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Abstract In crowdsourcing scenarios, we can hire crowd workers to label crowdsourced tasks and then use

label integration algorithms to infer the integrated label for each instance in the tasks. As more and more

label integration algorithms are proposed, the performance of inference based only on the information of the

inferred instance gradually converges. Recent algorithms attempt to exploit the information of the inferred

instance’s nearest neighbors to infer and achieve good performance. However, when crowdsourced tasks

are class-imbalanced, negative instances are more easily to occur in the nearest neighbors because negative

instances are the majority, and thus recent algorithms are more easily biased toward the negative class. To

this end, in this paper, we propose a novel label integration algorithm called farthest-nearest neighbor-based

weighted voting (FNNWV) for class-imbalanced crowdsourcing. Specifically, FNNWV considers the nearest

neighbors to be more similar to the inferred instance and thus uses them to vote ayes in weighted voting. Yet

at the same time, FNNWV considers the farthest neighbors to be more different from the inferred instance

and thus uses them to vote nays in weighted voting. Since negative instances are easier to occur in both the

nearest neighbors and the farthest neighbors, FNNWV weakens the effect of negative instances by voting

ayes and nays. The experimental results on 22 simulated and one real-world crowdsourced datasets show

that FNNWV significantly outperforms all the other state-of-the-art competitors.

Keywords crowdsourcing, label integration, nearest neighbor, farthest neighbor, weighted voting

1 Introduction

The classification task [1] is one of the most common tasks in supervised learning and is widely distributed
in reality. To handle classification tasks, we usually train classifiers based on the labeled data, and then
use classifiers to predict unknown labels for instances to be classified [2]. Therefore, the performance of
classifiers is influenced by the quality of labeled data [3,4]. At the same time, with the development of deep
learning, classifiers’ demand for the scale and quality of labeled data has increased accordingly. However,
it is hard to obtain high-quality labeled data on a large scale in reality [5–7]. At the root, traditional
approaches usually rely on domain experts or well-trained workers to label classification tasks, which is
expensive and time-consuming [8, 9].

Fortunately, the emergence of crowdsourcing has turned this trouble for the better [10, 11]. In crowd-
sourcing scenarios, through crowdsourcing platforms such as Crowdflower, Clickworker, and Amazon
Mechanical Turk (AMT), employers can publish unlabeled classification tasks and hire crowd workers
to label these tasks [12, 13]. Because crowd workers are easy to hire and inexpensive, crowdsourcing
is more cost-effective and efficient than traditional approaches. However, since the expertise of crowd
workers tends to be poorer than that of domain experts, labels assigned by crowd workers are usually
noisy [14,15]. To reduce the impact of noisy labels on the quality of trained classifiers, employers usually
hire multiple crowd workers to label each instance in classification tasks, which is also known as repeated
labeling [16]. After repeated labeling, employers can get a multiple noisy label set for each instance,
and then they can infer an integrated label for each instance from its multiple noisy label set by label
integration [17–19].
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Nowadays, a large number of label integration algorithms have been proposed. Among them, the sim-
plest but usually effective algorithm is majority voting (MV) [16]. At first, similar to MV, label integration
algorithms make inferences based only on the information of the inferred instance [20,21]. However, due
to the inferred instance itself only containing little information, the performance of inference gradually
converges as more and more label integration algorithms are proposed. Recently, inspired by K-nearest
neighbor (KNN), scholars have proposed some new label integration algorithms [22,23]. These algorithms
exploit the information of the inferred instance’s nearest neighbors to infer and achieve good performance.
However, this leads to an unattended problem: when crowdsourced tasks are class-imbalanced, negative
instances are more easily to occur in the nearest neighbors because negative instances are the majority,
and thus recent algorithms are more easily biased toward the negative class.

To this end, we propose a novel label integration algorithm called farthest-nearest neighbor-based
weighted voting (FNNWV) for class-imbalanced crowdsourcing. Specifically, FNNWV considers the
nearest neighbors to be more similar to the inferred instance and thus uses the nearest neighbors to
vote ayes in weighted voting. Yet at the same time, FNNWV considers the farthest neighbors to be
more different from the inferred instance and thus uses the farthest neighbors to vote nays in weighted
voting. Since negative instances are easier to occur in both the nearest neighbors and the farthest
neighbors, FNNWV weakens the effect of negative instances by voting ayes and nays. To sum up, the
main contributions of this paper include:

(1) We theoretically demonstrate the shortcomings of recent label integration algorithms in the face of
class-imbalanced crowdsourcing and analyze the reasons for these shortcomings.

(2) We propose a novel neighbor query strategy called farthest-nearest neighbor (FNN) for class-
imbalanced crowdsourcing. Different from KNN, FNN queries both the nearest neighbors and the farthest
neighbors for each instance.

(3) We combine FNN and weighted voting to propose a novel label integration algorithm called FN-
NWV. FNNWV achieves good performance in class-imbalanced crowdsourcing by exploiting the infor-
mation from both the nearest neighbors and the farthest neighbors when inferring the integrated label
for each instance.

The rest of this paper is organized as follows. Section 2 introduces the related work on label integration.
Section 3 demonstrates the shortcomings of recent label integration algorithms. Section 4 describes the
proposed FNNWV in detail. Section 5 reports the experiments and results on simulated and real-world
datasets. Section 6 summarizes this paper and outlines the research directions for future work.

2 Related work

In this section, we introduce existing state-of-the-art label integration algorithms and divide them into
two categories based on whether they exploit the information of the inferred instance’s nearest neighbors.

The first category of label integration algorithms does not exploit the information of the inferred
instance’s nearest neighbors. Li et al. [20] proposed iterative weighted majority voting (IWMV), which
introduces workers’ label quality for MV and iteratively estimates integrated labels and the label quality
of workers. Karger et al. [24] proposed KOS (Karger, Oh, and Shah), which estimates integrated labels
and the label quality of workers by belief propagation and low-rank matrix approximation. Zhang et
al. [21] proposed a positive label frequency threshold (PLAT), which be used to handle the imbalanced
labeling by modeling the decision thresholds. Yin et al. [25] proposed a label-aware autoencoder (LAA),
which learns the relationship between multiple noisy label sets and integrated labels by minimizing the
objective function of autoencoders. Tian et al. [26] proposed max-margin MV (M3V), which is inspired
by a support vector machine (SVM) and maximizes the margin directly to infer the most likely class. Li
et al. [27] proposed a Bayesian algorithm called enhanced Bayesian classifier combination (EBCC), which
learns the correlation between different workers by Bayesian inference. Tao et al. [28] proposed a labeling
function weighted majority voting (LFWMV), which treats labels assigned by all workers as the target
domain and labels assigned by each worker separately as the source domain and then learns the label
quality of workers by multiple-domain adaptation. Sheng et al. [29] proposed four soft MV algorithms,
which improve the model quality of MV using the label distribution generated by MV. Yang et al. [30]
proposed decision tree-based weighted majority voting (DTWMV), which uses workers’ labels to grow
trees and then uses the depth of workers in trees to estimate the label quality of workers.

