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Abstract Using the semi-tensor product (STP) of matrices, the profile evolutionary equation (PEE) for

repeated finite games is obtained. By PEE, the zero-determinant (ZD) strategies are developed for general

finite games. A formula is then obtained to design ZD strategies for general finite games with multiple players

and asymmetric strategies. A necessary and sufficient condition is obtained to ensure the availability of the

designed ZD strategies. It follows that player i can unilaterally design ki − 1 (one less than the number of

its strategies) dominating linear relations about the expected payoffs of all players. Finally, the fictitious

opponent player is proposed for networked repeated games (NRGs). A technique is proposed to simplify the

model by reducing the number of frontier strategies.

Keywords finite repeated game, profile evolutionary equation, ZD strategy, networked repeated games,

semi-tensor product of matrices

1 Introduction

In 2012, the zero-determinant (ZD) strategy was first proposed by Press and Dyson [1], which shows that
in an iterated prisoner’s dilemma there exist strategies that dominate any evolutionary opponent. Since
then it has attracted considerable attention from the game theoretic community as well as computer,
information, systems, and control communities. Ref. [2] called it “an underway revolution in game
theory”, because it reveals that in a repeated game, a player can unilaterally control its opponent’s
payoff.

A significant development in the following research is the so-called “Akin’s Lemma” [3], which is a
generalization of Press-Dyson’s pioneering work without using the determinant form. Akin’s original
work is about a two-player two-strategy game (prisoner’s dilemma). Then various extensions have been
done. In [4], the ZD strategies of two-player two-strategy discounted games were discussed. Ref. [5]
considered two-player continuous strategy discounted games. A surprising fact is that as a player adopts
the ZD strategy, its actions restricting to two discrete levels of cooperation are enough to enforce a linear
relationship between the payoffs of two players even if the opponent has infinitely many donation levels to
choose. Multiplayer ZD strategies in games with two actions have been discussed both for undiscounted
payoffs [6,7] and for discounted payoffs [8]. The most general case with multiple players and an arbitrary
number of strategies is also investigated by [9, 10].

Meanwhile, the characteristics of ZD strategies have also been investigated widely. Particularly, the
stability of ZD strategy was analyzed in [11]; the robustness of ZD strategies has been investigated in [12];
the ZD strategies of noisy repeated games were investigated by [13]; the influence of misperception on ZD
strategies was discussed in [14], and the evolutionary stability of ZD strategies has also been investigated
widely [15–17]. ZD strategy technique has also been used for some particular kinds of games, such as
application to public goods games [7], mining pole games [18], and snowdrift game [19].

The early studies concern more about the ZD strategy design [1, 6, 20]. Most later studies focus on
general properties of linear relation for average payoffs of players. For instance, Ref. [10] proved the
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existence of the solution of a set of linear relations of average payoffs enforced by ZD strategies and the
independence of the relations. Ref. [9] is also concentrated on the existence theorem.

When the applications of ZD strategies to real game problems are concerned, design formulas or
numerical algorithms are necessary. Ref. [21] provided a method to design ZD strategies for 2 × 2
asymmetric games. When asymmetric games are considered, the shortage of similar studies in previous
studies has been claimed in [21].

Another promising development of ZD strategy is its application to networked evolutionary games.
For instance, Ref. [11] considered the extortion strategy under myopic best response arrangement over
networks. Several kinds of evolutions of ZD strategy on networked evolutionary games are revealed
by [22, 23]. Ref. [24] considered the cooperative mining ZD strategy in block-chain networks.

Recently, a new matrix product called the semi-tensor product (STP) of matrices, was proposed [25,26],
and it has been applied to solve some problems in game theory, including the modeling and analysis of
networked repeated games (NRGs) [27], providing a formula to verify whether a finite game is potential
[28,29], investigating the vector space structure of finite games and its orthogonal decompositions [30–32],
application to traffic congestion games [33], diffusion games [34], and logical dynamic games [35], just to
mention a few. Readers who are interested in the STP approach to finite games are referred to a survey
paper [36].

Using STP, this paper presents a profile evolutionary equation (PEE) for general finite repeated games,
essentially the same as the Markov matrix for the memory-one game in [1]. Then a detailed design
technique and rigorous proofs are presented for this general case, which are generalizations of those
proposed firstly by [1]. A necessary and sufficient condition is obtained for the availability of ZD strategies.
As a by-product, we also prove that if a player has ki strategies it can provide unilaterally ki − 1 linear
payoff relations using ZD strategies.

Finally, the ZD strategies for NRGs are investigated. By proposing and using the fictitious opponent
player (FOP), an NRG can be transferred to a two-player game, where a player, say, player i, plays with
the FOP, who represents the whole network except player i. The ZD strategies for player i are designed
for i vs. FOP.

The rest of this paper is organized as follows: A brief survey on STP is given in Section 2. Then
it is used to develop a PEE of finite repeated games. Finally, some properties of the transition matrix
of PPE are investigated, which are important for designing ZD strategies. Section 3 deduces a general
formula for designing ZD strategies. A necessary and sufficient condition for the designed ZD strategies
to be available is presented. Thereafter, some numerical examples are discussed to illustrate the design
procedure. The FOP is proposed in Section 4 for NRGs. Using FOP, the technique of ZD strategies
becomes applicable to NRGs. Section 5 is a brief conclusion.

Before ending this section, the notations used in this paper are presented. Mm×n is the set of m× n
dimensional real matrices. M∗ is the adjoint matrix of M . σ(M) is the set of eigenvalues of M . ρ(M) is
the spectral radius of M . M > 0 (M > 0) represents that all entries of M are positive (non-negative). ⋉
is the STP of matrices. Col(A) (Row(A)) is the set of columns (rows) of A; Coli(A) (Rowi(A)): the i-th
column (row) of A. Dk = {1, 2, . . . , k}. δik is the i-th column of identity matrix Ik. δ

0
k is for a zero vector

of dimension k. B = {0, 1}; and Bk = {(b1, . . . , bk)
T | bi ∈ B, ∀i}. ∆k = Col(Ik) = {δik | i = 1, . . . , k}

L ∈ Mm×n is called a logical matrix, if Col(L) ⊂ ∆m. Let L = [δi1m, δi2m, . . . , δinm ], it is briefly denoted
by L = δm[i1, i2, . . . , in]. Lm×n is the set of m × n logical matrices. Υm is the set of m dimensional
(column) random vectors. That is, x = (x1, x2, . . . , xm)T ∈ Υm means xi > 0, ∀i, and

∑m
i=1 xi = 1.

