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Appendix A Near-field communication system
The wavefronts of EM waves in the near-field region are spherical waves, so we focus on the Euclidean distance between the user

and the base station (BS) in the three-dimensional space. To simplify the model, we set the positions of BS and user in the same

plane [1]. The near-field system is shown in Figure A1. Assume that the transmit antenna array at BS is a uniform linear array

(ULA) with an antenna spacing of d. Without loss of generality, we position the origin of the coordinate system at the center of

the ULA. Consequently, the coordinates of nth antenna of the ULA is denoted by cn = [nd, 0]T , where n ∈ {−Nt−1
2 , . . . ,

Nt−1
2 }.

Taking the kth user as an example, the distance and the angle from it to the origin is denoted as rk and θk, respectively. Thus,

the coordinates of this user can be represented as rk = [rk cos θk, rk sin θk]
T . Subsequently, the distance from the nth antenna

element to the user k can be given by

r̃k,n(rk, θk, n) = ∥rk − cn∥2 =
√

r2k + n2d2 − 2rknd cos θk. (A1)

Furthermore, within the near-field Fresnel region, i.e., 1.2D 6 r 6 2D2

λ , where D = (Nt − 1)d denotes the aperture of antenna,

the channel gain of all links to the kth user can be computed as the free-space pathloss of the central link, which is given by

β̃k =
√

ρ0
rk

, where ρ0 = λ
4π is the free-space pathloss at the reference distance 1 m [1].
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Figure A1 Near-field communication system.

Appendix B DRL for optimization problem
The high dimensionality of the optimal problem makes the traditional optimization techniques intractable. Fortunately, deep rein-

forcement learning (DRL) technology has stronger robustness to system uncertainty and low dependence on complex mathematical

formulas [2], which can significantly reduce the complexity of the algorithm. To solve this problem, we resort to the DRL-based

algorithm, which is particularly beneficial to solve time-varying wireless communication systems. In reinforcement learning (RL),

the agent interacts with the environment through trial and error to find the optimal policy. In each interaction, the agent observes

the current state of environment, and selects the optimal action by policy network, which affects the environment. After receiving

the actions of the agent, the environment returns the corresponding instant reward and changes a new state. The agent observes

a new state in the next time step, and so on. DRL is the combination of RL and deep learning (DL), uses deep neural networks

(DNNs) to learn the mapping relationship between complex state spaces and action spaces [3]. In our system, base station (BS)
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stands for the agent, and the secure near-field communication network can be viewed as the environment. The key elements of

DRL are defined as follows:

Action: Since the hybrid beamfoming (HBF) matrix and the position of BS are jointly optimized to maximize the sum secrecy

rate, the action should include positions and HBF matrix, which in the lth time step can be defined as al = [Wl,Fl,pl], whose

dimension is 2NtNrf + 2NrfK + 2.

State: The state determines the actions of the agent, so the state should be related to channels information and HBF matrix,.

Consequently, the state in the lth time step is given by sl = [hk,l,he,l,h
H
k,lFlwk,l,h

H
e,lFlwk,l,Wl,Fl,pl]. Since the input of

DNNs should be real-values. We feed the real and imaginary parts of Fl and Wl into them, respectively. The dimension of state

is 2NtK + 2Nt + 4K + 2NtNrf + 2NrfK + 2.

Reward: The environment returns the instant reward to evaluate the performance of the action selected by the policy network

under the current state [4]. Our objective is to maximize sum secrecy rate. Therefore, the secrecy rate can be employed as the

reward. Meanwhile, we move the quality of service (QoS) constraint and the positions of BS constraint into the reward function

as the penalty term. The objective of DRL-based algorithm is to find a policy network that can maximize the mathematical

expectation of cumulative discount reward. Thus, the optimization problem corresponding to the DRL can be expressed as [5]

max
ϑ
J (ϑ) = max

µϑ
Eπ

[
L∑

l=1

γ
l−1

r(sl,al)

]
(B1)

where µϑ denotes the deterministic policy network with the parameter ϑ, γ ∈ [0, 1] represents the discount factor for reward,

and the E(·) expresses the mathematical expectation, J (ϑ) represents the objective function, which expresses the mathematical

expectation of cumulative discount reward under the policy network µϑ.

In our work, we choose the DDPG-based algorithm as a benchmark. But the DDPG algorithm still has problems such as

overestimation. In order to solve the problems, the TD3 made several improvements. First, the TD3 algorithm adds noise to the

target policy network during training to prevent the policy network from exploiting Q-value errors, obtain more robust and stable

performance. Second, the TD3 algorithm updates the value networks every time step but updates the policy network and the three

target networks less frequently, which prevents overfitting to the current Q-function estimates. What’s more, TD3 algorithm uses

the minimum of the two Q-functions, known as double Q-learning, to reduce the overestimation bias further. These improvements

collectively enhance the stability and performance of the TD3 algorithm compared to its predecessor, DDPG, which makes the

TD3 algorithm perform better than the DDPG algorithm in general cases. Consequently, in this letter, a TD3-based algorithm

is proposed to solve the dynamic continuous changing problem, where the agent gradually learns a deterministic policy by the

trial-and-error interaction to select the optimal action.