As more and more label integration algorithms are proposed, the performance of inference based only
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on the information of the inferred instance gradually converges. Scholars have gradually realized that
the inferred instance itself only contains little information. Inspired by KNN, they proposed the second
category of label integration algorithms, which exploit the information of the inferred instance’s nearest
neighbors to infer and achieve good performance. Recently, Jiang et al. [23] proposed multiple noisy
label distribution propagation (MNLDP). MNLDP first calculates the label distribution of each instance.
Then, MNLDP finds the nearest neighbors for the inferred instance in the attribute space and optimizes
the weights of the nearest neighbors of the inferred instance by the locally linear embedding. Finally,
MNLDP uses label propagation to combine the label distributions of the inferred instance and its nearest
neighbors and infers the integrated label for the inferred instance accordingly. Chen et al. [22] proposed
label augmented and weighted majority voting (LAWMV). LAWMV first finds the nearest neighbors
for the inferred instance in the attribute space and then calculates the weights of the nearest neighbors
based on the distance and label similarity between the inferred instance and its nearest neighbors. Finally,
LAWMV augments the noisy labels of the nearest neighbors to the multiple noisy label set of the inferred
instance based on the weights and infers the integrated label by weighted voting.

The second category of algorithms significantly improves the performance of label integration compared
to the first category of algorithms. However, the second category of algorithms still has some shortcom-
ings. In Section 3, we will prove that these label integration algorithms that exploit the information of the
inferred instance’s nearest neighbors are more easily biased toward the negative class in class-imbalanced
crowdsourcing.

3 Problem analysis

In this section, we first introduce some notations to define the class-imbalanced crowdsourcing. Then, we
theoretically analyze the shortcomings of recent label integration algorithms when facing class-imbalanced
crowdsourcing. Finally, we indicate the reasons why traditional class-imbalanced algorithms cannot be
directly applied in class-imbalanced crowdsourcing.

3.1 Class-imbalanced crowdsourcing

In this paper, we only discuss the class imbalance of binary classification. Given a crowdsourced task
consisting of a set of unlabeled instances {xi}

N
i=1, where each instance xi has an unknown true label yi

and yi ∈ {−1,+1}, N is the number of instances. For convenience, we let “−1” denote the negative class
and “+1” denote the positive class. We can define the imbalance ratio τ as follows:

τ =

∑N

i=1 δ(yi,−1)
∑N

i=1 δ(yi,+1)
, (1)

where δ(·) is an indicator function that outputs 1 if its two parameters are identical, and 0 otherwise. In
class-imbalanced crowdsourcing, negative instances are usually the majority and positive instances are
usually the minority. Therefore, when τ is significantly larger than 1, the crowdsourced task is class-
imbalanced. Although τ is unknown due to yi being unknown, class-imbalanced crowdsourced tasks
naturally exist.

Further, a set of crowd workers {ur}
R
r=1 can be hired to label the class-imbalanced crowdsourced task,

where ur is the r-th worker, and R is the number of workers. After repeated labeling, we can obtain a
multiple noisy label set Li = {lir}

R
r=1 for each instance xi, where lir is the label of xi assigned by the

worker ur and lir takes a value from the set {−1, 0,+1}. Here, lir = 0 denotes that ur does not label
xi. Finally, we can obtain a class-imbalanced crowdsourced dataset D = {(xi,Li)}

N
i=1. According to D,

we can then infer an integrated label ŷi for the instance xi in the crowdsourced task by label integration
algorithms, and ŷi is expected to be identical to the unknown true label yi.

3.2 Shortcomings of recent label integration algorithms

Now, we can analyze the prior probability that xi belongs to each class. Given xi, we denote the prior
probability that xi belongs to the positive class by p(+1|xi) and the prior probability that xi belongs to
the negative class by p(−1|xi). According to the definition of τ , p(+1|xi) and p(−1|xi) should satisfy
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Figure 1 (Color online) Relationship between the sum of probabilities p̃, the ratio τ and the number of instances 2t + 1. When

τ is fixed (larger than 1), the larger t is, the closer p̃ is to 1. When t is fixed, the larger τ is, the closer p̃ is to 1.

the following equations:






p(+1|xi) + p(−1|xi) = 1,

p(−1|xi)

p(+1|xi)
= τ.

(2)

Ultimately, we can get










p(+1|xi) =
1

1 + τ
,

p(−1|xi) =
τ

1 + τ
.

(3)

Based on the previous discussion, due to xi itself only containing little information, recent label
integration algorithms attempt to exploit the information of xi’s nearest neighbors when inferring the
integration label ŷi for xi. We assume that a specific label integration algorithm exploits the information
from 2t + 1 instances when inferring the integrated label for xi, and then the probability p̃ can be
calculated using the Bernoulli model as follows:

p̃ =

t
∑

i=0

(

2t+ 1

i

)

p(+1|xi)
i
∗ p(−1|xi)

2t+1−i

=

t
∑

i=0

(

2t+ 1

i

)

τ2t+1−i

(1 + τ)
2t+1 , (4)

where p̃ is the sum of the probabilities of having more negative instances than positive ones in 2t + 1
instances.

Now, according to (4), we can analyze the relationship of p̃ with τ and t, and we show the relationship
in Figure 1. From Figure 1, we can obtain two conclusions: (i) when τ is fixed (larger than 1), the larger
t is, the closer p̃ is to 1; (ii) when t is fixed, the larger τ is, the closer p̃ is to 1. These conclusions
indicate that in class-imbalanced crowdsourcing, the larger τ , or the more instances exploited to infer the
integrated label for xi, the more likely that there will be more negative instances than positive ones in
exploited instances. Therefore, since recent label integration algorithms rarely consider class imbalance,
they are more easily biased toward the negative class when inferring integrated label for xi.

3.3 Limitations of traditional class-imbalanced algorithms

Based on the above analysis, recent label integration algorithms have shortcomings when facing class-
imbalanced crowdsourcing. To this end, a strategy that readily comes to mind is to introduce traditional
class-imbalanced algorithms from supervised learning into recent algorithms to improve the performance
of these algorithms in class-imbalanced crowdsourcing. Referring to [31], traditional class-imbalanced
algorithms can be broadly classified into three categories, including undersampling, oversampling and
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Figure 2 (Color online) Basic idea of FNNWV. (a) Exploiting the nearest neighbors directly without considering class imbalance

leads to label integration algorithms that are more easily biased toward the negative class in class-imbalanced crowdsourcing (case1).

