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Abstract Over the past decade, the study of stability theory in integro-differential systems has grown

significantly owing to their relevance in solving physical and engineering problems, such as viscoelasticity

and thermo-viscoelasticity in materials with memory properties. This paper concentrates on a class of

infinite-dimensional stochastic integro-differential systems. We establish the well-posedness of the system

and identify mild solutions to the system and an abstract stochastic Cauchy problem. This identification

is identified by employing a semigroup approach combined with Yosida approximation. We derive sufficient

conditions that ensure the mean-square exponential stability of mild solutions to the system boils down to

the boundedness of a certain function and a norm estimate for the stochastic part. These conditions are

implemented through the semigroup approach and the composition operator method. Illustrative examples

are provided and the obtained theoretical results are validated by numerical simulations.

Keywords stochastic integro-differential equations, mean-square exponential stability, stochastic dis-

tributed parameter systems, Hardy space, composition operators

1 Introduction

In this paper, we are concerned with the following infinite-dimensional linear stochastic integro-differential
equation system:







dx(t) =

[

Ax(t) +

∫ t

0

a(t− s)Ax(s) ds

]

dt+

[

Bx(t) +

∫ t

0

b(t− s)B1x(s) ds

]

dW (t),

x(0) = x0.

(1)

Here, x(t) ∈ L2
Ft
(Ω;X) indicates the system state at time t; x0 ∈ L2

F0
(Ω;X) represents the initial state; A

is the generator of strongly continuous semigroup (simply, C0-semigroup or operator semigroup; see [1,2]
for more information) {T (t) : t > 0} onX ; a(·), b(·) ∈ H1(R+) are kernel functions; W (·) is a Q-Brownian
motion (called also Q-Wiener process; see [3,4] for more details) on V with the strictly positive covariance
operator Q ∈ L1(V ), more explicitly, Q is self-adjoint and 〈Qz, z〉V > m‖z‖2V for any z ∈ V for some
constant m > 0; the operators B, B1 : X → L0

2 are bounded. Obviously, Eq. (1) is a stochastic version
of the following Volterra system:







ẋ(t) = Ax(t) +

∫ t

0

a(t− s)Ax(s) ds,

x(0) = x0.

(2)

Here, x(t) ∈ X indicates the system state at time t; as usual, the dot stands for the derivative with regard
to time; x0 ∈ X represents the initial state; a(·) and A are defined as in (1).
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The Volterra system (2) models some problems related to viscoelasticity and thermo-viscoelasticity,
taking into account the memory behavior of the materials. This is applicable in various areas, such as
continuum mechanism (e.g., simple shear motion, rod torsion and simple tension) and transient velocity
fields in an isotropic viscoelastic fluid [5, Chapter I.5], Timoshenko beam [6] and in particular, in heat
conduction with memory [7, 8]. The convolution term in (2) appears also in the theory of fractional
calculus and fractional differential equations. Fractional differential equations strive to describe the
dynamic evolution of physical models that incorporate memory effects more realistically [9–11], which are
essentially forming a class of integro-differential equations with specific convolution terms. The fractional
derivatives and integrals can be roughly regarded as interpolations between common derivatives and
integrals. The most popular fractional integral is the Riemann-Liouville fractional integral owing to
its power kernel function. However, the power law distribution presents certain challenges in practical
applications, leading to the development of the α-order Caputo derivative was developed:

(Dαf)(t) :=

∫ t

0

Kα(t− s)f ′(s) ds, t > 0,

where 0 6 α < 1. In this type of fractional derivatives, different kernel functions Kα(·) results in differ-
ent fractional derivatives, including the well-known Caputo-Fabrizio derivative [12], Atangana-Baleanu
derivative [13] and Atangana-Gómez derivative [14].

The study into evolutionary integral equations, focusing on their well-posedness, was extensively dis-
cussed by Prüss [5] in 1993. As outlined in [5, Chapter I] (see also [15]), Eq. (2) is well-posed. This
means that there exists a strong solution x(·, x0) on R+ to (2) for any x0 ∈ D(A); moreover, for any
sequence {xn}∞n=1 ⊂ D(A) with xn → 0 it follows that x(·, xn) → 0 in X uniformly on each compact
interval. This implies the existence of what is termed the resolvent family {S(t) : t > 0} for (2) exists,
meaning a family {S(t) : t > 0} of linear bounded operators in X that satisfies the following conditions:
(i) S(0) = I and S(·) is strongly continuous on R+; (ii) S(t) commutes with A for every t > 0, meaning
that S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for every t > 0 and x ∈ D(A); (iii) S(·)x0 is a strong
solution to (2) for each x0 ∈ D(A). It is obvious that the resolvent family generalizes the concept of
the C0-semigroup, maintaining strong continuity without adhering to the semigroup property. Further
examination reveals that the mild solution to (2) with the initial value x0 ∈ X is given by S(·)x0, and
{S(t) : t > 0} is exponentially bounded.

However, it is challenging to represent strong and mild solutions to the stochastic Volterra system (1)
or even general abstract stochastic differential equations in a similar manner as “S(t)x0”. In Section 3,
the well-posedness of (1), more precisely, the existence and uniqueness of the mild solution, along with
the continuous dependence of the mild solution on initial data, will be explored by applying the Banach
fixed point theorem. Additionally, a correspondence between the strong solutions of (1) and those of an
abstract stochastic Cauchy problem shall be established by employing embedding methods and a semi-
group approach. These techniques have also been adopted in [2, Section VI.7] and [16, 17] to establish
such correspondences for abstract deterministic integro-differential equations. In the deterministic con-
text, the density of D(A) in X implies that the strong solutions are dense in the set of all mild solutions
for (2). In the stochastic context, nevertheless, the density of D(A) in X is not sufficient to derive the
density of strong solutions in the set of all mild solutions for (1) or general abstract stochastic differential
equations. This implies that this correspondence cannot be naturally extended from strong solutions to
mild solutions for (1). For this reason, the Yosida approximation of (1) must be introduced, which is
usually employed to extend some properties from strong solutions to mild solutions for abstract stochastic
differential equations, as seen in [3, 4, 18, 19]. Recent literature on abstract stochastic integro-differential
equations includes works by [19–22], with the exponential stability being investigated in [20, 21] therein.

It is widely recognized from the celebrated Paley-Wiener theorem (see [23]; for its vector-valued version
[24, Proposition 12.5.4]) that the Laplace transformation

L : L2(R+;X) → H2(C+;X)

is an isometric isomorphism. Following this, the issue of estimating composition operators on Hardy
spaces arises naturally when needing to ascertain the L2 norm of the solutions on R+ has to be required
for abstract integro-differential equations. Therefore, the theory of composition operators on Hardy
spaces (see [25–27] for more detailed information) plays an important role in abstract (deterministic or
stochastic) integro-differential equations, which has been utilized to study infinite-time admissibility and
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infinite-time exact observability of abstract Volterra systems in [28, 29]. The mean-square exponential
stability of the mild solution to (1), the main result of this paper, will be established in Section 4 by
employing a semigroup approach and applying a composition operator theory.

2 Preliminaries

Let X, V be two separable Hilbert spaces. Let (Ω,F ,F ,P) be a complete probability space with the
natural filtration F = {Ft}t>0 satisfying the usual conditions (i.e., it is right continuous and F0 contains
all P-null sets). L2

Ft
(Ω;X) denotes the Hilbert space consisting of all Ft-measurable random variables

ξ : Ω → X with

‖ξ‖2L2
Ft

(Ω;X) := E‖ξ‖2X :=

∫

Ω

‖ξ‖2X dP <∞.