Υm×n is the set of m× n (column) random matrices. That is, A ∈ Υm×n, if and only if, columns of A,
i.e., Colj(A), j = 1, 2, . . . , n, are random vectors. G[n;k1,k2,...,kn] is the set of finite non-cooperative games
with n players, and player i has ki strategies, i = 1, 2, . . . , n.

2 Modeling of finite repeated games

2.1 A brief survey on STP

Definition 1 ([25,26]). Let M ∈ Mm×n, N ∈ Mp×q, and t := lcm(n, p) be the least common multiple
of n and p. Then the STP of M and N is defined as

M ⋉N :=
(
M ⊗ It/n

) (
N ⊗ It/p

)
∈ M(mt/n)×(qt/p), (1)

where ⊗ is the Kronecker product.



Cheng D Z, et al. Sci China Inf Sci October 2024, Vol. 67, Iss. 10, 202201:3

Remark 1. (i) STP is a generalization of conventional matrix products. That is, if n = p, then
M ⋉N = MN . It is not necessary (and almost impossible) to distinguish STP from conventional matrix
products, because, in a computing process, the product might shift from one to the other because of the
changes in dimensions. Hence in most cases, the symbol ⋉ is omitted.

(ii) As a generalization, STP keeps all major properties of conventional matrix products available,
including associativity and distributivity. All the properties of the matrix product used in this paper are
the same for both conventional matrix products and STPs.

(iii) Since conventional matrix products can be considered as a special case of STP, all the matrix
products used in this paper without product symbols are assumed to be STPs.

Next, we consider how to express a finite-valued mapping (or logical mapping) into a matrix form using
STP.

Let f : Dm → Dn be a mapping from a finite set to another finite set. Then we can identify j ∈ Dm

with its vector form ~j := δjm ∈ ∆m. In this way, f can be regarded as a mapping f : ∆m → ∆n. In the
sequel ~j is simply denoted by j again if there is no possible confusion.

Proposition 1. Let f : Dm → Dn. Then there exists a unique matrix Mf ∈ Lm×n, called the structure
matrix of f , such that as the arguments are expressed into their vector forms, we have

f(x) = Mfx. (2)

As a corollary, Proposition 1 can be extended into a more general form.

Corollary 1. Let xi ∈ Dki
, i = 1, 2, . . . , n, yj ∈ Dpj

, j = 1, 2, . . . ,m, and x = ⋉
n
i=1xi, y = ⋉

m
j=1yj.

Assume

yj = fj(x1, x2, . . . , xn), j = 1, 2, . . . ,m,

which have their vector forms as

yj = Mj ⋉
n
i=1 xi, j = 1, 2, . . . ,m. (3)

Then there exists a unique matrix MF , called the structure matrix of the mapping F = (f1, . . . , fm),
such that

y = MFx, (4)

where

MF = M1 ∗M2 ∗ · · · ∗Mn ∈ Lρ×κ,

and ρ =
∏m

j=1 pj , κ =
∏n

i=1 ki, and ∗ is Kratri-Rao product of matrices1).

Similarly, we have the following result.

Corollary 2. Let xi ∈ Υki
, i = 1, 2, . . . , n and yj ∈ Υpj

, j = 1, 2, . . . ,m, and

yj = Mjx, j = 1, 2, . . . ,m, (5)

where Mj ∈ Υpj×κ. If the random variables yj , j = 1, 2, . . . ,m are conditional independent on x1, x2, . . . ,
xn. Then there exists a unique matrix MF such that

y = MFx, (6)

where

MF = M1 ∗M2 ∗ · · · ∗Mn ∈ Υρ×κ,

which is also called the structure matrix of the mapping F = (f1, f2, . . . , fm).

1) Let A ∈ Ms×n, B ∈ Mt×n. Then the Khatri-Rao product of A and B, denoted by A ∗ B ∈ Mst×n, is defined by

Coli(A ∗ B) = Coli(A) Coli(B), i = 1, 2, . . . , n [26].
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2.2 PEE of finite games

Definition 2. Consider a finite game G = (N,S,C), where
(i) N = {1, 2, . . . , n} is the set of players;
(ii) S =

∏n
i=1 Si is the profile, where Si = {1, 2, . . . , ki}, i = 1, 2, . . . , n, is the strategies (or actions)

of player i;
(iii) C = (c1, c2, . . . , cn), where ci : S → R is the payoff (or utility, cost) function of player i, i =

1, 2, . . . , n.

The set of such finite games is denoted by G[n;k1,k2,...,kn]. A matrix formulation of the repeated game
G ∈ G[n;k1,k2,...,kn] is described as follows [27]:

(i) Identifying j ∈ Si with δjki
∈ ∆ki

, then Si ∼ ∆ki
.

(ii) Setting κ =
∏n

i=1 ki, then S ∼ ∆κ =
∏n

i=1 ∆ki
.

(iii) Let xi ∈ ∆ki
be the vector form of a strategy for player i. Then x = ⋉

n
i=1xi ∈ ∆κ is a profile.

(iv) For each player’s payoff function ci, there exists a unique row vector V c
i ∈ R

κ such that

ci(x) = V c
i x, i = 1, 2, . . . , n. (7)

Now consider a repeated game Gr of G, which stands for (infinitely) repeated G. Then each player
can determine its action at t + 1 using historical knowledge. It was proved in [1] (see also [2]) that
“the shortest memory player sets the rule of the game, which means the long-memory strategies have
no advantages over the memory-one strategies”. Based on this observation, the strategy updating rule
is assumed Markov-like. That is, the strategy of player i at time t + 1 depends on the profile at t only.
Then, we have [27]

xi(t+ 1) = Lix(t), i = 1, 2, . . . , n. (8)

Two types of strategies are commonly used.
• Pure strategy:

Li ∈ Lki×κ, i = 1, 2, . . . , n;

• Mixed strategy:
Li ∈ Υki×κ, i = 1, 2, . . . , n.