The TD3-based algorithm consists of six DNNs, which are two value networks, one policy network, and their corresponding

target networks. The value networks and policy network have the same structure as their corresponding target network. All DNNs

have four layers, and all layers are fully connected. As shown in Figure B1, the value network consists of an input layer and three

hidden layers, which use ReLU as the activation function,and take the Q-value as an output. The policy network includes an input

layer, two hidden layers and an output layer, with the input and hidden layers using ReLU as the activation function and the

output layer using tanh as the activation function.
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Figure B1 The structure of DNNs.

We describe the policy network along with target network and the value networks along with target networks respectively as

follows [6].

Policy network: The policy network of TD3 is a deterministic policy network, µϑ with the learnable parameter ϑ. The policy

network takes the sl as input, and outputs the action al. In the TD3-based algorithm, a target policy network is also employed to

alleviate the overestimation problem. Similarly, the parameter of the target policy network is µ′
ϑ with the parameter ϑ′.

Value network: The value network takes both the state and action as input and output Q-value to evaluate the performance of

taking action al under state sl. The TD3-based algorithm employs two value networks, qω1
and qω2

, with parameters ω1and ω2,

respectively, along with their corresponding target networks qω′
1
and qω′

2
, with parameters ω′

1 and ω′
2 to alleviate the overestimation

problem.

To improve the performance of algorithm, the TD3-based algorithm adds clipped expiration noise ξ ∼ CN (0, σ2,−c, c) to the

action computed by target policy network ϑ′, which is denoted by â′
l+1. Furthermore, TD3-based algorithm updates the value

networks every time step but updates the policy network and the three target networks every m time steps, where m is a tunable

hyperparameter [7].

As shown in Figure B2, at the initial stage, the parameters of the policy network and value networks ϑ, ω1and ω2 are randomly

generated, and the parameters of the target networks are initialized as ϑ = ϑ′, ω1 = ω′
1 and ω2 = ω′

2. (sl, al, rl, sl+1) is put into
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the replay buffer E whose size is EB as an experience replay tuple during the policy and value networks working. Then the tuple

is randomly sampled a mini-batch with size NE from the buffer to update the parameters until the number of tuples in buffer E is

bigger than NE.

The target policy network predicts the action and adds the clipped noise to it as

â
′
l+1 = µϑ′

now
(sl+1) + ξ, (B2)

where ϑ′
now denotes the current parameter of target policy network, and ξ ∼ CN (0, σ2,−c, c). Then, the TD target is computed

by

ŷl = rl + γqω′ (sl+1, â
′
l+1), (B3)

where qω′ (sl+1, â
′
l+1) = min{qω′

1,now
(sl+1, â

′
l+1), qω′

2,now
(sl+1, â

′
l+1)} represents the minimum prediction result of the two target

value networks, and ω′
1,now and ω′

2,now refer to the current parameters of target value networks, respectively. The two value

networks also make predictions as below

q̂1,l = qω1,now (sl, al), q̂2,l = qω2,now (sl, al), (B4)

where ω1,now and ω2,now represent the current parameters of value networks, respectively. Thus, the TD error can be expressed by

δ1,l = q̂1,l − ŷl, δ2,l = q̂2,l − ŷl. (B5)

To overcome the overestimation, the loss functions of the value networks can be expressed as

L(ω1) =
1

NE

NE∑
l=1

(δ1,l)
2
, L(ω2) =

1

NE

NE∑
l=1

(δ2,l)
2
, (B6)

where NE denotes the size of mini-batch.

The parameters of value network can be updated by

ω1,new = ω1,now − α∇ω1L(ω1), ω2,new = ω2,now − α∇ω2L(ω2), (B7)

where α denotes the learning rate, ∇ω1L(ω1) and ∇ω2L(ω2) represent the gradients of L(ω1) and L(ω2) with respect to the

parameters ω1 and ω2, respectively, and ω1,new and ω2,new refer to the new parameters of value network after updating, respectively.

Next, update the parameters of the policy network and three target networks every m time steps.The parameter of policy

network can be updated as

ϑnew = ϑnow +
β

NE

NE∑
l=1

∇ϑµϑnow (sl)∇al
qω1,now

(sl, âl), (B8)

where ϑnow and ϑnew represent the current and new parameters of policy network, β refers to the learning rate of policy network,

∇ϑµϑnow denotes the gradient of µϑnow with respect to the parameter ϑ. Similarly, ∇al
qω1,now expresses the gradient of qω1,now

with respect to al, âl refers to the prediction result of the policy network in the given state sl.

The parameters of three target networks can be updated [8] by

ϑ
′
new = τϑnew + (1− τ)ϑ

′
now, (B9)

ω
′
1,new = τω1,new + (1− τ)ω

′
1,now, (B10)

ω
′
2,new = τω2,new + (1− τ)ω

′
2,now. (B11)
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Figure B2 The agent and environment.