R+ := [0,∞) and C+ := {λ ∈ C | Reλ > 0 }. H1(R+;Y ) represents the vector-valued Sobolev space
of all squarely integrable functions with first order derivatives being still squarely integrable for some
Banach space Y , and H1(R+) := H1(R+;R). L1(V ) denotes the set of all trace-class operators (called
also nuclear operators; see, for instance, [30, Section VI.2] and [31, Chapter III]) on V , which is a Banach
space endowed with the trace norm

‖P‖L1(V ) := tr
(

(P ∗P )
1
2

)

:=

∞
∑

i=1

〈

(P ∗P )
1
2 ei, ei

〉

V
, ∀ P ∈ L1(V )

for an orthonormal basis {ei}∞i=1 ⊂ V . V0 := Q
1
2V stands for the image of V under the operator Q

1
2

which is a separable Hilbert space equipped with the inner product

〈u, v〉V0
:= 〈Q− 1

2 u,Q− 1
2 v〉V , ∀ u, v ∈ V0.

L2(V0, Y ) =
{

F ∈ L(V0, Y ) | tr[(FQ 1
2 )(FQ

1
2 )∗] < ∞

}

is the set of Hilbert-Schmidt operators from V0
into some separable Hilbert space Y , which is a separable Hilbert space endowed with the inner product

〈F,G〉L2(V0,Y ) := tr[(FQ
1
2 )(GQ

1
2 )∗], ∀ F,G ∈ L2(V0, Y ),

and L0
2 := L2(V0, X). We refer to [32, Section I.2] and [3, Section IV.2] for V0 and L0

2, and [30, Section
VI.2] for Hilbert-Schmidt operators. H2(C+;X) stands for the Hardy space on the right half plane
(see [26, 33] for more information) consisting of all vector-valued holomorphic functions on C+ with

‖f‖2H2(C+;X) := sup
x>0

∫ ∞

−∞
‖f(x+ iy)‖2X

dy

2π
<∞.

Introduce the following important solution space for abstract stochastic differential equations. For any
Banach space Y and any T0 > 0, denote

CF([0, T0];L
2(Ω;Y )) :=

{

ψ : [0, T0]×Ω → Y
∣

∣ψ(·) : [0, T0] → L2
FT0

(Ω;Y ) is F -adapted and continuous
}

,

which forms a Banach space equipped with the norm

‖ψ(·)‖CF([0,T0];L2(Ω;Y )) := sup
t∈[0,T0]

(

E‖ψ(t)‖2Y
)

1
2 , ∀ ψ ∈ CF([0, T0];L

2(Ω;Y )).

We refer to [20, 22] for the notions of strong and mild solutions of stochastic Volterra equations, and
consider the following inhomogeneous form of (1):







dx(t) =

[

Ax(t) +

∫ t

0

a(t− s)Ax(s) ds+ f0(t)

]

dt+

[

Bx(t) +

∫ t

0

b(t− s)B1x(s) ds

]

dW (t),

x(0) = x0,

(3)

where f0 ∈ L2
F0

(Ω;L2(R+;X)). Let T0 > 0.
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Definition 1. An X-valued, F -adapted, continuous stochastic process x(·) is called a strong solution
to (3) on time interval [0, T0] if

(a) x(t) ∈ D(A) for almost all (t, ω) ∈ [0, T0]× Ω, and

Ax(·) +
∫ ·

0

a(· − s)Ax(s) ds + f0(·) ∈ L1(0, T0;X), a.s.,

Bx(·) +
∫ ·

0

b(· − s)B1x(s) ds ∈ L2(0, T0;L0
2), a.s.; (4)

(b) for any t ∈ [0, T0],

x(t) = x0 +

∫ t

0

Ax(s) ds +

∫ t

0

∫ r

0

a(r − s)Ax(s) ds dr +

∫ t

0

f0(s) ds

+

∫ t

0

B(x(s)) dW (s) +

∫ t

0

∫ r

0

b(r − s)B1x(s) ds dW (r), a.s.

(5)

Definition 2. An X-valued, F -adapted, continuous stochastic process x(·) is called a mild solution to
(3) on time interval [0, T0] if f0 ∈ L1(0, T0;X) almost surely, Eq. (4) holds, and

x(t) = S(t)x0 +

∫ t

0

S(t− s)f0(s) ds+

∫ t

0

S(t− s)B(x(s)) dW (s)

+

∫ t

0

S(t− r)

∫ r

0

b(r − s)B1x(s) ds dW (r), a.s.

for any t ∈ [0, T0], where {S(t) : t > 0} is the resolvent family for (2).

Definition 3. Stochastic Volterra system (1) is said to be mean-square exponentially stable if there
exist two constants M > 1 and ω < 0 such that for every mild solution x(·, x0) to (1) with the initial
datum x0 ∈ L2

F0
(Ω;X),

E‖x(t, x0)‖2X 6Meωt
E‖x0‖2X , ∀ t > 0.

We conclude this section with an example of a finite-dimensional system that is mean-square exponen-
tially stable to provide deeper insight into (1). This example will be revisited in Example 2, where we
will apply our main results.

Example 1. Let us take

X = R, V = R, Q = I, A = −2I; a(t) = −e−2t, b(t) = 0, t > 0;

B(x)v := B1(x)v :=
1

3
xv, v ∈ V, ∀ x ∈ X

in (1) with initial x(0) = x0 ∈ X almost surely. Then Eq. (1) becomes the following stochastic ordinary
integro-differential equation system:











dx(t) =

(

−2x(t) + 2

∫ t

0

e−2(t−s)x(s) ds

)

dt+
1

3
x(t)dW (t),

x(0) = x0, a.s.

(6)

According to Itô’s formula (see, for instance, [34, Theorem 6.2]), the solution to (6) is given by

x(t) =
1

2

(

e(
√
2− 37

18
)t + e(−

√
2− 37

18
)t
)

e
1
3
W (t)x0, t > 0, a.s.

It is not hard from the standard exponential martingale properties of Brownian motions to get

E|x(t)|2 =
1

4

(

e(
√
2− 35

18
)t + e(−

√
2− 35

18
)t
)2

x20, ∀ t > 0,

which guarantees the mean-square exponential stability of (6).
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3 Well-posedness

In this section, we concentrate on the well-posedness (existence and uniqueness of the mild solution,
continuous dependence of the mild solution on the initial value) of the stochastic Volterra equation (1),
and identify mild solutions of (1) with those of an abstract stochastic Cauchy problem.

The well-posedness of (1) is established as demonstrated in Theorem 1.

Theorem 1. Let f0 ∈ L2
F0
(Ω;L2(R+;X)) and T0 > 0. Then Eq. (3) with the initial x0 ∈ L2

F0
(Ω;X)

admits a unique mild solution x(· , x0) in CF([0, T0];L
2(Ω;X)). Moreover, there exists a constant K > 0

such that

‖x(· , x0)‖CF([0,T0];L2(Ω;X)) 6 K
(

‖x0‖L2
F0

(Ω;X) +
√

T0‖f0‖L2
F0

(Ω;L2(0,T0;X))

)

, ∀ x0 ∈ L2
F0

(Ω;X). (7)

In particular, the stochastic Volterra equation (1) is well-posed which is the special case when f0 ≡ 0
almost surely.

Proof. Let x0 ∈ L2
F0

(Ω;X). Define the map Γ: for all ψ ∈ CF([0, T0];L
2(Ω;X)),

(Γψ)(t) = S(t)x0 +

∫ t

0

S(t− s)f0(s) ds+

∫ t

0

S(t− s)B(ψ(s)) dW (s)

+

∫ t

0

S(t− r)

∫ r

0

b(r − s)B1ψ(s) ds dW (r), t ∈ [0, T0]

in that {S(t) : t > 0} is the resolvent family of (2). Let ψ ∈ CF([0, T0];L
2(Ω;X)), t1 ∈ [0, T0] and |τ | be

sufficiently small. Then

E‖(Γψ)(t1 + τ) − (Γψ)(t1)‖2X 6 4
4
∑

i=1

E‖Fi(t1 + τ) − Fi(t1)‖2X .

According to [35, Proposition 1.4], the Hölder inequality and the strong continuity of resolvent family,
we can obtain that as τ → 0,

E‖F4(t1 + τ)− F4(t1)‖2X 6 2

∫ t1

0

E
∥

∥[S(t1 + τ − s)− S(t1 − s)]Bψ(s)
∥

∥

2

L0
2

ds

+ 2

∫ t1+τ

t1

E
∥

∥S(t1 + τ − s)Bψ(s)
∥

∥

2

L0
2

ds→ 0.