Multiplying (by STP) all equations in (8) together yields

x(t+ 1) = Lx(t), (9)

where
L = L1 ∗ L2 ∗ · · · ∗ Ln.

In pure strategy case L ∈ Lκ×κ and in mixed strategy case L ∈ Υκ×κ. In the mixed strategy case, x(t)
can be considered as a distribution of profiles at time t. If we take into consideration that δiκ is used to
express the i-th profile, then x(t) can also be considered as the expected value of the profile at time t.

In this paper, we are concerned only with mixed strategy cases. Now what a player can manipulate is
its own strategy updating rule. That is, player i can only choose its Li.

We arrange profiles in alphabetic order as

S = {(s1, s2, . . . , sn) | si ∈ Si, i = 1, 2, . . . , n}

= {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (k1, k2, . . . , kn)}

:= {s1, s2, . . . , sκ}.

Denote the probability of player i choosing strategy j at time t+1 under the situation that the profile
at time t is sr as

pri,j = Prob(xi(t+ 1) = j | x(t) = sr). (10)

Then we have the strategy evolutionary equation (SEE) of player i as

xi(t+ 1) = Lix(t), (11)
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where

Li =










p1i,1 p2i,1 · · · pκi,1

p1i,2 p2i,2 · · · pκi,2
...

p1i,ki
p2i,ki

· · · pκi,ki










∈ Υki×κ, i = 1, 2, . . . , n. (12)

According to Corollary 2, we have a PEE as

x(t+ 1) = Lx(t), (13)

where the transition matrix

L = L1 ∗ L2 ∗ · · · ∗ Ln. (14)

We give a simple example to calculate L.

Example 1. Consider the repeated prisoners’ dilemma. Let pri,j be the probability of player i taking
strategy j ∈ {C,D} ∼ {1, 2} under the condition sr. Then a straightforward computation shows that

{

x1(t+ 1) = L1x(t),

x2(t+ 1) = L2x(t),

where

L1 =

[

p11,1 p21,1 p31,1 p41,1

p11,2 p21,2 p31,2 p41,2

]

, L2 =

[

p12,1 p22,1 p32,1 p42,1

p12,2 p22,2 p32,2 p42,2

]

.

Let

pi = pi1,1, qi = pi2,1, i = 1, 2, 3, 4.

It follows that

pi1,2 = 1− pi1,1 = 1− pi, pi2,2 = 1− pi2,1 = 1− qi, i = 1, 2, 3, 4.

Then we have

L = L1 ∗ L2

=









p11,1p
1
2,1 p21,1p

2
2,1 p31,1p

3
2,1 p41,1p

4
2,1

p11,1p
1
2,2 p21,1p

2
2,2 p31,1p

3
2,2 p41,1p

4
2,2

p11,2p
1
2,1 p21,2p

2
2,1 p31,2p

3
2,1 p41,2p

4
2,1

p11,2p
1
2,2 p21,2p

2
2,2 p31,2p

3
2,2 p41,2p

1
2,2









=









p1q1 p1q2 p2q1 p2q2

p1(1− q1) p1(1− q2) p2(1 − q1) p2(1− q2)

(1− p1)q1 (1− p1)q2 (1 − p2)q1 (1− p2)q2

(1− p1)(1− q1) (1− p1)(1 − q2) (1− p2)(1− q1) (1− p2)(1 − q2)









. (15)

Remark 2. It is easy to verify that the transition matrix in PEE (refer to (15)) is essentially the
transpose of the Markov matrix for the memory one game in [1]. Corresponding to the “column order”
of [1] there is a “row order” change in (15). This is because our profiles are ordered in alphabetic as CC,
CD, DC, DD, while Ref. [1] uses the order CC, DC, CD, DD.

2.3 Properties of PEE

In this subsection, we investigate some properties of the transition matrix L of PEE, which are required
for designing ZD strategies. As aforementioned in Remark 2, L is the same as the Markov transition
matrix for the memory one game in [1] (only with a transpose). So L is a column random matrix.
This difference does not affect the following discussion. Hence the following argument is a mimic of the
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corresponding argument in [1]. What we are going to do is extend it to a general case and put it on a
solid mathematical foundation.

In the sequel, we need an assumption on L. To present it, some preparation is necessary.
A random square matrix M is called a primitive matrix if there exists a finite integer s > 0 such that

M s > 0 [37]. Some nice properties of primitive matrix are cited as follows.

Proposition 2 (Perron-Frobenius theorem [37]). Let L be a primitive stochastic matrix. Then
(i) ρ(L) = 1 and there exists a unique λ ∈ σ(L) such that |λ| = 1;
(ii)

lim
t→∞

Lt = P > 0. (16)

Moreover, P = uvT, where Lu = u, u > 0, LTv = v, v > 0.

We are ready to present our fundamental assumption.
Assumption A-1. L is primitive.

Remark 3. (i) A-1 is not always true. For instance, consider (15) and let p21,1 = 0, p31,1 = 0, p41,1 = 0,
and p42,1 = 0. Then L is not primitive.

(ii) If 0 < pri,j < 1, ∀r, i, j, then a straightforward verification shows that L is primitive. So A-1 is
always true except for a zero-measure set.

(iii) According to Proposition 2, we have the following immediate conclusions.
(a) If L is primitive, then

rank(L − Iκ) = κ− 1. (17)

(b) There exists P = uvT, where Lu = u, u > 0, LTv = v, v > 0, such that Eq. (16) holds. That is,

lim
t→∞

Lt = uvT. (18)

Proposition 3. Let L be a κ× κ column primitive stochastic matrix. Define M := L− Iκ and let M∗

be its adjoint matrix. Then
(i) rank(M∗) = 1;
(ii)

Colj(M
∗) 6= 0, j = 1, 2, . . . , κ. (19)

The proof of this proposition and all other proofs can be found in Appendix A.

Proposition 4. Consider the PEE (13). If L is primitive, then

x∗ := lim
t→∞

x(t) = u/‖u‖, (20)

where u comes from (18).

Hereafter, we assume u has been normalized. Then x∗ = u is the only normalized eigenvector of L
corresponding to eigenvalue 1.