(b) FNNWV considers the nearest neighbors to be more similar to the inferred instance and thus uses them to vote ayes in weighted

voting. Meanwhile, FNNWV considers the farthest neighbors to be more different from the inferred instance and thus uses them to

vote nays in weighted voting (case2). (c) In addition, some instances can be accurately inferred based only on the nearest neighbors,

and FNNWV does not need to introduce the farthest neighbors for these instances (case3).

threshold-moving. All three categories of algorithms need to estimate τ based on training datasets to
achieve rebalance.

However, in class-imbalanced crowdsourcing, we do not have accurately labeled training datasets for
learning. Each instance in a crowdsourced dataset only contains a multiple noisy label set. This makes
it difficult to estimate τ precisely. Therefore, most of the traditional class-imbalanced algorithms cannot
be directly applied to class-imbalanced crowdsourcing. This again indicates the importance of designing
effective label integration algorithms for class-imbalanced crowdsourcing.

4 Proposed algorithm

4.1 Motivation

Based on the above discussion, we want to propose a novel label integration algorithm that can be applied
effectively to class-imbalanced crowdsourcing. For this purpose, the core problem we have to solve is how
to ensure that our algorithm is sufficiently accurate and not biased toward the negative class.

At first, to obtain more valuable label information, inspired by [22], we still try to exploit the label
information from neighbors of xi when inferring the integrated label for xi. However, as we discussed
in Section 3, exploiting the nearest neighbors directly without considering class imbalance leads to label
integration algorithms that are more easily biased toward the negative class in class-imbalanced crowd-
sourcing. Specifically, we use Figure 2(a) to demonstrate this phenomenon. As shown in Figure 2(a), we
try to find five nearest neighbors for unknown positive instance xi. Among these neighbors, there are
two positive instances (circles) that are similar to xi and three negative instances (pentagons) that are
different from xi but easier to occur. At this point, with MV, the positive class gets two votes and the
negative class gets three votes, so xi is inferred to be a negative instance.

Then, to avoid this phenomenon, we propose a new neighbor query strategy called FNN. We ar-
gue that if the assumption that closer instances are more similar holds, then it equally means that
farther instances are more different. So in FNN, we query both the nearest neighbors and the far-
thest neighbors for xi. On the one hand, the nearest neighbors can be used to vote ayes to infer the
class to which xi is most likely to belong. On the other hand, the farthest neighbors can be used
to vote nays to exclude the class to which xi is least likely to belong. After that, we can combine
the results of the nearest and farthest neighbors to infer the integrated label of xi. As shown in Fig-
ure 2(b), with FNN, we try to find five nearest neighbors and five farthest neighbors for unknown positive
instance xi. Among the nearest neighbors, the positive class gets two votes and the negative class gets
three votes. Among the farthest neighbors, the negative class loses five votes. In the end, the positive
class gets two votes and the negative class gets minus two votes, so xi is inferred to be a positive instance.
Notably, negative instances are easier to occur in both the nearest neighbors and the farthest neighbors.
Since the nearest neighbors vote ayes and the farthest neighbors vote nays, this weakens the effect of
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negative instances in weighted voting.
In addition, not all inferred instances are as shown in Figure 2(b), so we also considered some other

cases. Among these possible cases, the one shown in Figure 2(c) is a special case. In this case, the five
nearest neighbors and the five farthest neighbors of xi are all negative instances. So, in the end, the
positive class gets zero votes and the negative class gets zero votes, which makes it difficult to infer the
integrated label of xi. Therefore, to avoid this case, we first infer the integrated label for xi with the
nearest neighbors. If the votes are significantly different between the positive and negative classes as
in Figure 2(c), this indicates that the integrated label can be accurately inferred based on the nearest
neighbors only, and thus the farthest neighbors are not introduced. Conversely, if the votes are closer
between the positive and negative classes as in Figure 2(b), this indicates that the integrated label cannot
be accurately inferred based on the nearest neighbors only, and then we introduce the farthest neighbors.

Finally, combining all the above analyses, we design a new label integration algorithm called FNNWV
for class-imbalanced crowdsourcing. In FNNWV, we design opposite weighting strategies for the nearest
and farthest neighbors to further ensure the difference between them.

4.2 FNN

Given a crowdsourced dataset D = {(xi,Li)}
N
i=1, assume that the inferred instance xi can be represented

as {xi1, . . . , xim, . . . , xiM}, where M denotes the attribute dimension and xim denotes the m-th attribute
value of xi. First, we need to calculate the distance between instances two by two and sort the distances.
In this paper, the distance metric we use is the heterogeneous Euclidean-overlap metric (HEOM) [32].
HEOM uses normalized Euclidean distance for numerical attributes and overlap distance for nominal
attributes. The distance between two instances xi and xj is given as

d(xi,xj) =

√

√

√

√

M
∑

m=1

dm(xi,xj)2, (5)

where dm(xi,xj) denotes the distance between two instances xi and xj on their m-th attribute (Am),
which can be calculated as follows:

dm(xi,xj) =



















1, if xim or xjm is missing, else

1− δ(xim, xjm), if Am is nominal, else

|xim − xjm|

maxm −minm
,

(6)

where maxm − minm is used to normalize Euclidean distance, maxm and minm denotes the maximum
and minimum values of Am observed from D, respectively.

Then, the nearest neighbors of xi is denoted as {xΘ
i1, . . . ,x

Θ
ik, . . . ,x

Θ
iK}, where the indicator Θ denotes

a nearest neighbor, xΘ
ik denotes the k-th nearest neighbor of xi, K denotes the number of the nearest

neighbors. Similarly, the farthest neighbors of xi is denoted as {xΦ
i1, . . . ,x

Φ
ik, . . . ,x

Φ
iK} and the indicator

Φ denotes a farthest neighbor. In this paper, the number of nearest neighbors and the number of farthest
neighbors are both K. We set K equal to 0.25×N , which remains the same as in [22]. Compared to the
traditional KNN, FNN takes a larger value of K. This is because, in traditional classification datasets, we
can obtain the true label of each instance in the training set, and thus each neighbor in KNN can provide
accurate labeling information. However, in class-imbalanced crowdsourcing datasets, the true label of
each instance is unknown. FNN can only obtain the multiple noisy label set of each neighbor. Therefore,
FNN needs more neighbors to make inferences to weaken the effect of noise. Of course, when K is too
large, it inevitably leads to some unimportant neighbors selected by FNN. To this end, FNNWV weights
each neighbor based on the distance and the label similarity to ensure that less important neighbors
receive a smaller weight in the voting.