Similarly, from the Fubini theorem, we have that as τ → 0, E‖F3(t1 + τ)− F3(t1)‖2X → 0. It is not hard
to derive that E‖Fi(t1 + τ) − Fi(t1)‖2X → 0, i = 1, 2, as τ → 0. Thus, Γψ is mean-square continuous on
[0, T0] and Γ maps CF([0, T0];L

2(Ω;X)) into itself. Introduce on CF([0, T0];L
2(Ω;X)) the norm

‖ψ(·)‖exp := sup
t∈[0,T0]

(e−θt
E‖ψ(t)‖2X)

1
2

for some θ > 0. It is easy to verify that CF([0, T0];L
2(Ω;X)) forms also a Banach space under the norm

‖ · ‖exp, and ‖ · ‖CF([0,T0];L2(Ω;X)) is equivalent to ‖ · ‖exp on CF([0, T0];L
2(Ω;X)). Now we prove that Γ is

contractive for θ > 0 sufficiently large. Let ϕ ∈ CF([0, T0];L
2(Ω;X)). Invoking [35, Proposition 1.4], the

Hölder inequality and the Fubini theorem again, we have

E‖(Γψ)(t)− (Γϕ)(t)‖2X 6 2 sup
s∈[0,t]

‖S(s)‖2L(X) sup
s∈[0,t]

e−θs
E‖ψ(s)− ϕ(s)‖2X

∫ t

0

eθs ds

·
(

t ‖B1‖2L(X,L0
2
)‖b‖2L2[0,t] + ‖B‖2L(X,L0

2
)

)

, ∀ t ∈ [0, T0].

Hence, the above yields

‖Γψ − Γϕ‖2exp 6
1− e−θT0

θ
κ‖ψ − ϕ‖2exp,

where
κ := 2 sup

t∈[0,T0]

‖S(t)‖2L(X)

(

‖B‖2L(X,L0
2
) + T0‖B1‖2L(X,L0

2
)‖b‖2L2[0,T0]

)

. (8)
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Then Γ is contractive for θ > 0 sufficiently large. In light of the Banach fixed point theorem, Γ enjoys a
unique fixed point x(·) in CF([0, T0];L

2(Ω;X)) which is the unique mild solution to (3) with the initial
value x0. Further, by virtue of [35, Proposition 1.4], the Hölder inequality and the Fubini theorem, we
can derive

E‖x(t)‖2X 6 4 sup
t∈[0,T0]

‖S(t)‖2L(X)

(

E‖x0‖2X + T0‖f0‖2L2
F0

(Ω;L2(0,T0;X)) + ‖B‖2L(X,L0
2
)

∫ t

0

E
∥

∥x(s)
∥

∥

2

X
ds

+T0 ‖B1‖2L(X,L0
2
)‖b‖2L2[0,T0]

∫ t

0

E
∥

∥x(s)
∥

∥

2

X
ds

)

, ∀ t ∈ [0, T0].

(9)

DenoteK := 2 supt∈[0,T0] ‖S(t)‖L(X)max{1, eκT0} where κ is defined as (8). By employing the well-known
Gronwall inequality (see, e.g., [18, Section II.4]), Eq. (9) becomes (7). We now claim that the assertion
holds.

Remark 1. As done in [36], it seems to be possible that introduce the Banach space

Sθ :=
{

ψ ∈ CF([0, τ ];L
2(Ω;X)) | τ > 0 and lim

t→∞
eθt‖ψ(t)‖L2

Ft
(Ω;X) = 0

}

equipped with the norm

‖ψ(·)‖Sθ
:= sup

t∈R+

(

eθtE‖ψ(t)‖2X
)

1
2 , ∀ ψ ∈ Sθ

for some θ > 0 and apply the Banach fixed point theorem to achieve the mean-square asymptotic or
exponential stability of mild solutions to (1). In this way, the parameters M > 1 and ω < 0 need to be
explicitly estimated for which ‖S(t)‖X 6 Meωt, t > 0 holds. However, to our knowledge, there is not
yet a satisfactory result that can explicitly estimate both M and ω for general Volterra systems (2). It
should be mentioned that the result established in Theorem 4 does not explicitly depend on M or ω.

Introduce the product Hilbert space X := X × L2(R+;X) endowed with the inner product
〈[

x1

f1

]

,

[

x2

f2

]〉

X

:= 〈x1, x2〉X + 〈f1, f2〉L2(R+;X), ∀
[

x1

f1

]

,

[

x2

f2

]

∈ X . (10)

It is obvious from separability of X that L2(R+;X) is separable and so is X . Define the operator

A0 :=





A δ0

0
d

ds



 , D(A0) := D(A)×H1(R+;X) ⊂ X . (11)

Here, δ0 is the Dirac measure in 0, namely, δ0(f) = f(0) for any f ∈ H1(R+;X); d
ds denotes the first

order derivative operator, i.e., d
dsf := f ′ for all f ∈ H1(R+;X). Define

Ax := a(·)Ax, ∀ x ∈ D(A) = D(A), (12)

Bx := b(·)B1x, ∀ x ∈ X. (13)

Denote

A1 :=

[

0 0

A 0

]

, A := A0 +A1 =





A δ0

0
d

ds



+

[

0 0

A 0

]

,

D(A) = D(A1) = D(A)×H1(R+;X) ⊂ X ,

(14)

and

B :=

[

B 0

B 0

]

. (15)

As done in [17] and [2, Sections VI.3 and VI.7], by embedding X into the product Hilbert space X and
adopting semigroup approach, we expect the strong solution of (3) to correspond with the first coordinate
of the strong solution of the following abstract stochastic Cauchy problem:











dz(t) = Az(t) dt+ B(z(t)) dW (t),

z(0) = z0 :=

[

x0

f0

]

.
(16)
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Let us start with the well-posedness of (16).

Proposition 1. Let separable product Hilbert space X = X × L2(R+;X) with the inner product as
(10) and T0 > 0. Then A defined as in (14) generates a C0-semigroup on X , and the abstract stochastic
Cauchy problem (16) with the initial value z0 ∈ L2

F0
(Ω;X ) admits a unique mild solution z(· , z0) satisfying

z(· , z0) ∈ CF([0, T0];L
2(Ω;X )). Moreover, there exists a constant K > 0 such that

‖z(· , z0)‖CF([0,T0];L2(Ω;X )) 6 K‖z0‖L2
F0

(Ω;X ), ∀ z0 ∈ L2
F0

(Ω;X ).

Proof. Define on X the operators

T0(t) :=
[

T (t) R(t)

0 Sl(t)

]

, t > 0, (17)

where Sl(t) (form the left shift semigroup {Sl(t) : t > 0} on L2(R+;X), see [37, Example 2.3.2 (ii)]) and
R(t) are defined on L2(R+;X):

(Sl(t)f)(·) := f(·+ t), R(t)f :=

∫ t

0

T (t− s)f(s) ds, ∀ f ∈ L2(R+;X). (18)

Introduce the Banach space D(A0, ‖ · ‖A0
) equipped with the graph norm

∥

∥

∥

∥

∥

[

x

f

]∥

∥

∥

∥

∥

A0

:=





∥

∥

∥

∥

∥

[

x

f

]∥

∥

∥

∥

∥

2

X

+

∥

∥

∥

∥

∥

A0

[

x

f

]∥

∥

∥

∥

∥

2

X





1
2

, ∀
[

x

f

]

∈ D(A0).