Proposition 5. Assume L is primitive, and then

Colj(M
∗) ∝ u, ∀j. (21)

Combining (19) and (21) yields

Colj(M
∗) = µju, µj 6= 0, j = 1, 2, . . . , κ. (22)

3 Design of ZD strategies for repeated games

3.1 A universal formula for ZD-strategies

Consider the transition matrix L of PEE (13). Recall the finite game G. For player i with action j, define
an indicative vector ξi,j ∈ R

κ as follows:

ξi,j = ⋉
n
τ=1γτ , (23)
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where

γτ =

{

1kτ
, τ 6= i,

δjki
, τ = i.

ξi,j ∈ R
κ is called a strategy extraction vector, which has the following property.

Lemma 1. Consider the FRG Gr. Strategy extraction vector ξi,j ∈ R
κ has the following property:

ξTi,jL =
∑

a∈Φi,j
Rowa(L)

= [p1i,j , p
2
i,j , . . . , p

κ
i,j ], ∀i ∈ N, ∀j ∈ Ai,

(24)

where Φi,j = {a = (a1, . . . , an) ∈ A | ai = j} ⊆ A.

Proof. According to the definition of ξi,j and L, we have

ξTi,jL = ξTi,j [Col1(L),Col2(L), . . . ,Colk(L)]

= [ξTi,j Col1(L), ξ
T
i,j Col2(L), . . . , ξ

T
i,j Colk(L)],

where for each column

ξTi,j Colr(L) = (⋉n
τ=1γ

T
τ )(⋉

n
s=1 Colr(Ls))

= (⊗n
τ=1γ

T
τ )(⊗

n
s=1 Colr(Ls))

= ⊗n
s=1(γ

T
s Colr(Ls))

= pri,j.

The second equality comes from STP’s property. The third equality comes from the property of the
Kronecker product.

Remark 4. (i) The strategy extraction vector ξi,j ∈ R
κ is called “Repeat” strategy in [5, 10]. (ii) The

purpose of (24) is to pick out the set of rows from matrix L, which involve pri,j . The row labels of such

a set are denoted by Φi,j . Then ξTi,jL is the summation of the rows in L, which are labeled by Φi,j . For

each pair (i, j), ξTi,jL realizes an elementary (equivalent) transformation for L, which results in a row of

L which contains pi,j only, i.e., this new row does not involve pds,r, (s, r) 6= (i, j).

If L is primitive, then it has a stationary distribution µ ∈ Υκ satisfying

Lµ = µ ⇔ (L− I)µ = 0. (25)

Multiplying ξi,j to both sides of (25) yields that

[ξTi,jL− ξTi,j ]µ = 0. (26)

Let Ti = [ξTi L− ξTi ], where ξi = [ξi,1, ξi,2, . . . , ξi,ki
]. According to [10], the ZD strategy of player i belongs

to the interaction of two subspaces.

Definition 3 ([10]). The ZD strategy Li of player i exists if and only if

Span(V ) ∩ Span(TT
i ) 6= {0κ}, (27)

where V = [1κ, (V
c
1 )

T, (V c
2 )

T, . . . , (V c
n )

T].

Remark 5. Definition 3 can be used to detect whether a given strategy Li is a ZD strategy or not.
However, it is difficult to design a ZD strategy for a given game.

In the following, we only consider how to derive player i’s ZD strategy pi,j associated with action j
using ξi,j , where pi,j = [p1i,j , p

2
i,j , . . . , p

κ
i,j ]. A general design formula is presented in the following.

Proposition 6. Consider a repeated game Gr, where G ∈ G[n;k1,k2,...,kn]. Assume player i aims at a
set of linear relations on the expected payoffs as

ℓi,j(Ec1, Ec2, . . . , Ecn, 1) = 0, 1 6 i 6 n, j = 1, 2, . . . , ki − 1, (28)
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where ℓi,j is a linear function and Eci is the expected payoff of player i. Then its ZD strategies can be
designed as

pi,j = (p1i,j , p
2
i,j , . . . , p

κ
i,j)

= µi,jℓi,j
(
V c
1 , V

c
2 , . . . , V

c
n ,1

T
κ

)
+ ξi,j , j = 1, 2, . . . , ki − 1,

(29)

where µi,j 6= 0 are adjustable parameters.

Proof. If pi,j satisfies (29), then we have

pi,j − ξTi,j = µi,jℓi,j
(
V c
1 , V

c
2 , . . . , V

c
n ,1

T
κ

)

= µi,jℓi,j (Ec1, Ec2, . . . , Ecn) + c

= 0,

(30)

where c is a constant. Eq. (30) implies that

ℓi,j (Ec1, Ec2, . . . , Ecn) = 0, 1 6 i 6 n, j = 1, 2, . . . , ki − 1.

Remark 6. Eq. (29) is a fundamental formula, which provides a convenient way to design ZD strategies
for our preassigned purposes. One may be concerned about the time complexity of the proposed formula.
We point out that the complexity is related to the number of players n and the number of strategies ki
for each player. The method of reducing the complexity of designing ZD strategies and FOP method is
proposed in Section 4.

Definition 4. A set of ZD strategies is permissible, if the following two conditions are satisfied:

(i) 0 6 pi,j 6 1, j = 1, 2, . . . , ki − 1; (31)

(ii) 0 6

ki−1∑

j=1

pi,j 6 1. (32)

Remark 7. (i) It is obvious that permissibility is a fundamental requirement. Non-permissible strategies
are meaningless.

(ii) It is clear that player i can unilaterally design at most |Si| − 1 linear relations. Because when pi,j,
j < |Si| are all determined, pi,|Si| is uniquely determined by

pi,|Si| = 1T
κ −

|Si|−1
∑

j=1

pi,j .

(iii) Indeed, player i can design |Si| − 1 linear relations as it wishes. This is an advantage of (29),
because it clearly tells how many linear relations a player may design. It was pointed out by [10] that
“when the number Mn of possible actions for player n is more than two, player n may be able to employ a
ZD strategy with dim Vn > 2 to simultaneously enforce more than one linear relations. Such a possibility
has never been reported in the context of ZD strategies”.

(iv) Of course, player i needs not to design |Si| − 1 relations. If it intends to design r < |Si| − 1
relations, Eq. (32) has to be modified by reducing the summation to r items.