4.3 FNNWV

In FNNWV, at first, to ensure the difference between the nearest and farthest neighbors, we weighted
them using the opposite strategy. To a nearest neighbor, the closer it is to xi or the more similar its
multiple noisy label set is to that of xi, the greater its weight should be. But to a farthest neighbor, the
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farther it is to xi or the more different its multiple noisy label set is to that of xi, the greater its weight
should be. Therefore, we calculate the weight wΘ

ik of the nearest neighbor xΘ
ik as follows:

wΘ
ik =

wΘ
ik1 + wΘ

ik2

2
, (7)

where wΘ
ik1 denotes the weight calculated based on the distance and wΘ

ik2 denotes the weight calculated
based on the similarity of the multiple noisy label set. wΘ

ik1 and wΘ
ik2 are calculated as follows:

wΘ
ik1 = 1−

d
(

xi,x
Θ
ik

)

d
(

xi,x
Θ
iK

) , (8)

wΘ
ik2 =











0, if
∑R

r=1(lir 6= 0 ∧ lΘikr 6= 0) = 0,
∑R

r=1 δ
(

lir, l
Θ
ikr

)

∑R

r=1(lir 6= 0 ∧ lΘikr 6= 0)
, otherwise,

(9)

where lΘikr denotes the label assigned by worker ur for the nearest neighbor xΘ
ik. From (8), it is clear that

the smaller the distance between x
Θ
ik and xi, the larger the weight of xΘ

ik. From (9), it is clear that the
more similar multiple noisy label sets of xΘ

ik and xi, the larger the weight of xΘ
ik. Conversely, the weight

wΦ
ik of xΦ

ik can be calculated as follows:

wΦ
ik =

wΦ
ik1 + wΦ

ik2

2
, (10)

where wΦ
ik1 and wΦ

ik2 are calculated as follows:

wΦ
ik1 =

d
(

xi,x
Φ
ik

)

d
(

xi,x
Φ
i1

) , (11)

wΦ
ik2 =











0, if
∑R

r=1(lir 6= 0 ∧ lΦikr 6= 0) = 0,

1−

∑R

r=1 δ
(

lir, l
Φ
ikr

)

∑R

r=1(lir 6= 0 ∧ lΦikr 6= 0)
, otherwise.

(12)

From (11), it is clear that the larger the distance between x
Φ
ik and xi, the larger the weight of xΦ

ik. From
(12), it is clear that the more different multiple noisy label sets of xΦ

ik and xi, the larger the weight of
x
Θ
ik.
Then, we exploit the nearest neighbors to complete the weighted voting and calculate the normalized

difference ndxi
in votes between the positive and negative classes as follows:

ndxi
=

∣

∣

∑K

k=1

∑R

r=1 w
Θ
ik ∗ δ

(

lΘikr ,+1
)

−
∑K

k=1

∑R

r=1w
Θ
ik ∗ δ

(

lΘikr ,−1
)
∣

∣

∑K

k=1

∑R

r=1 w
Θ
ik ∗ δ

(

lΘikr ,+1
)

+
∑K

k=1

∑R

r=1w
Θ
ik ∗ δ

(

lΘikr ,−1
)

. (13)

The smaller the normalized difference ndxi
, the more likely xi is to satisfy the case shown in Figure 2(b).

Conversely, it indicates that the more likely xi is to satisfy the case shown in Figure 2(c). Therefore,
in this paper, if the normalized difference ndxi

is larger than the predefined threshold α, we skip the
farthest neighbors and infer the integrated label for xi as follows:

ŷi = argmax
c∈{−1,+1}

K
∑

k=1

R
∑

r=1

wΘ
ik ∗ δ(lΘikr , c). (14)

Otherwise, we need to introduce the farthest neighbors to infer the integrated label as follows:

ŷi = argmax
c∈{−1,+1}

K
∑

k=1

R
∑

r=1

wΘ
ik ∗ δ(lΘikr , c)−

K
∑

k=1

R
∑

r=1

wΦ
ik ∗ δ(lΦikr , c). (15)

To summarize the above steps, the overall framework of FNNWV is defined in Figure 3. Based on this
overall framework, we design a more detailed algorithmic process for FNNWV, which is summarized in
Algorithm 1.
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Figure 3 (Color online) Overall framework of FNNWV. Given an inferred instance, FNNWV first queries its nearest neighbors

based on distance. Then FNNWV determines whether the normalized difference calculated according to the nearest neighbors

exceeds the predefined parameter. If not exceeded, FNNWV queries the farthest neighbor of the inferred instance. Finally,

according to queried neighbors, FNNWV infers the integrated label of the inferred instance by weighted MV.

Algorithm 1 FNNWV

Input: D = {(xi,Li)}
N
i=1

is a crowdsourced dataset; α is a predefined parameter.

Output: {ŷi}
N
i=1

are integrated labels.

1: for i = 1 to N do

2: for j = 1 to N do

3: Calculate the distance d(xi,xj) by (5);

4: end for

5: Sort the distances in ascending order;

6: Find K nearest neighbors {xΘ

ik}
K
k=1

for xi;

7: for k = 1 to K do

8: Calculate the weight wΘ

ik for x
Θ

ik by (7);

9: end for

10: Calculate the normalized difference ndxi
for xi by (13);

11: if ndxi
> α then

12: Infer the integrated label ŷi for xi by (14);

13: else

14: Find K farthest neighbors {xΦ

ik}
K
k=1

for xi;

15: for k = 1 to K do

16: Calculate the weight wΦ

ik for x
Φ

ik by (10);

17: end for

18: Infer the integrated label ŷi for xi by (15);

19: end if

20: end for

21: Return {ŷi}
N
i=1

.

4.4 Time complexity analysis

As shown in Algorithm 1, FNNWV can be divided into three main parts. First, lines 2–9 find the
nearest neighbors for xi by FNN and calculate weights for the nearest neighbors. Among them, the
time complexity of calculating distances is O(MN). The time complexity of sorting the distances is
O(N logN). The time complexity of calculating weights is O(KR). So the time complexity of lines 2–9
is O(N(M + logN) +KR). Then, line 10 calculates the normalized difference ndxi

for xi and the time
complexity of (13) is O(KR). Finally, lines 11–19 infer the integrated label for xi by weighted voting.
Among them, line 12 infers the integrated label ŷi for xi by (14) and the time complexity is O(KR).
Lines 14–18 infer the integrated label ŷi for xi by (15) and the time complexity is O(KR). Therefore, for
each instance xi, the time complexity is O(N(M + logN)+KR), and thus the whole time complexity of
FNNWV is O(N2(M + logN) +NKR). If only the highest order terms are taken, the time complexity
of FNNWV is O(N2(M + logN)).

