627 0.8616 0.8593

d5 0.8656 0.7763 0.7766 0.8063 0.7378 0.8219 0.8670 0.8627 0.8616 0.8581

d6 0.8701 0.8026 0.7766 0.7313 0.7439 0.8219 0.8670 0.8649 0.8544 0.8593

d7 0.8763 0.8026 0.7872 0.7750 0.7378 0.8300 0.8582 0.8627 0.8616 0.8581

d8 0.8656 0.7763 0.8191 0.8063 0.7378 0.8219 0.8670 0.8638 0.8616 0.8581

d9 0.8602 0.7632 0.7979 0.7875 0.7500 0.8219 0.8667 0.8681 0.8616 0.8581

d10 0.8387 0.7105 0.8191 0.7813 0.7439 0.8219 0.8670 0.8649 0.8616 0.8581
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