(v) The ZD design formula (29) can be used simultaneously by multiple players, or even all n players.
(vi) Eq. (22) is extremely important for (29) to be available, because it ensures that each row in the

M = L− Iκ is replaceable by a designed linear relation to get zero determinant.

Even though a set of ZD strategies is permissible, it may not be available, which means the goal (28)
may not be reached. We need the following results.

Theorem 1. Consider a repeated game, Gr, where G ∈ G[n;k1,k2,...,kn]. The stationary distribution
exists, if and only if,

(i) there exists a µ ∈ Υκ such that

lim
t→∞

Lt = µ1T
κ ; (33)

(ii)

rank(L − Iκ) = κ− 1. (34)
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Remark 8. The existence of stationary distribution µ is only a sufficient condition for a set of ZD
strategies designed by (29) to be available. As pointed by [3], it can be replaced by limt→∞

∑t
k=1 x(k),

which is the same as µ provided µ exists.

Remark 9. To see that permissibility is not enough to ensure (33) and (34), we recall Example 1.
Assume

L1 =

[

p11,1 0 p31,1 0

p11,2 1 p31,2 1

]

, L2 =

[

p12,1 0 p32,1 0

p12,2 1 p32,2 1

]

.

Then it is easy to verify that

L = L1 ∗ L2 =









p11,1p
1
2,1 0 p31,1p

3
2,1 0

p11,1p
1
2,2 0 p31,1p

3
2,2 0

p11,2p
1
2,1 0 p31,2p

3
2,1 0

p11,2p
1
2,2 1 p31,2p

3
2,2 1









∼









p11,1p
1
2,1 p31,1p

3
2,1 0 0

p11,2p
1
2,1 p31,2p

3
2,1 0 0

p11,1p
1
2,2 p31,1p

3
2,2 0 0

p11,2p
1
2,2 p31,2p

3
2,2 1 1









,

where “∼” stands for similar, which is caused by swapping the second row with the third row and
the second column with the third column. Then it is clear that Lt is always similar to a block lower
triangular matrix. Hence, Eq. (33) can never be satisfied. While using (29), by choosing suitable V c

i ,
i = 1, 2 and parameter µ1,1, a permissible set of ZD strategies can easily be constructed, which provides
a counter-example to show permissibility is not enough to ensure availability.

Note that verifying the two conditions in Theorem 1 is not an easy job. Hence we may replace them
with the following one.

Corollary 3. Consider a repeated game, Gr, where G ∈ G[n;k1,k2,...,kn]. Assume the PEE of Gr is (9),
where L is primitive, and then the set of ZD strategies designed by (29) is available.

Remark 10. (i) Even though primitivity of L is only a sufficient condition, it is almost necessary
because only a zero-measure set of L may not be primitive. That is, if L is not primitive then there must
be some (r, i, j) with pri,j ∈ B. So the designer, who intends to use ZD strategies, is better to avoid using
such values.

(ii) Any player cannot unilaterally make the conditions in Theorem 1 satisfied. It depends on other
players’ strategies. What the player i can do is to do its best, that is, to ensure its designed rows, ξi,j , j =
1, 2, . . . , ki are linearly independent. (A Chinese idiom says that “Mou Shi Zai Ren, Cheng Shi Zai Tian”
(Man proposes, God disposes).) That is the situation for a ZD strategy designer.

3.2 Numerical examples

In the following, we discuss some numerical examples.

Example 2. Consider a G ∈ G[3;2,3,2]. Since k1 = 2, k2 = 3, and k3 = 2, using (24), it is easy to
calculate that

Φ1,1 = {1, 2, 3, 4, 5, 6},

Φ1,2 = {7, 8, 9, 10, 11, 12},

Φ2,1 = {1, 2, 7, 8},

Φ2,2 = {3, 4, 9, 10},

Φ2,3 = {5, 6, 11, 12},

Φ3,1 = {1, 3, 5, 7, 9, 11},

Φ3,2 = {2, 4, 6, 8, 10, 12}.

ξ1,1 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],

ξ1,2 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],

ξ2,1 = [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0],

ξ2,2 = [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0],

ξ2,3 = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1],

ξ3,1 = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],

ξ3,2 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1].

(35)
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These parameters depend on the type of games; precisely speaking, they depend on the parameters
{n; k1, . . . , kn} only. They are independent of particular games.

(i) Pinning strategy. Assume the payoff vectors are

V c
1 = [−3,−0.5, 6, 9, 8, 7,−4,−4.5, 5, 6.5, 5, 7],

V c
2 = [4,−1,−5, 7.5, 2, 3.5, 8,−4, 5, 8, 9,−2],

V c
3 = [9, 5,−6,−5.5, 5.5, 8, 8.5, 5.5,−0,−3.5, 4.5, 7].

Assume player 2 wants to design pinning strategies that enforce the average payoffs of players 1 and 3
to be

Ec1 = r1 = 4,

Ec2 = r2 = −3.

It may choose µ2,1 = µ2,2 = 0.1 and then set

p2,1 := (0.1) ∗ V c
1 − (0.4) ∗ 1T

12 + ξ2,1

= [0.3, 0.55, 0.2, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.25, 0.1, 0.3],

p2,2 = (0.1) ∗ V c
3 + (0.3) ∗ 1T

12 + ξ2,2

= [0.6, 0.2, 0.1, 0.15, 0.25, 0.5, 0.55, 0.25, 0.7, 0.35, 0.15, 0.4].

(36)

It is ready to verify that the ZD strategies designed in (36) are permissible.

(ii) Extortion strategy. Consider a G ∈ G[3;2,3,2] again. Assume the payoff structure vectors are as
follows:

V c
1 = [16, 11,−4,−8,−2,−10.3, 11.4, 18.5, 1.2,−3,−2.5, 1.5],

V c
2 = [3, 2,−1, 0, 5,−6, 4, 3, 3, 1,−1, 7],

V c
3 = [−2.9, 0, 6.8, 7.1, 2,−9.4,−8.2, 0.4, 4.6, 6.1,−2, 2.3].

