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This study primarily investigates a visibility-based pursuit-

evasion game with multiple obstacles. The pursuer aims

to maintain surveillance over the evader as long as possi-

ble, while the evader’s objective is to escape the pursuer’s

surveillance as quickly as possible. We use the explicit strat-

egy method to analyze the winning conditions and optimal

strategy of the player in the case of corner obstacles and pro-

pose a ‘Present-Future-Past’ (PFP) loop structure to extend

the strategy to the case of multiple obstacles. The action

value functions are designed to evaluate various strategies of

pursuer and evader, and the optimal strategy is determined

through mixed Nash equilibrium theory. This method has

high scalability and can be used to solve decision problems

in multi-agent and multi-task scenarios.

The surveillance problem has attracted the attention of

the robotics community due to its potential applications [1].

The visibility-based pursuit-evasion game is a significant

tool for solving surveillance problems, in which the pursuer

robot aims at maintaining surveillance on the evader robot,

while the evader robot attempts to escape the surveillance by

using obstacles. In relevant research, Murrieta et al. [2] in-

troduced the concepts of strong mutual visibility and acces-

sibility, and the results showed that the problem of whether

the pursuer and evader can maintain strong mutual visibil-

ity is a completely Nondeterministic Polynomial problem.

Bhattacharya et al. [3] provided optimal strategies in a sin-

gle corner and proposed the concept of star-shaped regions.

Zou et al. [4] proposed a general framework for this problem

and made improvements. Researchers have incorporated

the concept of iterated games into multiplayer games and

demonstrated the convergence of multiplayer systems, offer-

ing new insights for research in this field [5]. However, there

is little detailed research on solving surveillance problems in

arbitrary polygonal multi-obstacle environments.

This study addresses a visibility-based pursuit-evasion

game with multiple obstacles, and the primary contributions

are categorized into three key aspects.

(1) In the case of a corner, we provide an analytical ex-

pression for the barrier and divide the workspace into win-

ning regions for the evader and pursuer respectively.

(2) We introduce a PFP structure that accounts for the

influence of future and past events on current decision-

making. We transform the visibility-based pursuit-evasion

game into an optimization problem for selecting the optimal

strategy, thereby reducing the complexity of the problem.

(3) We incorporate mixed Nash equilibrium into the

visibility-based pursuit-evasion game and design a action

value function to solve the Nash equilibrium strategy in the

context of multi-obstacle scenarios.

Problem formulation. As shown in Figure 1, the pursuer

and evader move in a two-dimensional environment with ob-

stacles, indicated by the brown-colored areas. The purpose

of the pursuer is to monitor the evader, while the evader

attempts to escape the pursuer’s surveillance by using the

obstacles. Establishing a coordinate system with A as the

origin, the dynamics of the system are described as











ṙi = −Vi cos θi,

φ̇i =
Vi sin θi

ri
,

(i , P,E), (1)

where V is the speed, θ is the angle between the velocity and

the polar radius, with the positive direction being counter-

clockwise. We use P to represent the pursuer, whose polar

coordinates are represented by (rP ,φP ), and use E to repre-

sent the evader, whose polar coordinates are represented by

(rE ,φE). The ray representing the negative direction of the

x-axis is e1, and the ray used to represent the visible area

boundary of the pursuer is e2. The angle of the corner A is

βA and the angle of the corner B is βB. When the evader en-

ters the blind area of visual field, presented by the gray area,

it will escape the pursuer’s surveillance, which is formed by

the relative position of the corner and the pursuer. We de-

fine the Star Region of corner A as ηA, shown by the light

blue-colored area, consisting of the reverse extension line

of corner A. When the pursuer enters ηA, it can see both

sides of A, and the evader cannot use this corner to evade

the surveillance of the pursuer. In an open environment, the

shortest distance between two points is d(X, Y ) = ‖X−Y ‖2,

and the shortest distance from a point to a segment, ray, line

or region is d(X, e) = minY ∈e ‖X−Y ‖2, where e represents

the segment, ray, line or region. In instances where an ob-

stacle hinders the direct path between points X and e, the

expression d(X, e) denotes the minimal rectilinear distance

between X and e. This distance is defined by the shortest

polyline that avoids traversing through obstacles.
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Figure 1 (Color online) A schematic diagram of the visibility-based pursuit-evasion game.

The PFP loop structure. We first use geometric analysis

to develop the winning conditions and strategies for both

pursuers and evaders in the case of corner obstacles, with

d1 = |VE

VP

rP sinφP | and d2 = |VE

VP

rP |. The evader winning

region for the corner obstacles is described as d(E, e1) <

d1, φP ∈ [−π
2
, 0]; d(E, e2) < d2, φP ∈ [βA − π,−π

2
].

When φP ∈ [−π
2
, 0], the strategy of the evader θE can be

described as φE − π
2
if d(E, e1) < d1, φE ∈ [π

2
, π+φP ]; 0 if

d(E, e1) < d1, φE ∈ [π
2
+ φP , π

2
] or φE ∈ [βA − π, π

2
+ φP ];

or φE − φP − π
2

if d(E, e1) > d1, φE ∈ [π
2
+ φP , π + φP ].

