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Tactile sensing plays a crucial role in enabling robots to

safely interact with objects in dynamic environments [1].

Given that potential physical contact can occur at any lo-

cation during robot interaction, there is a need for a tactile

sensor that can be deployed extensively across the robot’s

body. Some large-area tactile sensors based on sensing ar-

rays have been proposed, but deploying many sensing units

remains a challenge in practical applications. Recently, elec-

trical resistance tomography (ERT) has been implemented

in tactile sensing in order to overcome the restrictions of

traditional array-type tactile sensors. It has already demon-

strated its utility in some application scenarios.

Although ERT-based tactile sensors show unique advan-

tages in large-area sensing, they face the challenge of low

spatial resolution. Recently, some deep learning methods

have been proposed to solve the imaging problem in ERT

sensors and have shown promising results compared to tradi-

tional numerical methods. However, these methods mainly

achieve the ERT images by training deep networks to di-

rectly learn the nonlinear relationship between boundary

voltage and conductivity distribution [2]. In these meth-

ods, the physical model of ERT is not explicitly considered

and the neural network needs to learn the basic physical

model from scratch. This learning task is often difficult or

even impossible for ERT-based sensors.

In this work, we present a novel data-driven resistance

tomography (DDERT) sensing method for large-area tac-

tile sensing. In particular, the method utilizes a generative

model to reconstruct the boundary measurement voltage of

the ERT sensor into a tactile image. By combining a genera-

tive model with a traditional imaging algorithm, introducing

a spatial attention mechanism, and applying a mask con-

straint, the proposed method aims to enhance the imaging

quality of ERT-based tactile sensors, ultimately improving

the sensing performance.

Sensor fabrication. In order to take advantage of the

multilayer structure in piezoresistive sensing, a multilayer

configuration is selected to design the tactile sensor, which

mainly includes a base layer and a conductive layer. The

base layer of the sensor is a 20 × 20 cm2 flexible printed

circuit, where 16 electrodes are evenly arranged on the

boundary. Following our previous work [3], the sensing do-

main is fabricated by spray-coating it with carbon black

(CRAMOLIN 1281411) on the layer, whose conductivity is

controlled to be around 0.006 S/m.

The conductive layer consists of discrete pieces of highly

conductive fabric (silver fiber, YSILVER82, China) instead

of using a single piece of conductive fabric. This design pre-

vents current from flowing through the sensing layer between

different touch points, thereby enhancing the sensor’s multi-

touch point detection capability. In particular, this layer is

constructed by pasting 24 × 24 conductive fabric patches

with dimensions of 7.5 × 7.5 mm2 onto the neoprene foam.

Subsequently, the base layer and the conductive layer are

carefully assembled and firmly secured using tape. With

the aforementioned fabrication process, the tactile sensor

exhibits good flexibility, making it highly suitable for de-

ployment on a large area on the robot’s surface. The details

of sensor fabrication are provided in Appendix A.

Methods. The framework of the DD-ERT model is shown

in Figure 1. It is structurally divided into two cascaded

modules: an initial imaging module and an image recon-

struction network. First, the initial conductivity image is

reconstructed from the measured boundary voltages by the

initial imaging module. After initial reconstruction, the im-

age is fed into a reconstruction network to generate an en-

hanced conductivity image. This is an end-to-end model,

and the modules are jointly trained.

The initial imaging module consists of a fully connected

layer that is responsible for generating the conductivity im-

age from the boundary voltage data. Unlike existing data-

to-image methods, we initialize the initial imaging module

using the sensitivity matrix obtained by traditional recon-

struction algorithms in this work. Due to incorporating

the physical model, the network is easier to converge dur-

ing training, and the performance of the model can be im-

proved. Compared with methods that use a fixed initial

reconstructed image, our proposed method can effectively

eliminate errors caused by ill-posedness, thereby improving

the reconstruction quality of tactile images.

The goal of the image reconstruction network is to gener-

ate high-quality conductivity images from low-resolution ini-

tial images to effectively describe tactile information about

physical interactions. The U-Net architecture’s ability to
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Figure 1 (Color online) Framework of the proposed method DD-ERT.

preserve detailed spatial information through skip connec-

tions has made it a popular choice in image-to-image trans-

lation tasks. However, in our experiment, we observed that

the standard U-Net network does not explicitly focus on

the regions that represent the effective contact area, which

greatly limits the performance of the model. To this end, we

propose a novel generative model for the ERT-based tactile

sensor, which follows the basic structure of U-Net, as shown

in Figure 1.

To improve the quality of tactile images, a spatial atten-

tion mechanism is incorporated into the model. This mech-

anism enables the model to have the ability to dynamically

focus on the areas of contact, allowing for more accurate

imaging of those regions. This adaptability is critical for

the network to accurately capture and understand tactile

data, especially when dealing with complex or dynamic tac-

tile interactions.

In ERT-based tactile sensors, a tactile image can be di-

vided into two distinct parts: the background and the fore-

ground. The background region refers to the untouched area

where no tactile information related to object contact exists.

Conversely, the foreground region represents the interaction

area between the sensor and the object, containing vital in-

formation about the contact and interaction. Therefore, a

mask constraint is introduced as prior information to guide

the model focus on the foreground region, enhancing the

quality of the tactile images in areas of contact. The details

of our method are provided in Appendix B.

Experiments. To verify the effectiveness of our proposed

method, it is quantitatively compared with seven widely

used reconstruction algorithms using four evaluation met-

rics. Through a qualitative comparison, it can be observed

that our model outperforms in all four metrics. This sug-

gests that the method is effective in ERT tactile image re-

construction. Detailed information on these datasets and

metrics can be found in Appendix C.

Moreover, a series of physical experiments were con-

ducted to evaluate the sensing performance of the sensor

in terms of localization performance and sensitivity. The

experimental results show that the sensor can achieve good

localization accuracy and spatial sensitivity. Detailed in-

formation on these datasets and metrics can be found in

Appendixes D.1 and D.2.

To validate the feasibility of the proposed tactile sen-

sor in real applications, the proposed sensor is applied in

tasks of static contact target detection and dynamic conti-

nuity touch tracking. In addition, the developed sensor is

integrated onto the UR5 robotic arm to perform obstacle

avoidance experiments. Experimental results show that the

sensor exhibits good sensing performance in different appli-

cation scenarios. Detailed information about the experiment

can be found in Appendixes D.3–D.5.

Conclusion. In this article, a novel DDERT sensing

method is proposed for large-area tactile sensing. In partic-

ular, the method utilizes a generative model to reconstruct

the boundary measurement voltage of the ERT sensor into

a tactile image. To improve the quality of tactile imaging, a

spatial attention mechanism is incorporated into the model.

Additionally, a mask constraint is introduced as prior in-

formation to ensure that the generated images contain more

accurate tactile information in areas of contact with objects.

Experimental results validate the proposed method is effec-

tive for the large-area robotic tactile sensing. Furthermore,

the prototype of the ERT-based tactile sensor is fabricated

and the sensing performance is evaluated in real robotic ap-

plications.
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