Player 2 plans to design an extortion strategy against both players 1 and 3. It may design

Ec2 − r = k1(Ec1 − r),

Ec2 − r = k2(Ec3 − r).

To this end, it needs to design

p2,1 − ξ2,1 = µ1

[
(V c

2 − r1T
12)− k1(V

c
1 − r1T

12)
]
,

p2,3 − ξ2,3 = µ2

[
(V c

2 − r1T
12)− k2(V

c
3 − r1T

12)
]
.

Choosing µ1 = 0.05, µ2 = 0.1, r = 1, k1 = 1.1, k2 = 1.2, it follows that

p2,1 = [0.275, 0.5, 0.175, 0.445, 0.365, 0.2715, 0.178, 0.1375, 0.0890, 0.22, 0.0925, 0.2725],

p2,2 = [0.668, 0.22, 0.104, 0.168, 0.28, 0.548, 0.604, 0.272, 0.768, 0.388, 0.16, 0.444].
(37)

The ZD strategies designed in (37) are also permissible.

Remark 11. (i) In general, designing a set of permissible ZD strategies is not an easy job. To determine
related parameters we need to solve a set of linear inequalities.
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(ii) To verify Lemma 1, we calculate the matrix M = L− Iκ for Example 2 as follows:

M =






























p11,1p
1
2,1p

1
3,1 − 1 p21,1p

2
2,1p

2
3,1 · · · p121,1p

12
2,1p

12
3,1

p11,1p
1
2,1p

1
3,2 p21,1p

2
2,1p

2
3,2 − 1 · · · p121,1p

12
2,1p

12
3,2

p11,1p
1
2,2p

1
3,1 p21,1p

2
2,2p

2
3,1 · · · p121,1p

12
2,2p

12
3,1

p11,1p
1
2,2p

1
3,2 p21,1p

2
2,2p

2
3,2 · · · p121,1p

12
2,2p

12
3,2

p11,1p
1
2,3p

1
3,1 p21,1p

2
2,3p

2
3,1 · · · p121,1p

12
2,3p

12
3,1

p11,1p
1
2,3p

1
3,2 p21,1p

2
2,1p

2
3,2 · · · p121,1p

12
2,1p

12
3,2

p11,2p
1
2,1p

1
3,1 p21,2p

2
2,1p

2
3,1 · · · p121,2p

12
2,1p

12
3,1

p11,2p
1
2,1p

1
3,2 p21,2p

2
2,1p

2
3,2 · · · p121,2p

12
2,1p

12
3,2

p11,2p
1
2,2p

1
3,1 p21,2p

2
2,2p

2
3,1 · · · p121,2p

12
2,2p

12
3,1

p11,2p
1
2,2p

1
3,2 p21,2p

2
2,2p

2
3,2 · · · p121,2p

12
2,2p

12
3,2

p11,2p
1
2,3p

1
3,1 p21,2p

2
2,3p

2
3,1 · · · p121,2p

12
2,3p

12
3,1

p11,2p
1
2,3p

1
3,2 p21,2p

2
2,1p

2
3,2 · · · p121,2p

12
2,1p

12
3,2 − 1






























. (38)

Then it is easy to verify that Φi,j is the row with each component containing pti,j as a factor. Moreover,
a simple calculation shows that Lemma 1 is correct.

(iii) To verify the availability of ZD-strategies in (36), we assume the strategy for player 1 is

p1,1 = [0.2, 0.3, 0.8, 0.7, 0.5, 0.4, 0.7, 0.9, 0.2, 0.2, 0.1, 0.9];

the strategy for player 3 is

p3,1 = [0.15, 0.2, 0.8, 0.85, 0.2, 0.35, 0.7, 0.9, 0.2, 0.15, 0.55, 0.35].

Then the strategy profile dynamics is

x(t+ 1) = Lx(t), t > 0,

where

L =






























0.009 0.033 0.128 0.2975 0.04 0.042 0.098 0.1215 0.004 0.0075 0.0055 0.0945

0.051 0.132 0.032 0.0525 0.16 0.078 0.042 0.0135 0.016 0.0425 0.0045 0.1755

0.018 0.012 0.064 0.0892 0.025 0.07 0.2695 0.2025 0.028 0.0105 0.0083 0.126

0.102 0.048 0.016 0.0158 0.1 0.13 0.1155 0.0225 0.112 0.0595 0.0067 0.234

0.003 0.015 0.448 0.2082 0.035 0.028 0.1225 0.486 0.008 0.012 0.0413 0.0945

0.017 0.06 0.112 0.0367 0.14 0.052 0.0525 0.054 0.032 0.068 0.0338 0.1755

0.036 0.077 0.032 0.1275 0.04 0.063 0.042 0.0135 0.016 0.03 0.0495 0.0105

0.204 0.308 0.008 0.0225 0.16 0.117 0.018 0.0015 0.064 0.17 0.0405 0.0195

0.072 0.028 0.016 0.0383 0.025 0.105 0.1155 0.0225 0.112 0.0420 0.0743 0.014

0.408 0.112 0.004 0.0068 0.1 0.195 0.0495 0.0025 0.448 0.238 0.0607 0.0260

0.012 0.035 0.112 0.0893 0.035 0.042 0.0525 0.054 0.032 0.048 0.3713 0.0105

0.068 0.14 0.028 0.0158 0.14 0.078 0.0225 0.006 0.128 0.272 0.3037 0.0195






























.

It is easy to verify that
rank(L− I12) = 11.

Moreover, we also have that
lim
t→∞

Lt = u1T
12,

where
u = [0.0731, 0.075, 0.0715, 0.082, 0.126, 0.0775, 0.0434,

0.1002, 0.0475, 0.1278, 0.0683, 0.1077]T,

which is the normalized eigenvector of L with respect to its (unique) eigenvalue 1.
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4 Application to NRGs

This section considers how to design ZD strategies for a player, i, in an NRG. We propose a method,
called an FOP.

4.1 FOP

Definition 5 ([27]). An NRG is a triple ((N,E), G,Π), where (N,E) is a network graph; N is the set of
players; G ∈ G[2;k,k] is a symmetric game with two players, called the fundamental network game; Π is the
strategy updating rule, which describes how each player to update its strategies using its neighborhood
information.