We have proven in [15, Theorem 2.1] that A generates a C0-semigroup {T (t) : t > 0} on X . This is
achieved via a relatively bounded perturbation theorem [38, Corollary III.1.5] for C0-semigroup and by
showing that A1 is bounded on (D(A0), ‖ · ‖A0

).
According to [4, Theorem 3.14], well-posedness of the mild solution to (16) in CF([0, T0];L

2(Ω;X)) are
guaranteed by Hilbert-Schmidt boundedness of B defined as in (15). Indeed, it holds that

∥

∥

∥

∥

∥

B
[

x

f

]∥

∥

∥

∥

∥

2

L2(V0,X )

=

∥

∥

∥

∥

∥

[

Bx

Bx

]∥

∥

∥

∥

∥

2

L2(V0,X )

6 ‖Bx‖2L0
2
+ ‖b(·)B1x‖2L2(V0,L2(R+;X))

6

(

‖B‖2L(X,L0
2
) + ‖b‖2L2(R+)‖B1‖2L(X,L0

2
)

)

∥

∥

∥

∥

∥

[

x

f

]∥

∥

∥

∥

∥

2

X

for each x ∈ X and each f ∈ L2(R+;X). This proves the assertion.
The following result shows the one-to-one relationship between the strong solution to (3) and the first

coordinate of the strong solution to (16).

Theorem 2. Let T0 > 0, f0 ∈ L2
F0

(Ω;L2(R+;X)) and x0 ∈ L2
F0

(Ω;X). Assume that f0 ∈ H1(R+;X)
and x0 ∈ D(A) almost surely. Then Eq. (3) admits a strong solution x(·) on [0, T0] if and only if (16)
admits a strong solution z(·) on [0, T0]. In this case, x(·) coincides with the first coordinate of z(·).
Proof. (a) The “if” part. Let z(·) :=

[

z1(·)
z2(·)

]

be a strong solution to (16) on [0, T0] with the initial value

z0 :=
[ x0

f0

]

and t ∈ [0, T0]. Then it follows that

z(t) = z0 +

∫ t

0

Az(s) ds+
∫ t

0

B(z(s)) dW (s)

=

[

x0

f0

]

+

∫ t

0





A δ0

A
d

ds





[

z1(s)

z2(s)

]

ds+

∫ t

0

[

B 0

B 0

][

z1(s)

z2(s)

]

dW (s), a.s.

(19)

Focusing on the first coordinate of the above (19), one has

z1(t) = x0 +

∫ t

0

Az1(s) + δ0z2(s) ds+

∫ t

0

B(z1(s)) dW (s), a.s. (20)
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It is useful to note that the variation of the parameters formula

T (s)z = T0(s)z +
∫ s

0

T0(s− r)A1T (r)z dr, ∀ s > 0, z ∈ D(A)

holds by means of [2, Proposition VI.7.21] and a strong solution to (16) is also a mild solution to (16) by
virtue of [3, Theorem 6.5]. These, together with the stochastic Fubini theorem [4, Theorem 2.141], imply

z(t) = T0(t)z0 +
∫ t

0

T0(t− s)A1z(s) ds+

∫ t

0

T0(t− s)B(z(s)) dW (s)

=

[

T (t)x0 +R(t)f0

Sl(t)f0

]

+

∫ t

0

[

T (t− s) R(t− s)

0 Sl(t− s)

][

0

Az1(s)

]

ds

+

∫ t

0

[

T (t− s) R(t− s)

0 Sl(t− s)

] [

Bz1(s)

Bz1(s)

]

dW (s), a.s.

(21)

Hence, it is remarkable by focusing on the second coordinate of (21) that

z2(t) = Sl(t)f0 +

∫ t

0

Sl(t− s)Az1(s) ds+

∫ t

0

Sl(t− s)B(z1(s)) dW (s), a.s. (22)

Combining (20) with (22), we deduce (5).
(b) The “only if” part. Let x(·) be a strong solution on [0, T0] to (3) with the initial value x0 and

t ∈ [0, T0]. Let us take z1(·) = x(·) and z2(·) as (22). We see readily that (20) holds. It is sufficient to
verify that z2(·) satisfies

z2(t) = f0 +

∫ t

0

(

Az1(s) +
d

ds
z2(s)

)

ds+

∫ t

0

B(z1(s)) dW (s), a.s. (23)

To that purpose, we note that for all 0 6 s 6 t 6 T and v ∈ V ,

Sl(t− s)Az1(s) = a(·+ t− s)Ax(s) ∈ H1(R+;X), a.s., (24)

Sl(t− s)B(z1(s))v = b(·+ t− s)B1(x(s))v ∈ H1(R+;X), a.s. (25)

In addition, we have

∫ T0

0

∫ t

0

∥

∥

∥

d

ds
Sl(t− r)Az1(r)

∥

∥

∥

L2(R+;X)
dr dt 6

∫ T0

0

∫ t

0

∥

∥a′(·+ t− r)Ax(r)
∥

∥

L2(R+;X)
dr dt <∞ (26)

almost surely and

∫ T0

0

∫ t

0

∥

∥

∥

d

ds
Sl(t− r)Bz1(r)

∥

∥

∥

2

L2(V0,L2(R+;X))
dr dt =

∫ T0

0

∫ t

0

∥

∥b′(·+ t− r)B1x(r)
∥

∥

2

L2(V0,L2(R+;X))
dr dt <∞

(27)
almost surely. In light of [32, Proposition 1.3.5], Eqs. (24)–(27), together with f0 ∈ H1(R+;X) almost

surely, ensure that Eq. (23) is satisfied. Therefore, z(·) :=
[

z1(·)
z2(·)

]

is a strong solution on [0, T0] to (16)

with the initial state z0 :=
[ x0

f0

]

. The proof is complete.

In order to extend Theorem 2 to the case of the mild solutions, we introduce the Yosida approximating
systems of (3) as follows:























dxλ(t) =

[

Axλ(t) +

∫ t

0

a(t− s)Axλ(s) ds+ Iλ(Jλf0)(t)

]

dt

+Iλ

[

Bxλ(t) +

∫ t

0

(Jλb)(t− s)B1xλ(s) ds

]

dW (t),

xλ(0) = Iλx0,

(28)
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and the Yosida approximating systems of (16) as follows:

{

dzλ(t) = Azλ(t) dt+ IλB(zλ(t)) dW (t),

zλ(0) = Iλz0.
(29)

Here, λ ∈ ρ(A)∩ ρ( d
ds ) = ρ(A)∩C+ (see [37, Example 3.3.1 (ii)] for spectrum of d

ds ); Iλ := λR(λ,A) and

Jλ := λR(λ, d
ds ), namely (recall [37, Example 3.3.2 (ii)] for resolvent of d

ds ),

(Jλf)(s) = λ

∫ ∞

s

eλ(s−τ)f(τ) dτ, ∀ f ∈ L2(R+;X), (30)

the operator Iλ is defined on X by

Iλ :=

[

Iλ 0

0 IλJλ

]

.

Denote

Lλ(t) := Bxλ(t) +

∫ t

0

(Jλb)(t− s)B1xλ(s) ds, ∀ t > 0, w ∈ Ω.

Proposition 2. Let λ ∈ ρ(A) ∩C+ and T0 > 0. If xλ(·) is a mild solution on [0, T0] to (28), then xλ(·)
is also a strong solution on [0, T0] to (28).

Proof. Let t ∈ [0, T0]. We begin with the resolvent family {S(t) : t > 0} for (2). It is known from
Section 1 and [15] (see also originally [5, Chapter I]) that the strong solution to (2) with the initial value
x0 ∈ D(A) is given by S(·)x0, i.e.,

S(t)x = x+

∫ t

0

AS(s)xds+

∫ t

0

∫ r

0

a(r − s)AS(s)xds dr, ∀ x ∈ D(A). (31)

Let xλ(·) be a mild solution on [0, T0] to (28). Then xλ(·) can be rewritten as

xλ(t) = S(t)Iλx0 +

∫ t

0

S(t− s)Iλ(Jλf0)(s) ds+

∫ t

0

S(t− s)IλLλ(s) dW (s), a.s.

According to the Fubini theorem and (31), we can calculate

∫ t

0

∫ r

0

a(r − s)A

∫ s

0

S(s− ξ)Iλ(Jλf0)(ξ) dξ ds dr +

∫ t

0

A

∫ r

0

S(r − ξ)Iλ(Jλf0)(ξ) dξ dr

=

∫ t

0

S(t− ξ)Iλ(Jλf0)(ξ) dξ −
∫ t

0

Iλ(Jλf0)(ξ) dξ, a.s.