5 Experimental results and analysis

The purpose of this section is to validate the effectiveness of our proposed FNNWV. For this purpose,
we conduct a series of experiments on simulated and real-world class-imbalanced crowdsourced datasets
on the crowd environment and its knowledge analysis (CEKA) [33] platform. In this section, we first
illustrate our experimental settings, including the selection of comparison algorithms and the parameter
settings of these algorithms. Then, we present the experimental results on simulated class-imbalanced
crowdsourced datasets in terms of the F1-score. The F1-score reflects both the precision and recall of
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algorithms in inferring integrated labels. Next, we validate the effectiveness of FNNWV again on a real-
world class-imbalanced crowdsourced dataset. Furthermore, with this real-world dataset, we construct
an ablation experiment to validate the effectiveness of each part of our FNNWV. Finally, we discuss the
advantages and disadvantages of FNNWV in light of the full experimental results.

5.1 Experimental setup

In our experiments, we compare FNNWV with five state-of-the-art label integration algorithms, including
MV, IWMV, PLAT, MNLDP, and LAWMV. Among them, MV is the baseline. IWMV and PLAT are
the classical label integration algorithms, which do not exploit the information of the inferred instance’s
nearest neighbors. MNLDP and LAWMV are the recent label integration algorithms, which exploit the
information of the inferred instance’s nearest neighbors. Moreover, PLAT is similar to FNNWV in that
it discusses imbalance, although it discusses imbalanced labeling, whereas FNNWV discusses naturally
class-imbalanced crowdsourcing. The brief descriptions and parameter settings of all these six algorithms
are introduced as follows:

• MV [16] is the simplest label integration algorithm, which votes equally using labels of each instance
assigned by workers. We use the existing implementation of MV on the CEKA platform.

• IWMV [20] iteratively infers integrated labels of instances and estimates the label qualities of
workers. We implement IWMV on the CEKA platform and set the number of iterations to 50, which is
recommended in the corresponding paper.

• PLAT [21] counts the frequencies of positive and negative labels and estimates the decision threshold
based on these frequencies. We use the existing implementation of PLAT on the CEKA platform.

• MNLDP [23] calculates the weights of nearest neighbors using locally linear embedding and iter-
atively absorbs the label distributions of neighbors through label propagation. We implement MNLDP
on the CEKA platform and set the number of nearest neighbors, the hyper-parameter η, the number of
iterations to 5, 0.5, 20, respectively, which are recommended in the corresponding paper.

• LAWMV [22] weights nearest neighbors of each instance and augments neighbors’ labels to the
multiple noisy label set of this instance. We implement LAWMV on the CEKA platform and set the
hyper-parameter b to 0.5, which is recommended in the corresponding paper.

• FNNWV calculates the weights of the nearest and farthest neighbors of each instance, respectively,
and then infers the integrated label for each instance by weighted voting. We implement FNNWV on the
CEKA platform and set the predefined parameter α to 0.1.

5.2 Experiments on simulated datasets

Simulation process. In this subsection, we conduct our experiments on the whole 22 class-imbalanced
datasets with the imbalance ratio between 1.5 and 9 published by the knowledge extraction based on
evolutionary learning (KEEL) platform1). Table 1 shows the details of these datasets that represent a
wide range of domains and data characteristics. First, we hide the labels of each class-imbalanced dataset
and treat it as a class-imbalanced crowdsourced task. Then, we simulate the crowdsourcing process to
obtain the multiple noisy label sets of all instances. Here, we simulate five crowd workers to label the
instances and randomly generate the label quality from a uniform distribution in the interval [0.5, 0.8]
for each worker. The label quality of a worker is the probability that this worker assigns a true label
to an instance in the simulation process. Therefore, the label quality reflects a worker’s labeling ability.
Considering that in reality, the labeling ability of each worker is different, we randomly generate the label
quality for each worker from a uniform distribution. After following this simulated process to obtain
a crowdsourced dataset, we use chosen label integration algorithms to infer integrated labels for the
instances in the crowdsourced dataset. Since the crowdsourced dataset is class-imbalanced, we use the
F1-score as the evaluation metric [34]. Finally, we repeat the experiments ten times independently and
report the averages of results.

Experimental results. Table 2 shows the detailed comparison results in terms of the F1-score.
The highest value on each dataset is highlighted in bold and the averages of these algorithms are sum-
marized at the bottom of the table. Based on these results, we perform the Wilcoxon signed-rank
test [35] to further compare each pair of algorithms. Table 3 summarizes the Wilcoxon test results. In
Table 3, the symbol • indicates that the algorithm in the row significantly outperforms the algorithm

1) https://sci2s.ugr.es/keel/imbalanced.php#sub10.

https://sci2s.ugr.es/keel/imbalanced.php#sub10
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Table 1 Description of 22 class-imbalanced datasets

Dataset #Attributes #Instances Imbalance ratio

ecoli-0 vs 1 7 220 1.86

ecoli1 7 336 3.36

ecoli2 7 336 5.46

ecoli3 7 336 8.6

glass-0-1-2-3 vs 4-5-6 9 214 3.2

glass0 9 214 2.06

glass1 9 214 1.82

glass6 9 214 6.38

haberman 3 306 2.78

iris0 4 150 2

new-thyroid1 5 215 5.14

new-thyroid2 5 215 5.14

page-blocks0 10 5472 8.79

pima 8 768 1.87

segment0 19 2308 6.02

vehicle0 18 846 3.25

vehicle1 18 846 2.9

vehicle2 18 846 2.88

vehicle3 18 846 2.99

wisconsin 9 683 1.86

yeast1 8 1484 2.46

yeast3 8 1484 8.1

in the corresponding column, and the symbol ◦ indicates the exact opposite of that indicated by the
symbol •. The significance levels of the lower and upper diagonals are α = 0.05 and α = 0.1, respectively.
These experimental results verify the effectiveness of our proposed FNNWV, and we can summarize the
following highlights.

• The average F1-score of FNNWV on all datasets is 76.11%, which is much higher than those of
MV (57.74%), IWMV (57.97%), PLAT (57.30%), MNLDP (72.23%), and LAWMV (68.10%). FNNWV
achieves the highest F1-score, which indicates that FNNWV is more effective than other existing label
integration algorithms in class-imbalanced crowdsourcing.

• The average F1-score of PLAT (57.30%) is close to that of MV (57.74%), which indicates that
PLAT cannot handle class-imbalanced crowdsourced datasets very well. Meanwhile, PLAT performs
well in imbalanced labeling but performs poorly in class-imbalanced crowdsourcing, which indicates the
difference between imbalanced labeling and class-imbalanced crowdsourcing.