Remark 12. (i) G ∈ G[2;k,k] is symmetric, if S1 = S2 := S0 and for any x, y ∈ S0,

c1(x, y) = c2(y, x).

(ii) If (i, j) ∈ E, then players i and j will play game G repeatedly. In this paper, only the fixed graph
is considered. Since G is symmetric, then the order of two players does not affect the result.

(iii) Such an NRG is denoted by Gnr = ((N,E), G,Π).

Let player i ∈ N , and deg(i) = d. Then it may consider N\{i} as one player, called the FOP of i,
denoted by p−i. Assuming |S0| = k, the neighbors’ strategies can be considered as the strategies of p−i.
That is, p−i has totally kd strategies.

In fact, we do not need to distinct different neighbors; hence if S0 = {s1, s2, . . . , sk}, then the set of
strategies of p−i, denoted by S−i, is

S−i = {s1s1 · · · s1
︸ ︷︷ ︸

d

, s1s1 · · · s2
︸ ︷︷ ︸

d

, . . . , sksk · · · sk
︸ ︷︷ ︸

d

}. (39)

Each s∗ ∈ S−i can be expressed as

s∗ = (s1s1 · · · s1
︸ ︷︷ ︸

d1

, s2s2 · · · s2
︸ ︷︷ ︸

d2

, . . . , sksk · · · sk
︸ ︷︷ ︸

dk

),

where di > 0 and d1 + d2 + · · · + dk = d. Hence, we can also express s∗ using (d1, d2, . . . , dk), which
means sj has been used by dj neighbors, 1 6 j 6 k. Using this notation, we have

S−i =






(d1, d2, . . . , dk) | dj > 0, ∀j;

k∑

j=1

dj = d






. (40)

It is easy to verify that defining the strategies of p−i in this way, by ignoring the order of neighbors,
the total number of strategies is reduced from kd to

|S−i| =
(k + d− 1)!

(k − 1)!d!
.

Hence this treatment reduces the computational complexity.
From the point of view of player i, the NRG is equivalent to a game between it and p−i, who has the

set of strategies S−i defined by (40). Let s∗ = (d1, d2, . . . , dk) ∈ S−i. Then the payoff functions for ci
and player p−i, denoted by c−i, are

ci(xi, s∗) =
k∑

j=1

djci(xi, sj),

c−i(xi, s∗) =
k∑

j=1

djcj(xi, sj).

(41)

Note that the FOP formulation is particularly suitable for using ZD strategies because it is not affected
by the structure and size of the network graph, even though the size might be ∞. As long as the
stationary distribution of the overall network exists, ZD strategies are still applicable. Moreover, it is
easily designable.



Cheng D Z, et al. Sci China Inf Sci October 2024, Vol. 67, Iss. 10, 202201:13

Table 1 Payoff bi-matrix of prisoner’s dilemma

P1\P2 C D

C R, R S, T

D T, S P, P

Figure 1 Networked prisoners’ dilemma.

4.2 ZD strategies for NRGs

This subsection considers how to design ZD strategies for NRGs. We describe the process through two
examples.

Example 3. Consider prisoner’s dilemma G. The two strategies for both players are cooperation (C)
and defect (D). Their payoffs are described in Table 1, where, as a convention, T > R > P > S.

Consider a networked repeated prisoners’ dilemma, denoted by Gnr. The network graph, depicted by
Figure 1, is non-homogeneous.

(1) Consider player A. Since deg(A) = 2, the set of strategies of p−A is

S−A = {(CC), (CD), (DD)}.

Using (41), the payoff vectors for cA and c−A are, respectively,

V c
A = (2R,R+ S, 2S, 2T, T + P, 2P ),

V c
−A = (2R,R+ T, 2T, 2S, S + P, 2P ).

It is easy to calculate that κ = 6, and

Φ1,1 = {1, 2, 3}, ξ1,1 = (1, 1, 1, 0, 0, 0).

• Pinning strategy. To get Ec−A = r, the ZD strategy of player A can be designed as

(p11,1, p
2
1,1, . . . , p

6
1,1) = µ(V c

−A − r1T
6 )− ξ1,1.

• Extortion strategy. To get EcA − r = ℓ(Ec−A − r) with ℓ > 1, the ZD strategy of player A can be
designed as

(p11,1, p
2
1,1, . . . , p

6
1,1) = µ

(
(V c

A − r1T
6 )− ℓ(V c

−A − r1T
6 )

)
− ξ1,1.

(2) Consider player B. Since deg(B) = 3, the set of strategies of p−B is

S−B = {(CCC), (CCD), (CDD), (DDD)}.
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Figure 2 Cycle ring graph.

Using (41), the payoff vectors for cB and c−B are, respectively,

V c
B = (3R, 2R+ S,R+ 2S, 3S, 3T, 2T + P, T + 2P, 3P ),

V c
−B = (3R, 2R+ T,R+ 2T, 3T, 3S, 2S+ P, S + 2P, 3P ).

We have κ = 8 and

Φ1,1 = {1, 2, 3, 4}, ξ1,1 = (1, 1, 1, 1, 0, 0, 0, 0).

The design of ZD strategies is similar to the one for A.

(3) Consider player C. Since deg(C) = 4, the set of strategies of p−C is

S−C = {(CCCC), (CCCD), (CCDD), (CDDD), (DDDD)}.

Using (41), the payoff vectors for cC and c−C are, respectively,

V c
C = (4R, 3R+ S, 2R+ 2S,R+ 3S, 4S, 4T, 3T + P, 2T + 2P, T + 3P, 4P ),

V c
−C = (4R, 3R+ T, 2R+ 2T,R+ 3T, 4T, 4S, 3S + P, 2S + 2P, S + 3P, 4P ).

It is easy to calculate that κ = 10 and

Φ1,1 = {1, 2, 3, 4, 5}, ξ1,1 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0).

The design of ZD strategies is similar to the one for A, or B.

To illustrate the effectiveness of the proposed method for large games, we provide Example 4.

Example 4. Consider a networked repeated prisoners’ dilemma, denoted by Gnr. The network graph,
depicted by Figure 2, is a circular ring with a large number of nodes.

For any given player i, deg(i) = 2. The set of strategies of p−i is

S−i = {(CC), (CD), (DD)}.