(32)

Analogously, it follows by virtues of the stochastic Fubini theorem [4, Theorem 2.141] and (31) that

∫ t

0

∫ r

0

a(r − s)A

∫ s

0

S(s− ξ)IλLλ(ξ) dW (ξ) ds dr +

∫ t

0

A

∫ r

0

S(r − ξ)IλLλ(ξ) dW (ξ) dr

=

∫ t

0

S(t− ξ)IλLλ(ξ) dW (ξ) −
∫ t

0

IλLλ(ξ) dW (ξ), a.s.

(33)

Here, all integrals in (32) and (33) are well-defined due to the fact that S(t) commutes with A on D(A)
and AS(t)Iλ = S(t)AIλ is bounded on X for any t > 0. Therefore, combining (31)–(33), we obtain

∫ t

0

∫ r

0

a(r − s)Axλ(s) ds dr +

∫ t

0

Axλ(r) dr = xλ(t)− Iλx0 −
∫ t

0

Iλ(Jλf0)(s) ds−
∫ t

0

IλLλ(s) dW (s)

almost surely as claimed.

Lemma 1 ([17]). Let Y be a Banach space. Then δ0 defined as (11) is bounded on H1(R+;Y ) and
‖δ0‖L(H1(R+;Y ),Y ) 6

√
2, that is, for each f ∈ H1(R+;Y ),

‖f(0)‖2Y 6 2
(

‖f‖2L2(R+;Y ) + ‖f ′‖2L2(R+;Y )

)

.
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The following is the main result in this section which associates the mild solution to (3) with the first
coordinate of the mild solution to (16).

Theorem 3. Let T0 > 0, f0 ∈ L2
F0
(Ω;L2(R+;X)) and x0 ∈ L2

F0
(Ω;X). Then in CF([0, T0];L

2(Ω;X)),
the unique mild solution to (3) coincides with the first coordinate of the unique mild solution to the
abstract stochastic Cauchy problem (16); in particular, the unique mild solution to (1) coincides with the
first coordinate of the unique mild solution to (16) with the initial value z0 := [ x0

0 ], that is, the case of
f0 ≡ 0 almost surely.

Proof. Let λ ∈ ρ(A) ∩ ρ( d
ds ) = ρ(A) ∩ C+. From [39, Proposition 1.2] (see also [38, Lemma II.3.4]) we

know

lim
λ→∞

Iλx = x, lim
λ→∞

Jλf = f, lim
λ→∞

Iλ
[

x

f

]

=

[

x

f

]

, ∀ x ∈ X, f ∈ L2(R+;X). (34)

In other words, Iλ → I strongly on X , Jλ → J strongly on L2(R+;X) and Iλ → I strongly on X as
λ→ ∞, where I, J and I represent the identity operators on X, L2(R+;X) and X separately. Replacing
respectively (3) and (16) by (28) and (29), one can establish the analogues of Theorem 1, Proposition 1 and
Theorem 2. Briefly, Eqs. (28) and (29) are well-posed in CF([0, T0];L

2(Ω;X)) and CF([0, T0];L
2(Ω;X )),

respectively; the unique strong solution to (28) coincides with the first coordinate of the unique strong
solution to (29). It is worth recalling [32, Proposition 1.3.5]. Each mild solution to (29) is also its strong
solution since AIλ is bounded on X in which A is as (14). Indeed, because of the facts that Jλ commutes
with Iλ in terms of (30), AIλ = λ2R(λ,A) − λI is bounded on X , d

dsJλ = λ2R(λ, d
ds ) − λJ is bounded

on L2(R+;X) and δ0 is bounded on H1(R+;X) from Lemma 1, we can compute that

‖AIλz‖2X 6 2‖AIλx‖2X + 2‖δ0JλIλf‖2X + 2‖a(·)AIλx‖2L2(R+;X) + 2

∥

∥

∥

∥

d

ds
JλIλf

∥

∥

∥

∥

2

L2(R+;X)

6 2
(

1 + ‖a‖2L2(R+)

)

‖AIλ‖2L(X)‖x‖2X +

(

4‖Jλ‖2L(L2(R+;X))

+ 6

∥

∥

∥

∥

d

ds
Jλ

∥

∥

∥

∥

2

L(L2(R+;X))

)

‖Iλ‖2L(X)‖f‖2L2(R+;X), ∀ z :=

[

x

f

]

∈ X .

Further, the strong solution zλ(·) to (29) converges to z(·) in CF([0, T0];L
2(Ω;X )) due to [4, Theorem

3.22], where z(·) is the unique mild solution to (16). All the above, together with Proposition 2, conclude
that the mild solution xλ(·) to (28) converges to z1(·) in CF([0, T0];L

2(Ω;X)) as λ → ∞, where z1(·)
indicates the first coordinate of the unique mild solution to (16).

Let xλ(·) be the unique mild solution to (28) in CF([0, T0];L
2(Ω;X)) and x(·) the unique mild so-

lution to (3) in CF([0, T0];L
2(Ω;X)). Clearly, It is enough to prove that xλ(·) converges to x(·) in

CF([0, T0];L
2(Ω;X)) as λ→ ∞. Denote

L(t) := Bx(t) +

∫ t

0

b(t− s)B1x(s) ds, ∀ t > 0, w ∈ Ω.

Let t ∈ [0, T0]. Then we have

xλ(t)− x(t) = S(t)(Iλx0 − x0) +

∫ t

0

S(t− s)
[

Iλ(Jλf0)(s)− f0(s)
]

ds

+

∫ t

0

S(t− s)
[

IλLλ(s)− L(s)
]

dW (s), a.s.

Consequently, we can estimate

E‖xλ(t)− x(t)‖2X 6 7
(

R1(t) +R2(t) +R3(t)
)

. (35)

Here,

R1(t) := E

∥

∥

∥

∥

∫ t

0

S(t− s)Iλ

∫ s

0

(Jλb)(s− r)B1(xλ(r) − x(r)) dr dW (s)

∥

∥

∥

∥

2

X

+ E

∥

∥

∥

∥

∫ t

0

S(t− s)IλB(xλ(s)− x(s)) dW (s)

∥

∥

∥

∥

2

X

,
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R2(t) := E
∥

∥S(t)(Iλ − I)x0
∥

∥

2

X
+ E

∥

∥

∥

∥

∫ t

0

S(t− s)(Iλ − I)f0(s) ds

∥

∥

∥

∥

2

X

+ E

∥

∥

∥

∥

∫ t

0

S(t− s)(Iλ − I)L(s) dW (s)

∥

∥

∥

∥

2

X

,

R3(t) := E

∥

∥

∥

∥

∫ t

0

S(t− s)Iλ

∫ s

0

(Jλb− b)(s− r)B1(x(r)) dr dW (s)

∥

∥

∥

∥

2

X

+ E

∥

∥

∥

∥

∫ t

0

S(t− s)Iλ[(Jλ − J)f0](s) ds

∥

∥

∥

∥

2

X

.

By making use of [35, Proposition 1.4], the Hölder inequality and the Fubini theorem, one obtains

R1(t) 6 ‖Iλ‖2L(X) sup
t∈[0,T0]

‖S(t)‖2L(X)

(

T0‖B1‖2L(X,L0
2
)‖b‖2L2[0,T0]

‖Jλ‖2L(L2(R+;X))

+ ‖B‖2L(X,L0
2
)

)

∫ t

0

E‖xλ(s)− x(s)‖2X ds;

(36)

analogously,

R2(t) 6

(

E‖(Iλ − I)x0‖2X +

∫ T0

0

E
∥

∥(Iλ − I)f0(s)
∥

∥

2

X
ds

+T0

∫ T0

0

E
∥

∥(Iλ − I)L(s)
∥

∥

2

L0
2

ds

)

sup
t∈[0,T0]

‖S(t)‖2X ;

(37)

R3(t) 6
(

T 2
0 ‖B1‖2L(X,L0

2
)‖(Jλ − J)b‖2L2[0,T0]

‖x(·)‖2CF([0,T0];L2(Ω;X))

+ T0‖(Jλ − J)f0‖2L2
F0

(Ω;L2(0,T0;X))

)

‖Iλ‖2L(X) sup
t∈[0,T0]

‖S(t)‖2X .
(38)

Denote
κ := 4 sup

t∈[0,T0]

‖S(t)‖2L(X)

(

4T0‖B1‖2L(X,L0
2
)‖b‖2L2[0,T0]

+ ‖B‖2L(X,L0
2
)

)

,

and

Kλ := sup
t∈[0,T0]

‖S(t)‖2X

(

4T0‖(Jλ − J)f0‖2L2
F0

(Ω;L2(0,T0;X))

+ 4T 2
0 ‖B1‖2L(X,L0

2
)‖(Jλ − J)b‖2L2[0,T0]

‖x(·)‖2CF([0,T0];L2(Ω;X))

+

∫ T0

0

E
∥

∥(Iλ − I)f0(s)
∥

∥

2

X
ds+ T0

∫ T0

0

E
∥

∥(Iλ − I)L(s)
∥

∥

2

L0
2

ds+ E‖(Iλ − I)x0‖2X

)

.