• Both MNLDP and LAWMV only exploit the information of the nearest neighbors, while FNNWV
exploits the information from both the nearest neighbors and the farthest neighbors. Further, the average
F1-score of MNLDP (72.23%) and LAWMV (68.10%) are higher than that of MV (57.74%) but still
significantly lower than the average F1-score of FNNWV (76.11%), which indicates the effectiveness of
utilizing the information from the farthest neighbors in class-imbalanced crowdsourcing.

• Based on the Wilcoxon test results, FNNWV significantly outperforms all of its competitors in terms
of the F1-score, which strongly validates the effectiveness of FNNWV in class-imbalanced crowdsourcing.

Other distributions. In addition, to verify the effectiveness of FNNWV for different worker label
quality distributions, we construct another group of experiments to compare the F1-score. In new exper-
iments, we randomly generate the label quality from a normal distribution with N(0.65, 0.152) for each
worker. Similar to Tables 2 and 3, Table 4 shows the detailed comparison results for FNNWV versus MV,
IWMV, PLAT, MNLDP, and LAWMV in terms of the F1-score, and Table 5 summarizes the Wilcoxon
test results. The experimental results shown in Tables 4 and 5 also validate the effectiveness of FNNWV
in class-imbalanced crowdsourcing.

5.3 Experiments on real-world dataset

Dataset selection. In this subsection, we conduct our experiments on a real-world crowdsourced dataset
to further validate the effectiveness of FNNWV in real-world class-imbalanced crowdsourcing. We choose
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Table 2 F1-score (%) comparisons on the uniform distribution for FNNWV versus MV, IWMV, PLAT, MNLDP, and LAWMV

Dataset MV IWMV PLAT MNLDP LAWMV FNNWV

ecoli-0 vs 1 70.54 70.54 70.54 90.87 94.33 94.85

ecoli1 61.72 61.72 61.72 76.74 82.17 78.21

ecoli2 57.62 57.62 56.12 83.70 85.43 83.21

ecoli3 43.31 44.04 38.55 60.15 59.74 76.30

glass-0-1-2-3 vs 4-5-6 57.46 58.24 57.46 74.19 82.69 82.43

glass0 67.98 68.63 67.98 74.30 75.09 75.43

glass1 69.73 70.24 69.73 74.30 68.01 72.74

glass6 44.11 44.11 42.76 68.30 71.28 76.04

haberman 62.52 63.01 62.52 55.07 40.32 59.08

iris0 66.50 65.96 66.50 86.26 98.76 99.08

new-thyroid1 50.05 50.84 50.05 77.70 74.31 84.66

newthyroid2 48.34 48.42 48.34 74.87 69.52 82.54

page-blocks0 33.20 33.20 33.20 51.41 16.89 48.66

pima 69.76 69.76 69.76 68.36 65.56 73.45

segment0 52.90 52.90 50.75 76.22 82.07 83.05

vehicle0 62.84 63.75 62.84 82.68 70.38 79.78

vehicle1 59.78 59.78 59.78 62.76 50.22 63.99

vehicle2 59.10 59.10 59.10 78.21 62.42 65.83

vehicle3 55.33 55.33 55.33 58.46 50.10 57.62

wisconsin 68.85 69.02 68.85 85.17 93.26 92.40

yeast1 67.16 67.72 67.16 66.37 62.47 73.77

yeast3 41.53 41.53 41.53 63.06 43.17 71.23

Average 57.74 57.97 57.30 72.23 68.10 76.11

Table 3 F1-score (%) comparisons on the uniform distribution using Wilcoxon tests for FNNWV versus MV, IWMV, PLAT,

MNLDP, and LAWMV

MV IWMV PLAT MNLDP LAWMV FNNWV

MV – ◦ ◦ ◦ ◦

IWMV • – • ◦ ◦ ◦

PLAT ◦ – ◦ ◦ ◦

MNLDP • • • – ◦

LAWMV • • • – ◦

FNNWV • • • • • –

the “NER” dataset [36] as the experimental dataset. The “NER” dataset contains 5985 instances and
27990 multiple noisy labels (assigned by 47 workers from AMT). Among these instances, there are 1203
positive instances and 4782 negative instances, so the “NER” dataset naturally satisfies the character-
istics of class-imbalanced crowdsourcing. In addition, because each instance in the “NER” dataset is a
sentence, we preprocess the “NER” dataset by StringToWordVector to calculate distances easily. After
preprocessing, each instance is represented by a text word vector with 2824 attributes.

F1-score. We first compare the experimental results of FNNWV and its competitors in terms of
F1-score. Figure 4(a) shows the F1-score of six algorithms, including MV, IWMV, PLAT, MNLDP,
LAWMV and FNNWV, on the “NER” dataset. We can see that FNNWV is significantly better than the
other five competitors in terms of the F1-score. Specifically, the F1-score of FNNWV (79.41%) is much
higher than those of MV (73.29%), IWMV (76.36%), PLAT (58.04%), MNLDP (61.62%), and LAWMV
(78.27%). These experimental results validate the effectiveness of FNNWV in real-world class-imbalanced
crowdsourcing.

Running time. Moreover, to verify the efficiency of FNNWV, we also conduct a group of experiments
in terms of the running time. Our experiments are conducted on a Windows 10 machine with an AMD
Athlon(tm) X4 860K Quad Core Processor @ 3.70 GHz and 16 GB of RAM. Figure 4(b) shows the
running time of six algorithms, including MV, IWMV, PLAT, MNLDP, LAWMV, and FNNWV, on the
“NER” dataset. We can see that MV and PLAT have the fastest running time, both under 1 s. MNLDP
has the slowest running time (607.84 s) due to using the optimization tool to estimate the weights. The
difference in running time between LAWMV (306.63 s) and FNNWV (319.08 s) is not significant. These
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Table 4 F1-score (%) comparisons on the normal distribution for FNNWV versus MV, IWMV, PLAT, MNLDP, and LAWMV

Dataset MV IWMV PLAT MNLDP LAWMV FNNWV

ecoli-0 vs 1 64.63 64.82 64.63 85.70 94.22 94.86

ecoli1 65.48 65.83 65.48 82.14 82.41 80.44

ecoli2 52.75 53.65 50.36 76.58 83.61 76.62

ecoli3 33.96 34.27 33.96 50.80 43.11 63.47

glass-0-1-2-3 vs 4-5-6 59.71 60.64 59.71 80.16 83.16 84.31

glass0 70.17 70.52 70.17 75.49 77.89 75.29

glass1 68.84 69.17 68.84 73.00 71.08 70.07

glass6 45.39 45.39 45.39 70.76 74.04 76.88

haberman 60.86 62.00 60.86 52.89 35.15 59.23

iris0 69.63 69.95 69.63 92.60 99.80 99.80

new-thyroid1 49.15 49.33 47.44 73.20 72.54 85.13

newthyroid2 50.48 50.83 50.48 75.27 74.82 82.99

page-blocks0 40.07 40.07 40.07 63.39 12.70 46.26

pima 68.72 68.72 68.72 67.90 65.08 74.31

segment0 46.93 46.93 44.54 67.00 75.59 72.85

vehicle0 60.43 60.43 60.43 78.78 69.39 76.37

vehicle1 62.84 62.84 62.84 63.75 50.48 67.48

vehicle2 62.06 62.06 62.06 85.09 63.38 72.06

vehicle3 60.37 60.68 60.37 61.75 51.15 60.79

wisconsin 72.60 72.60 72.60 90.01 94.23 93.19

yeast1 65.30 65.30 65.30 64.89 61.03 71.23

yeast3 38.99 38.99 36.98 58.54 44.42 65.99

Average 57.70 57.96 57.31 72.26 67.24 74.98

Table 5 F1-score (%) comparisons on the normal distribution using Wilcoxon tests for FNNWV versus MV, IWMV, PLAT,