The training process of the TD3-based algorithm is shown in Algorithm B1. Before the algorithm starts, the environment

parameters are set as shown in Table B1. At the beginning of Algorithm B1, the position of BS and hybrid beamforming matrix are
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randomly generated, and then the channels hk,l, he,l are generated. Algorithm B1 will execute over T episodes, and each episode

consists of L time steps. At the beginning of each episode, the NFC environment is reset, and the digital beamforming matrix

is restricted during the reset environment to satisfy the transmit power constraint. In each episode, the interactions between the

agent and the environment generate the experience tuples which are stored in the experience replay buffer. The DNNs’ training

starts after accumulating a certain amount of tuples. Then the optimal action, which is denoted as the action corresponding to the

maximal cumulative discount reward can be obtained through the updates of DNNs. To improve the performance of the TD3-based

algorithm, the clipped noise is added to the actions predicted by the target policy network to smooth the process and improve

the exploration ability as shown in Algorithm B1. What’s more, TD3-based algorithm is robust to the different initial points. To

verify this, we plot the average reward convergence curves of different initial points by changing the random seeds, and the result

is shown in Figure B3. It can be seen that the proposed TD3-based algorithm can converge to a satisfied result under different

initial points, which is also one of the advantages of DRL-based algorithm over traditional optimization techniques.
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Figure B3 The average reward convergence curves of different random seeds.

Table B1 Environment parameters in Algorithm B1

Parameter Description Value

Nt number of antennas in the BS 105

Nrf number of RF chains 10

K number of users 4

L number of time steps 50

D antenna aperture 0.5 m

κ Rician factor 10

λ waveform length 0.01 m

Pmax maximal transmit power 40dBm

AWGN power of additive white Gaussian noise 1× 10−6 W

rk rate threshold 0.1 bps/Hz

Furthermore, the update frequency of the value network is faster than that of the policy network and the three target networks

as show in lines 16-18 of Algorithm B1, which denotes updating the value network once per time step, while updating the policy

network and the three target networks every m time steps, with the aim to train more reliable value networks so that we can obtain

more stable results. The hyper-parameters need to be continuously adjusted based on the performance of the convergence curve.

The values of hyper-parameters proposed in Algorithm B1 are shown in Table B2. We choose the DDPG-based algorithm as a

benchmark, and the values of hyper-parameters of the benchmark are shown in Table B3
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Algorithm B1 TD3-based algorithm for optimization problem

1: Initialization: Generate the channels hk,l,he,l, k = 1, . . . , K; Randomly generate the parameters of policy network and value

networks ϑ, ω1, ω2. Set ϑ′ ← ϑ, ω′
1 ← ω1, ω

′
2 ← ω2, which refer to the parameters of target network. Empty the replay buffer

E, whose size is EB.

2: Input: The position of BS, users and eavesdropper, number of transmit antenna. Nt, number of users K, antenna aperture D,

waveform length λ, Rician factor κ and number of snapshots L.

3: Output: The optimal action al = [Wl,Fl,pl]

4: for episode t = 1, 2, . . . , T do

5: for time step l = 1, 2, . . . , L do

6: The agent selects action al based on state sl via policy network.

7: The environment generates the next state sl+1 and instant reward rl based on al via value network.

8: Store the experience replay tuples (al, sl, rl, sl+1) in replay buffer E.
9: if The number of tuples E > NE then

10: Randomly sample a mini-batch with size NE from the buffer.

11: Obtain â′
l+1 by B2.

12: Compute the TD targets by B3.

13: The value networks make predictions via B4.

14: Taking B5 as TD error, get the loss functions of both value networks by B6.

15: Update the parameters of value networks via B7

16: if l mod m = 0 then

17: Update the parameter of policy network ϑ by B8

18: Update the parameters of target networks via B9, B10 and B11

19: end if

20: end if

21: end for

22: end for

Table B2 Hyper-parameters in Algorithm B1

Parameter Description Value

γ discount factor 0.96

α learning rate 4× 10−5

τ learning rate in soft/hard updates of the target networks 1× 10−4

decay decay rate 2× 10−5

NE size of mini-batch 32

EB buffer size 20000

m update frequency 2

T maximum number of episodes 7000

env OpenAI Gym environment name NFC

seed seed number for PyTorch and NumPy 0

ρ penalty coefficient 0.9

Table B3 Hyper-parameters in DDPG-based algorithm

Parameter Description Value

γ discount factor 0.95

α learning rate 4× 10−5

τ learning rate in soft/hard updates of the target networks 1× 10−4

decay decay rate 3× 10−5

NE size of mini-batch 64

EB buffer size 20000

m update frequency 2

T maximum number of episodes 7000

env OpenAI Gym environment name NFC

seed seed number for PyTorch and NumPy 0

ρ penalty coefficient 0.9
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