For λ > 0 large enough, due to ‖Jλ‖L(L2(R+;X)) 6 2 and ‖Iλ‖L(X) 6 2, it is very simple to check by
noticing (36)–(38) that

R1(t) 6 κ

∫ t

0

E‖xλ(s)− x(s)‖2X ds and R2(t) +R3(t) 6 Kλ. (39)

Plugging (39) into (35) and utilizing the well-known Gronwall inequality (see, e.g., [18, Section II.4]), we
deduce

‖xλ(·)− x(·)‖2CF([0,T0];L2(Ω;X)) = sup
t∈[0,T0]

E‖xλ(t)− x(t)‖2X 6 7Kλmax{e7κT0 , 1}. (40)

From the Lebesgue dominated convergence theorem, Eq. (34) implies Kλ → 0. This, together with (40),
means that xλ(·) converges to x(·) in CF([0, T0];L

2(Ω;X)). The assertion follows from the uniqueness of
the limit.

Remark 2. We emphasize that since the C0-semigroup {T (t) : t > 0} generated by A is very difficult
to calculate explicitly, mild solutions of (3) and (16) are identified by Yosida approximation rather than
the direct method.
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4 Mean-square exponential stability

In this section, we focus on the mean-square exponential stability of the mild solution to the stochastic
Volterra system (1). By recalling Theorem 3, this can be translated into analyzing the mean-square
exponential stability of the mild solution to the abstract stochastic Cauchy problem (16). To make our
findings applicable, we have to restrict L2(R+;X) to a certain closed subspace. This further limits the
kernel functions a(·) and b(·), but despite these constraints, our conclusions remain applicable to (1) when
kernel functions exponentially decay. As highlighted in Section 1, this scenario encompasses the use of
the Caputo-Fabrizio fractional derivative.

Let a(·) be as in (1) and f(·) ∈ L2(R+;X). For all λ ∈ ρ( d
ds ) = C+, we define

ãλ(τ) :=

(

R

(

λ,
d

ds

)

a

)

(τ) =

∫ ∞

τ

eλ(τ−t)a(t) dt, τ > 0;

f̃λ(τ) :=

(

R

(

λ,
d

ds

)

f

)

(τ) =

∫ ∞

τ

eλ(τ−t)f(t) dt, τ > 0,

(41)

where ρ( d
ds ) and R(λ,

d
ds ) stand for the resolvent set and the resolvent of d

ds , respectively. The Laplace
transforms of a(·) and f(·) are denoted by

â(λ) := δ0ãλ, f̂(λ) := δ0f̃λ, λ ∈ C+, (42)

respectively, where δ0 defined as near (11) means the Dirac measure in 0. Let us note that the integral
representation of δ0R(λ,

d
ds ) and the Laplace transform are identified. We refer to [40, Chapter V] for

more details on Laplace transform and [41] for more information on vector-valued Laplace transform. Let
â(λ) 6= −1 for every λ ∈ C+. Define

h(λ) :=
1

â(λ) + 1
, ϕ(λ) :=

λ

â(λ) + 1
, λ ∈ C+. (43)

For any λ ∈ C+, define on L2(R+;X) the operator

H(λ) := h(λ)R

(

λ,
d

ds

)

AR(ϕ(λ), A)δ0R

(

λ,
d

ds

)

+R

(

λ,
d

ds

)

,

where A and A are given as in (1) and (12) separately. Then as shown in [15, Lemma 3.2], although
we cannot get the C0-semigroup generated by A explicitly, the resolvent of A can be calculated as the
following, where A is as in (14).

Lemma 2 ([15]). Let X be a Hilbert space, A generate a C0-semigroup on X and a(·) ∈ H1(R+). If
â(λ) 6= −1 and ϕ(λ) ∈ ρ(A) for any λ ∈ C+, then C+ ⊂ ρ(A) implies that C+ ⊂ ρ(A) and

R(λ,A) =

[

h(λ)R(ϕ(λ), A) h(λ)R(ϕ(λ), A)δ0R(λ,
d
ds )

h(λ)R(λ, d
ds )AR(ϕ(λ), A) H(λ)

]

, ∀ λ ∈ C+,

here, A and A are defined as in (12) and (14), respectively.

Theorem 4. Assume that
(i) A generates an exponentially stable C0-semigroup {T (t) : t > 0} on separable Hilbert space X , i.e.,

there exist two constants M1 > 1, ω1 < 0 such that ‖T (t)‖L(X) 6M1e
ω1t for all t > 0;

(ii) a(·) ∈ H1(R+) satisfy that â(λ) 6= −1 and ϕ(λ) ∈ ρ(A) for all λ ∈ C+, where â(·) is as in (42) and
ϕ(·) is defined as in (43);

(iii) M is a closed subspace of L2(R+;X) such that Sl(t)M ⊂ M for every t > 0, that is, M is
{Sl(t) : t > 0}-invariant (see [38, Paragraphs I.1.11 and II.2.3]), where Sl(t) are defined as (18). Moreover,
it follows that B ∈ L(X,L2(V0,M)) given as (13) and a(·)Ax ∈ M for all x ∈ D(A);

(iv) There exist two real-valued functions p(·), q(·) such that for all λ ∈ C+, f ∈ M,

∥

∥f̂(λ)
∥

∥

2

X
6 p(λ)‖f‖2L2(R+;X) and

∥

∥f̃λ(·)
∥

∥

2

L2(R+;X)
6 q(λ)‖f‖2L2(R+;X). (44)

If
sup

Reλ>0
ξ(λ) <∞ and ‖B‖2L(X,L0

2
) + ‖b‖2L2(R+)‖B1‖2L(X,L0

2
) < 1/ζ, (45)
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then stochastic Volterra system (1) is mean-square exponentially stable. Here,

ξ(λ) := |h(λ)|2
[

4
∥

∥ãλ(·)ϕ(λ)R(ϕ(λ), A) − ãλ(·)I
∥

∥

2

L(X,L2(R+;X))

+2‖R(ϕ(λ), A)‖2L(X)

]

(

1 + p(λ)
)

+ 2q(λ), λ ∈ C+,

ζ :=
M2

1

−ω1
sup

Reλ>0
|h(λ)|2 sup

Reλ>0
(1 + p(λ)) sup

Reλ>0

Reλ

Reϕ(λ)
, (46)

h(·), ϕ(·) are as (43) and ãλ(·) is defined as (41).