MNLDP, and LAWMV

MV IWMV PLAT MNLDP LAWMV FNNWV

MV – ◦ ◦ ◦ ◦

IWMV • – • ◦ ◦ ◦

PLAT ◦ – ◦ ◦ ◦

MNLDP • • • – ◦

LAWMV • • • – ◦

FNNWV • • • • • –
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Figure 4 (Color online) (a) F1-score (%) and (b) running time (s) comparisons for FNNWV versus MV, IWMV, PLAT, MNLDP,

and LAWMV on the “NER” dataset.

experimental results validate the efficiency of FNNWV, and FNNWV is on par with label integration
algorithms that exploit the information of the inferred instance’s nearest neighbors.

Ablation experiment. To evaluate the performance of each part in FNNWV, we compare FNNWV
with its three variants. We denote its three variants as FNNWV-0, FNNWV-1, and FNNWV-2. FNNWV-
0 does not exploit the information of the nearest and farthest neighbors, so FNNWV-0 is equivalent to
MV. FNNWV-1 exploits only the information of the nearest neighbors for weighted voting, so FNNWV-1
is equivalent to LAWMV. FNNWV-2 exploits only the information of the farthest neighbors for weighted
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Figure 5 (Color online) (a) F1-score (%) and (b) running time (s) comparisons for FNNWV versus FNNWV-0, FNNWV-1, and

FNNWV-2 on the “NER” dataset.
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Figure 6 (Color online) Average F1-score (%) comparisons for FNNWV versus MV, IWMV, PLAT, MNLDP, and LAWMV when

the imbalance ratio varies from 4 to 9 on the “NER” dataset.

voting. The experimental results in terms of the F1-score and the running time are shown in Figure 5. As
seen from Figure 5(a), the F1-score of FNNWV-1 (78.27%) is higher than that of FNNWV-0 (73.29%),
which indicates the effectiveness of exploiting the information from only the nearest neighbors. The
F1-score of FNNWV-2 (33.47%) is much lower than that of FNNWV-0 (73.29%), which indicates that
the integrated labels cannot be accurately inferred by exploiting the information from only the farthest
neighbors. The F1-score of FNNWV (79.41%) is higher than its three variants, which again indicates the
effectiveness of exploiting the information from both the nearest neighbors and the farthest neighbors.
As seen from Figure 5(b), the running time of FNNWV-0 (0.23 s) is much lower than those of FNNWV-1
(427.54 s), FNNWV-2(446.83 s), and FNNWV(416.91 s). This indicates that the neighbor query is
the main factor affecting the running time of FNNWV. The small difference in running time between
FNNWV-1, FNNWV-2, and FNNWV indicates that whether or not the farthest neighbors are queried
during the neighbor query has little effect on the running time of the algorithm.

Parameter sensitivity analysis. In addition to verifying the effectiveness and efficiency of FNNWV,
the impact of the imbalance ratio on the performance of FNNWV has also received our attention. To
continuously change and increase the imbalance ratio, we randomly remove a certain percentage of positive
instances on the “NER” dataset. In this way, we observe the performance of FNNWV and its competitors
on the “NER” dataset when the imbalance ratio takes values in {4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9}.
To reduce the effect of randomness on the observed results, each experiment with different imbalance
ratios is repeated 10 times. Figure 6 shows the average F1-score of FNNWV and its competitors on
different imbalance ratios. From Figure 6, it can be found that the average F1-score of all algorithms
gradually decreases as the imbalance ratio increases. But in contrast, FNNWV can always achieve the
best performance with the same imbalance ratio conditions. This indicates that the effectiveness of
FNNWV is not sensitive to changes in the imbalance ratio.

5.4 Analysis and discussion

In this paper, we focus on class-imbalanced crowdsourcing and then propose FNNWV, which exploits
the information of the nearest and farthest neighbors for weighted voting. To verify the effectiveness of
FNNWV, we construct extensive experiments based on the simulated and real-world class-imbalanced
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Figure 7 (Color online) Average F1-score (%) comparisons for FNNWV versus MV, IWMV, PLAT, MNLDP, and LAWMV when

the number of workers varies from 2 to 12 on 22 simulated datasets.

Table 6 Description of 13 class-balanced datasets

Dataset #Attributes #Instances Imbalance ratio

balance-scale 0 vs 2 4 576 1

credit-a 15 690 1.25

heart-c 0 vs 1 13 303 1.2

heart-statlog 13 270 1.25

iris 0 vs 1 4 100 1

kr-vs-kp 36 3196 1.09

lymph 1 vs 2 18 142 1.33

mushroom 22 8124 1.07

segment 0 vs 1 19 660 1

sonar 60 208 1.14

vehicle 0 vs 1 18 429 1.02

vowel 0 vs 1 13 180 1

waveform 0 vs 1 40 3345 1.02

crowdsourcing. The above experimental results preliminarily verify the effectiveness of FNNWV. In this
subsection, we will further analyze and discuss the advantages and disadvantages of FNNWV.

Advantages. Experimental results on both simulated experiments and real-world experiments show
that our FNNWV can achieve better performance in class-imbalance crowdsourcing compared to existing
algorithms. This means that in the future, FNNWV is a better choice if we face a naively class-imbalanced
crowdsourced dataset. In addition, compared to algorithms that only exploit the information of the
nearest neighbors (MNLDP and LAWMV), the distances need to be sorted regardless of whether the
information of the farthest neighbors is exploited. Therefore, FNNWV does not significantly increase the
time complexity of the algorithm. Currently, FNNWV only briefly discusses the performance of exploiting
the information from both the nearest neighbors and the farthest neighbors, which means that FNNWV
is very scalable and can be combined with existing excellent algorithms like MNLDP in the future.