Using (41), the payoff vectors for ci and c−i are, respectively,

V c
i = (2R,R+ S, 2S, 2T, T + P, 2P ), V c

−i = (2R,R+ T, 2T, 2S, S + P, 2P ).

It is easy to calculate that κ = 6, and Φ1,1 = {1, 2, 3}, ξ1,1 = (1, 1, 1, 0, 0, 0).

To realize Eci − r = 0.5(Ec−i − r), the ZD strategy of player i can be designed as

(p11,1, p
2
1,1, . . . , p

6
1,1) = µ

[
(V c

i − r1T
6 )− 0.5(V c

−i − r1T
6 )

]
− ξ1,1.
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Remark 13. (i) In the above discussion we only provide the formula for designing ZD strategies. A
problem is: is the solution {pij,k, k ∈ [1, ki]} obtained from the formula permissible? From the designer’s
point of view, it can be seen immediately from the numerical result. As for the theoretical discussion, it
is a challenging problem and is out of the scope of this paper. We refer to [10] for the existence of the
proper solution.

(ii) When an individual player i in an NRG using ZD strategies, it can “manipulate” its immediate
neighbors’ payoffs from it. That is the payoff the rest of the network got from it. Though it is by no
means the player i can manipulate the whole network’s payoffs, from its individual perspective, it might
be enough.

(iii) Under our FOP formulation, the ZD strategies in the NRG are exactly the same as the ones for
non-NRGs.

(iv) The existence of the ZD strategies is not trivial. We refer to [38] for some related discussion.
Further investigation on the existence of ZD strategies for NRGs seems to be necessary and interesting.

5 Conclusion

This paper considers the design of ZD strategies proposed by Press and Dyson for general finite games.
Using STP, a fundamental formula is presented to numerically realize ZD strategies for finite games
with multiply players and asymmetric strategies. In addition to the generality, it simplifies the design
procedure. Then, a necessary and sufficient condition for the availability of the designed ZD strategies
is also obtained, which puts the ZD technique on a solid foundation. Some numerical examples are
presented to demonstrate the efficiency of the method proposed in this paper.

Finally, as an application of the general formula, the NRGs are considered. A new concept, called
FOP, is proposed as the opponent player for a preassigned player i. Using it, the ZD strategies for player
i are designed for the game between itself and its FOP. It is interesting that one single player may be
able to “control” the payoff of the rest part of the network from it by using ZD strategies, no matter how
large the network is.
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Appendix A

(1) Proof of Proposition 3.

(i) Since L has unique eigenvalue 1, rank(M) = κ − 1. Hence there exists at least one (κ − 1) × (κ − 1) miner of M , which is

nonsingular. Hence, M∗ 6= 0. Observing that

MM
∗
= det(M) = 0, (A1)

and rank(M) = κ − 1, it follows that rank(M∗) = 1.

(ii) Assume there exists 1 6 j 6 n such that Colj(M
∗) = 0. Consider M\{Rowj(M)}, which is obtained from M by deleting

its j-th row. Then all its (κ − 1) × (κ − 1) minors have zero determinants. That is, M\{Rowj(M)} is row-dependent.

To get a contradiction, we show that any κ − 1 rows of M are linearly independent. Since
∑κ

i=1
Rowi(M) = 0T

κ , Rowj(M) =

−
∑

i6=j
Rowi(M). If rank(M\{Rowj(M)}) < κ − 1, then rank(M) < κ − 1, which is a contradiction.

(2) Proof of Proposition 4.

First, we show that the limit exists. Since {x(t) | t = 1, 2, . . .} ⊂ Υκ and Υκ is a compact set, there exists a subsequence

{xti
| i = 1, 2, . . .} such that

lim
i→∞

xti
= x∗ ∈ Υκ.

Note that limt→∞ Lt = P , denoted by x0 = Px∗. We claim that

lim
t→∞

xt = x0. (A2)

Given any ǫ > 0, there exists N1 such that when ti > N1,

‖xti
− x∗‖ <

√
ǫ;

and there exists N2 > 0 such that when t > N2,

‖Mt − P‖ <
√
ǫ.

Choose an element ti0 > N1 from the subsequence and set

N3 = ti0 > N1.

Assume t > N2 + N3, and then

x(t) = M
t−N3x(ti0 ).

Since t − N3 > N2 and N3 = ti0 > N1, it follows that

‖x(t) − x0‖ < (
√
ǫ)2 = ǫ.
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Eq. (A2) follows. It is also clear that x0 = x∗. Moreover, Lx∗ = x∗ and Px∗ = x∗. Now since P = uvT ∈ Υκ×κ, without loss of

generality, we can normalize u by replacing u by u/‖u‖. Then v = 1κ. Moreover,

x∗ = Px∗ = uvTx∗ = u.

(3) Proof of Proposition 5.

Note that MM∗ = det(M) = 0, and Mu = 0. Since rank(M) = κ − 1, the solution of equation Mx = 0 is a one-dimensional

subspace. Now each column of M∗ is a solution, the conclusion follows.

(4) Proof of Theorem 1.

(Necessity) It is obvious that µ is a stationary distribution if it satisfies the following equation:

lim
t→∞

Ltx0 = u, ∀x0 ∈ Υκ. (A3)

We first prove limt→∞ Lt exists. Since Υκ×κ is a compact set, if limt→∞ Lt does not exist, there must be at least two subsequences

{Lni}, and {Lmi}, such that

limi→∞ Lni = P1, limi→∞ Lmi = P2,

and P1 6= P2. Say, Cols(P1) 6= Cols(P2), choosing x0 = δsκ, then it violates (A3).

Hence we have the decomposition

lim
t→∞

L
t
= P.

Again, because of (A3), P should have the form that P = [u, u, . . . , u]. The conclusion is obvious.

As for the condition (ii), if rank(L− Iκ) < κ− 1, then M∗ = 0 is a zero matrix. Then Eq. (28) fails. Hence Eq. (28) can never

be obtained from (29), and ZD strategies do not work.

(Sufficiency) Replacing any row s ∈ Φi,j of matrix M = L − Iκ by ξi,j , then condition (ii) ensures (22). Using (29) and

expanding the determinant via the replaced row, Eq. (28) follows.
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