Proof. To begin with, we validate that Proposition 1, Theorems 2 and 3 still follow if L2(R+;X) is
replacing by M. Denote M := X ×M. Immediately, M is a closed subspace of X := X × L2(R+;X).
Let x ∈ X and f ∈ M. Then the {Sl(t) : t > 0}-invariance of M implies

T0(t)
[

x

f

]

=

[

T (t) R(t)

0 Sl(t)

][

x

f

]

=

[

T (t)x+R(t)f

Sl(t)f

]

∈ M, t > 0,

namely, M is {T0(t) : t > 0}-invariant, where T0(t) are defined by (17) and R(·) is given by (18).
According to [38, Paragraph I.1.11], the operators T0|M(t) defined by

T0|M(t)

[

x

f

]

:= T0(t)
[

x

f

]

, ∀
[

x

f

]

∈ M

form a C0-semigroup {T0|M(t) : t > 0} on M. By making use of [38, Paragraph II.2.3], the generator of
the C0-semigroup {T0|M(t) : t > 0} on M is derived by A0|M = A0 with the domain

D(A0|M) := D(A0) ∩M = D(A)× (H1(R+;X) ∩M),

where A0 is as (11). Define the operator A1|M := A1 mapping D(A0|M) into M and the operator
B|M := B mapping M into L2(V0,M), where A1 and B are given as in (14) and (15) separately.
Similar to the proof of Proposition 1, it is simple to verify that A1|M is bounded on the Banach space
(D(A0|M), ‖ · ‖A0|M) equipped with the graph norm

∥

∥

∥

∥

∥

[

x

f

]∥

∥

∥

∥

∥

2

A0|M

:=





∥

∥

∥

∥

∥

[

x

f

]∥

∥

∥

∥

∥

2

M

+

∥

∥

∥

∥

∥

A0|M
[

x

f

]∥

∥

∥

∥

∥

2

M





1
2

, ∀
[

x

f

]

∈ M,

and hence A|M := A0|M + A1|M generates a C0-semigroup on M, denoted {T |M(t) : t > 0}. B|M is
clearly bounded on M. Therefore, in the case of replacing L2(R+;X) by M, Eq. (16) can be reformulated
as











dz(t) = A|Mz(t) dt+ B|M(z(t)) dW (t),

z(0) = z0 :=

[

x0

f0

]

,

where f0 ∈ M. Analogously, Theorems 2 and 3 also hold with L2(R+;X) is replacing by M.
Next, we demonstrate that the operator norm estimate

sup
‖η‖M=1

∫ ∞

0

‖B|MT |M(t)η‖2L2(V0,M) dt < 1

holds. Equivalently, there exists a constant K < 1 such that

‖B|MT |M(·)η‖2L2(R+;L2(V0,M)) 6 K‖η‖2M, ∀ η ∈ M. (47)

Let η := [ xf ] ∈ M. By virtues of the vector-valued version of Paley-Wiener theorem [24, Proposition
12.5.4], the integral representation of resolvent [38, Theorem II.1.10] and Lemma 2, we have

‖B|MT |M(·)η‖2L2(R+;L2(V0,M)) = ‖B|MR(·,A|M)η‖2H2(C+;L2(V0,M))

6
(

‖B‖2L(X,L0
2
) + ‖b‖2L2(R+)‖B1‖2L(X,L0

2
)

)

sup
Reλ>0

|h(λ)|2

· ‖R(ϕ(·), A)‖2L(X,H2(C+;X)) sup
Reλ>0

(‖x+ f̂(λ)‖2X).

(48)
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Define on Hardy space H2(C+;X) the composition operator Cϕ by (Cϕf)(λ) := f(ϕ(λ)) for all f ∈
H2(C+;X). With the aids of [26, Theorem 4 and Proposition 1], we know that the composition operator
Cϕ is bounded on H2(C+;X) if and only if ϕ has a finite angular derivative at infinity, or equivalently,

κ := sup
Reλ>0

Reλ

Reϕ(λ)
<∞,

in this case, ‖Cϕ‖2L(H2(C+;X)) = κ. Hence, Eq. (48) becomes

‖B|MT |M(·)η‖2L2(R+;L2(V0,M)) 6
(

‖B‖2L(X,L0
2
) + ‖b‖2L2(R+)‖B1‖2L(X,L0

2
)

)

sup
Reλ>0

|h(λ)|2

· ‖Cϕ‖2L(H2(C+;X))‖R(·, A)‖2L(X,H2(C+;X))

· sup
Reλ>0

(2‖x‖2X + 2‖f̂(λ)‖2X).

(49)

From Theorem 4 (i) and using the Paley-Wiener theorem again, we obtain

‖R(·, A)‖2L(X,H2(C+;X)) = ‖T (·)‖2L(X,L2(R+;X)) 6
M2

1

−2ω1
. (50)

Combining (44)–(46), (49) and (50), we claim that Eq. (47) follows with

K =
(

‖B‖2L(X,L0
2
) + ‖b‖2L2(R+)‖B1‖2L(X,L0

2
)

)

ζ < 1.

Finally, as shown in the proof of [15, Theorem 3.3], the C0-semigroup {T |M(t) : t > 0} is exponentially
stable, since Theorem 4 (i) implies {λ ∈ C | Reλ > 0 } ⊂ ρ(A). Therefore, in the light of [32, Theorem
2.2.2] (or originally, see [42, Theorem 1]), the mild solution z(·, z0) to the abstract stochastic Cauchy prob-
lem (16) with the initial datum z0 :=

[ x0

f0

]

is mean-square exponentially stable, where f0 ∈ L2
F0
(Ω;M).

Fixing f0 ≡ 0 almost surely and utilizing Theorem 3, one deduces

E‖x(t, x0)‖2X 6 E

∥

∥

∥

∥

∥

z

(

t,

[

x0

0

])∥

∥

∥

∥

∥

2

M

6Meωt
E

∥

∥

∥

∥

∥

[

x0

0

]∥

∥

∥

∥

∥

2

M

=Meωt
E‖x0‖2X

for some constants M > 1, ω < 0. This concludes the proof.
From Lemma 2 we learn that the norm of resolvent operator needs to be estimated. However, in

general, the resolvent operator R(λ,A) of a closed linear operator A is difficult to calculate on an infinite-
dimensional space. It is easier to explore the special case of exponential-decay kernel functions

a(t) = α1e
−βt, b(t) = α2e

−βt, t > 0, (51)

where α1, α2 ∈ R and β > 0. In this case, the notations â(·), h(·), ϕ(·) and ãλ(·) become

â(λ) =
α1

λ+ β
, h(λ) =

λ+ β

λ+ β + α1
, ϕ(λ) =

λ(λ+ β)

λ+ β + α1
, λ ∈ C+, (52)

where β + α1 > 0, and

ãλ(τ) = e−βτ α1

λ+ β
, τ > 0.

Based on Theorem 4, taking the subspace M = { e−β·x | x ∈ X } of L2(R+;X), we can obtain Coro-
llary 1.

Corollary 1. Assume that
(i) A generates an exponentially stable C0-semigroup {T (t) : t > 0} on separable Hilbert space X , i.e.,

there exist two constants M1 > 1, ω1 < 0 such that ‖T (t)‖L(X) 6M1e
ω1t for all t > 0;

(ii) a(·), b(·) ∈ H1(R+) are of the form as (51) and satisfy that α1 < 0, β > −α1 and ϕ(λ) ∈ ρ(A) for
all λ ∈ C+, where ϕ(·) is defined as in (52).

If

sup
Reλ>0

‖R(ϕ(λ), A)‖L(X) < K and ‖B‖2L(X,L0
2
) +

α2
2

2β
‖B1‖2L(X,L0

2
) <

1

ζ
,

then stochastic Volterra system (1) is mean-square exponentially stable. Here,

ζ :=
M2

1

−ω1

(

2 +
2α2

1

(β + α1)2

)(

1 +
2

β

)

sup
Reλ>0

Reλ

Reϕ(λ)
.
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5 Simulation results

In this section, we provide two examples to illustrate the result obtained in Section 4 with numerical
simulations. The first example is finite dimensional, for which mean-square exponential stability has been
established in Example 1. The deterministic counterpart of the second example corresponds to Coleman
and Gurtin’s model [7], utilizing exponential-decay kernel functions. As highlighted in Section 1, the
convolution terms with this type of kernel functions can be equated to the Caputo-Fabrizio fractional
derivative [12].

Example 2. Reconsider Example 1. It is easy to verify that |T (t)| = e−2t and

ϕ(λ) =
λ(λ+ β)

λ+ β + α1
= λ+ 1− 1

λ+ 1
∈ C\{−2} = ρ(A), ∀ λ ∈ C+.