In the above simulation experiments, the number of workers is fixed at five. To observe the relationship
between the number of workers and the performance of different label integration algorithms in class-
imbalanced crowdsourcing, we construct a new group of experiments on 22 simulated datasets. In this
group of experiments, the number of workers varies from 2 to 12. Except for the number of workers,
the other experimental settings remain the same as in Simulation process. Figure 7 shows the average
F1-score of FNNWV and its competitors on 22 simulated datasets. From Figure 7, it can be seen that
when the number of workers does not exceed six, FNNWV can achieve the highest average F1-score. This
indicates that FNNWV is more effective in class-imbalanced crowdsourcing when the number of workers
is small and hence can reduce the cost of labeling. When the number of workers exceeds six, FNNWV
can also achieve a higher average F1-score than MV, IWMV, PLAT, and LAWMV. And our FNNWV is
not particularly sensitive to the number of workers.

In addition to class-imbalanced crowdsourcing, to further validate the effectiveness of our algorithm, we
simultaneously observe the performance of FNNWV and its competitors on 13 class-balanced datasets.
The description of these datasets is listed in Table 6. All of these datasets are published by the CEKA
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Table 7 Integration accuracy (%) comparisons for FNNWV versus MV, IWMV, PLAT, MNLDP, and LAWMV on 13 class-

balanced datasets

Dataset MV IWMV PLAT MNLDP LAWMV FNNWV

balance-scale 0 vs 2 79.58 79.90 72.83 92.36 95.38 95.49

credit-a 77.25 77.88 66.13 81.77 88.86 87.12

heart-c 0 vs 1 75.18 75.18 75.18 78.84 86.04 86.53

heart-statlog 74.52 74.78 74.07 80.22 85.26 85.85

iris 0 vs 1 74.50 73.50 71.30 91.60 98.90 99.80

kr-vs-kp 79.02 79.02 79.02 89.70 87.66 87.31

lymph 1 vs 2 74.65 73.66 74.44 80.92 83.87 84.15

mushroom 77.66 77.66 77.66 96.38 93.50 90.87

segment 0 vs 1 73.30 73.30 68.36 85.55 98.74 99.20

sonar 69.28 69.28 65.53 75.00 72.84 73.17

vehicle 0 vs 1 76.97 77.39 70.65 72.28 76.71 75.50

vowel 0 vs 1 73.67 73.67 71.78 87.17 75.89 70.94

waveform 0 vs 1 78.45 78.45 76.35 89.90 93.42 90.74

Average 75.69 75.67 72.56 84.75 87.47 86.67

Table 8 Integration accuracy (%) comparisons using Wilcoxon tests for FNNWV versus MV, IWMV, PLAT, MNLDP, and

LAWMV on 13 class-balanced datasets

MV IWMV PLAT MNLDP LAWMV FNNWV

MV – • ◦ ◦ ◦

IWMV – • ◦ ◦ ◦

PLAT ◦ ◦ – ◦ ◦ ◦

MNLDP • • • – ◦

LAWMV • • • –

FNNWV • • • –

platform. Among these datasets, “credit-a”, “heart-statlog”, “kr-vs-kp”, “mushroom”, and “sonar” are
five natural binary class-balanced datasets, and the other eight datasets are generated by sampling
two classes of instances whose numbers are similar from multi-class datasets. For example, “balance-
scale 0 vs 2” represents a binary class-balanced dataset generated by sampling all instances of class 0
and class 2 from the multi-class dataset “balance-scale”. We use the same simulation process as in
Simulation process for experiments. Similar to other experiments on class-balanced datasets [22], we
use the integration accuracy as the evaluation metric. Table 7 shows the detailed comparison results
for FNNWV versus MV, IWMV, PLAT, MNLDP, and LAWMV in terms of the integration accuracy,
and Table 8 summarizes the Wilcoxon test results. The experimental results shown in Tables 7 and
8 validate the effectiveness of FNNWV in class-balanced crowdsourcing. Therefore, we can see that
FNNWV can not only achieve better results in class-imbalanced crowdsourcing but also be on par with
the state-of-the-art label integration algorithms in class-balanced crowdsourcing.

Disadvantages. According to the experimental results shown in Figure 5, we can find that inferring
from only the farthest neighbors is not effective, but inferring from both the nearest neighbors and the
farthest neighbors achieves good performance. However, as illustrated in Figure 2(c), inferring from both
the nearest neighbors and the farthest neighbors is not always effective. Therefore, the conditions for
using the farthest neighbors should be discussed. In this paper, to keep the algorithm simple, we use a
predefined parameter α as a threshold to decide whether or not to use the farthest neighbors. Currently,
we have empirically fixed α to 0.1. In the future, we can try to improve the performance of FNNWV by
learning an adaptive α through optimization tools. Alternatively, we can develop more research on how
to use the information from the farthest neighbors.

In addition, to simplify the analysis and discussion about class-imbalanced crowdsourcing, this paper
focuses only on binary class-imbalanced crowdsourced tasks. When a class-imbalanced crowdsourced task
is a multi-class classification task, more cases need to be taken into account. For example, in the case
shown in Figure 8, a class-imbalanced crowdsourced task has three classes. As shown in Figure 8, the
five nearest neighbors of unknown positive instance xi contain two positive instances (circles) and three
negative instances (pentagons), and the five farthest neighbors of xi are all another type of negative
instances (hexagons). So, in the end, the positive class denoted by a circle gets two votes, the negative
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Figure 8 (Color online) Special case in multi-class class-imbalanced crowdsourcing.

class denoted by a pentagon gets three votes, and the negative class denoted by a hexagon gets minus
five votes. It can be seen that, even if we introduce the farthest neighbors to multi-class class-imbalanced
crowdsourced tasks, we may still incorrectly infer the integrated label of xi. Therefore, there are still
many challenges in extending FNNWV to multi-class class-imbalanced crowdsourcing.

6 Conclusion and future work

In this paper, we propose a novel label integration algorithm called FNNWV for class-imbalanced crowd-
sourcing. We first demonstrate the shortcomings of recent algorithms in the face of class-imbalanced
crowdsourcing. Then, we explain in detail our motivation and define the algorithmic process for FN-
NWV. Finally, we construct extensive experiments to verify the effectiveness of FNNWV. Experimental
results show that FNNWV can achieve better performance in class-imbalanced crowdsourcing compared
to existing algorithms.

As discussed in previous sections, when our FNNWV infers the integrated label for an instance, it is
important to decide whether or not to use its farthest neighbors. Currently, we use a predefined parameter
α as a threshold to decide, and α is empirically fixed to 0.1. We believe that the use of optimization tools
to learn an adaptive α could further improve the performance of the current FNNWV. This is the main
research direction for our future work. In addition, besides threshold learning, we will also develop more
research on how to use the information from the farthest neighbors.
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