Thus, Corollary 1 (i) and (ii) are fulfilled. A direct computation yields

sup
Reλ>0

|R(ϕ(λ), A)| = 1

infReλ>0 |λ+ 3− 1
λ+1 |

=
1

2
.

Furthermore, it is clear from V = R and Q = I that ‖B‖L(X,L2
0
) = ‖B‖L(R,L(R)) = 1/3, so we get

ζ =
M2

1

−ω1

(

2 +
2α2

1

(β + α1)2

)(

1 +
2

β

)

sup
Reλ>0

Reλ

Reϕ(λ)
= 4 · sup

Reλ>0

Reλ

Reλ+ 1− Reλ+1
|λ+1|2

= 4,

‖B‖2L(X,L0
2
) +

α2
2

2β
‖B1‖2L(X,L0

2
) =

1

9
<

1

4
=

1

ζ
.

With the aid of Corollary 1, we claim that Eq. (6) is mean-square exponentially stable.

Example 3. Consider the following stochastic partial integro-differential system based on Coleman-
Gurtin model [8, Eq. (3)] of heat conduction with memory



































dz(w, t) =

[

zww(w, t) −
∫ t

0

e−2(t−s)zww(w, s) ds− 4z(w, t) + 4

∫ t

0

e−2(t−s)z(w, s) ds

]

dt

+

[

1

2
z(w, t) +

∫ t

0

e−2(t−s)z(w, s) ds

]

dW (t),

zw(0, t) = z(π, t) = 0, t > 0,

z(w, 0) = z0(w), w ∈ [0,π),

(53)

whereW (·) is a one dimensional standard Brownian motion. Obviously, it is based on the one dimensional
stochastic heat equation without memory effect (see [18, Example 3.1], [32, Example 2.4.1], [3, Example
5.7] for more examples of one dimensional stochastic heat equation)















dz(w, t) =
(

zww(w, t) − 4z(w, t)
)

dt+
1

2
z(w, t) dW (t),

zw(0, t) = z(π, t) = 0, t > 0,

z(w, 0) = z0(w), w ∈ [0,π).

(54)

Intuitively, Eq. (53) describes the phenomenon of heat conduction on a rod with length l = π under
stochastic perturbation; z(w, t) represents the temperature of the rod at position w at time t, the tem-
perature at the extreme right end of the rod is constant at 0 while the heat flux density at the extreme
left end is 0 (i.e., the left end is adiabatic); further, the rod is composed of a hereditary material, and
the kernel functions a(·) and b(·) describing its memory characteristics are as follows:

a(t) = −e−2t, b(t) = 2e−2t, t > 0. (55)

To restate (53) into the form of stochastic Volterra system (1), we take (all the function spaces are taken
to be real)

X = L2(0,π), V = R, Q = I; Â =
d2

dx2
, D(Â) = { f ∈ H2(0,π) | f ′(0) = f(π) = 0 };
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Figure 1 (Color online) Numerical results of (53) with (56). (a) 300 samples and expectation of 1000 samples; (b) L2(0,π) norm

of 300 samples and mean square of 1000 samples.

A = Â− 4I, D(A) = D(Â); B(f)v := B1(f)v :=
1

2
f(·)v, v ∈ V, ∀ f ∈ X,

and the kernel functions a(·), b(·) are as shown in (55). For the sake of completeness, we reaffirm some
properties of Â (see, e.g., [24, Example 2.6.10]). Actually, Â is a self-adjoint operator on X with the
spectrum

σ(Â) = σp(Â) =

{

µn := −
(

n− 1

2

)2 ∣
∣

∣

∣

n = 1, 2, . . .

}

.

In addition, Â generates a contraction exponentially stable C0-semigroup {T̂ (t) : t > 0} on X meeting

‖T̂ (t)‖L(X) 6 e−
1
4
t for all t > 0. It is simple to see that ‖T (t)‖L(X) 6 e−

17
4
t and

ϕ(λ) =
λ(λ + β)

λ+ β + α1
= λ+ 1− 1

λ+ 1
∈ ρ(A), ∀ λ ∈ C+,

so Corollary 1 (i) and (ii) are satisfied. Based on [24, Proposition 3.2.8], the self-adjointness of A leads to

‖R(λ,A)‖L(X) =

(

inf
s∈σ(A)

|λ− s|
)−1

, ∀ λ ∈ ρ(A).

Then we immediately deduce

sup
Reλ>0

‖R(ϕ(λ), A)‖L(X) = sup
Reλ>0

1

infs∈σ(A) |ϕ(λ) − s| =
1

infReλ>0

∣

∣λ+ 21
4 − 1

λ+1

∣

∣

=
17

4
.

Moreover, it is evident from V = R and Q = I that ‖B‖L(X,L0
2
) = ‖B‖L(L2(0,π),L(R,L2(0,π))) = 1/2.

Similarly, ‖B1‖L(X,L0
2
) = 1/2. Thus, we have the calculations

ζ =
M2

1

−ω1

(

2 +
2α2

1

(β + α1)2

)(

1 +
2

β

)

sup
Reλ>0

Reλ

Reϕ(λ)
=

32

17
· sup
Reλ>0

Reλ

Reλ+ 1− Reλ+1
|λ+1|2

=
32

17
,

‖B‖2L(X,L0
2
) +

α2
2

2β
‖B1‖2L(X,L0

2
) =

1

2
<

17

32
=

1

ζ
.

According to Corollary 1, we infer that Eq. (53) is mean-square exponentially stable.
On the other hand, in order to text the mean-square exponential stability of (53), we compute numer-

ically 1000 samples of solutions to (53) with the initial condition

z0(w) = cos
w

2
, w ∈ [0,π), a.s. (56)

300 samples and expectation E z(w, t) of them with (56) are shown in Figure 1(a). L2(0,π) norm of

300 samples and mean square
(

E‖z(·, t)‖2
L2(0,π)

)
1
2 of 1000 samples with (56) are plotted in Figure 1(b).

It is now straight forward from Figure 1(b) that the solution of (53) with the initial condition (56) is
mean-square exponentially stable.
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6 Conclusion

For a class of infinite-dimensional stochastic integro-differential equation systems, this study has provided
the pathway to connect mild solutions of such equations with those of an abstract Cauchy problem
by employing a semigroup approach and the Yosida approximation. Furthermore, we have established
sufficient conditions that ensure the mean-square exponential stability of these mild solutions boils down
to the boundedness of a function and a norm estimate for the stochastic part. Our result works well
in scenarios where the system’s convolution terms carry exponential-decay kernel functions as in (51),
which correspond to the Caputo-Fabrizio fractional derivative. Therefore, it will be interesting to explore
the sufficient conditions across more general cases in future work. In addition, our results operate under
the assumption that B and B1 are bounded on X . It will be interesting to expect the mean-square
exponential stability of strong solutions to the equation if B and B1 with D(A) ⊂ D(B) ⊂ X and
D(A) ⊂ D(B1) ⊂ X are bounded on D(A).
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6 Al-Mahdi A M, Al-Gharabli M M, Guesmia A, et al. New decay results for a viscoelastic-type Timoshenko system with

infinite memory. Z Angew Math Phys, 2021, 72: 22
7 Coleman B D, Gurtin M E. Equipresence and constitutive equations for rigid heat conductors. J Appl Math Phys (ZAMP),

1967, 18: 199–208
8 Miller R K. An integrodifferential equation for rigid heat conductors with memory. J Math Anal Appl, 1978, 66: 313–332
9 Mainardi F. Fractional Calculus and Waves in linear Viscoelasticity: an Introduction to Mathematical Models. Singapore:

World Scientific, 2010
10 Singh H, Srivastava H M, Hammouch Z, et al. Numerical simulation and stability analysis for the fractional-order dynamics

of COVID-19. Results Phys, 2021, 20: 103722
11 Wang B H, Lu P H, Dai C Q, et al. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger

equation. Results Phys, 2020, 17: 103036
12 Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress Fract Differ Appl, 2015,

1: 73–85
13 Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat

transfer model. Therm sci, 2016, 20: 763–769
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