The strategy of the pursuer θP can be described as φP + π
2

if d(E, e2) > d1 or d(E,A) < d2; or arcsin(VErP sin θE
VP rE

) if

d(E, e2) < d1, d(E,A) > d2.

When φP ∈ [βA − π,−π
2
], the strategy of the evader θE

can be described as 0 if d(E,A) < d2 or φE ∈ [βA − π, π
2
+

φP ]; or φE −φP − π
2
if d(E,A) > d2, φE ∈ [π

2
+φP , π+φP ].

The strategy of the pursuer θP can be described as 0 if

d(E,A) < d2 or d(E, e2) > d2; or arcsin(VErP sin θE
VP rE

) if

d(E,A) > d2, d(E, e2) < d2.

Polygon obstacle can be represented as a combination of

multiple corner obstacles. In a polygon obstacle scenario,

if the evader cannot avoid surveillance using the current

corner (the ‘Present’ corner), it can start preparing for the

next corner, which is named the ‘Future’ corner. When the

pursuer enters the Star Region of the ‘Present’ corner, it

will be transformed into a ‘Past’ corner, while the previ-

ous ‘Future’ corner becomes the new ‘Present’ corner. This

creates a cyclic structure of PFP. The evader can use the

‘Present’ and ‘Future’ corner obstacles to avoid surveillance

of the pursuer. ‘Present’ corner can directly use the strate-

gies mentioned above, we only discuss the strategies of the

evader and pursuer for the ‘Future’ corner. Let ‘Present’

corner be denoted as A and ‘Future’ corner as B, with a ray

designated as e3 originating from B along another edge. Due

to B’s role in preventive measures, the objectives for both

evader and pursuer are to enter or prevent entry into the

evader winning region formed by B, which can be expressed

as d(E, e3) <
∣

∣

∣

VE

VP

∣

∣

∣
d(P, ηB), before B is transformed into

the ‘Present’ corner. The specific strategy for B (‘Future’

corner) can be articulated through by the following equa-

tions, with

r0 = −
d(A,B) cos(βB)

cos(βB + φE)
(2)

and

θ0 = arccos

(

r2
E

+ d(E,B)2 − d(A,B)2

2d(E,B)rE

)

. (3)

When βB ∈ [π
2
, π] and φP ∈ [π

2
− βB, 0], the pursuer’s

strategy can be represented as θP = βB + φP − π
2
, and

the evader’s strategy θE can be represented as follows: 0

if φE ∈ [βA − π, 0]; θ0 if φE ∈ [0, 3π
2

− βB] or rE < r0,

φE ∈ [ 3π
2

− βB, π + φP ]; or βB + φE + π
2

if rE > r0,

φE ∈ [ 3π
2

− βB, π + φP ].

When βB /∈ [π
2
, π] or φP /∈ [π

2
− βB, 0], the pur-

suer’s strategy can be represented as θP = 0, and the

evader’s strategy θE can be represented as follows: 0 if

φE ∈ [βA − π, 0]; or θ0 if φE ∈ [0, π + φP ].

Strategy balance with multiple obstacles. In a multi-

obstacle environment, both pursuer and evader can form

N strategies, where N is less than or equal to the number

of corners. ‘PFP’ structure can also be used to construct

each corner as ‘Present’, ‘Future’, or ‘Past’. It needs to be

emphasized that when considering the ‘Future’ corner, the

influence of the ‘Present’ corner on the critical point of vis-

ibility needs to be taken into account.

Thus, we have transformed the visibility-based pursuit-

evasion game into an optimization problem. Given the ra-

tionality of both the pursuer and the evader, their strategies

adapt in response to each other’s actions, making the iden-

tification of Nash equilibrium crucial in this study. Leverag-

ing the ‘PFP’ framework, we convert this game into a finite

game, where each participant is associated with a finite set

of pure strategies. In non-cooperative games, the existence

of Nash equilibrium is not guaranteed for finite games with

pure strategies. However, for mixed games, it is established

that every finite game has an equilibrium point [6]. The

mixed Nash equilibrium yields mixed strategies, where play-

ers choose different pure strategies with specific probability

distributions when making decisions, thereby preventing any

player from unilaterally improving their situation by chang-

ing their strategy combination. The introduction of mixed

strategies allows game theory to better describe situations

in the real world, as in practical scenarios, players may make

random choices based on various factors rather than always

sticking to a fixed, determinate strategy.

We use mixed Nash equilibrium theory to present the

balance strategy for both pursuer and evader. We construct

the interaction between both parties as a zero-sum game and
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formulate the action value function as










fE(α, F ) = α

(

d(F, P )

d(F,E)

)n·sgn(α)

,

fP (α, F ) = −fE(α, F ),

(4)

where F represents the corner which the evader or the pur-

suer relies, and n is a hyperparameter with n > 0. The

values of α is obtained through geometric analysis for re-

gional division and it can be delineated in a unified form.

For the ‘Present’ corner,

α =
VE sin(φE − θE)

rE sinφE

−
VP sin(φP − θP )

rP sinφP

. (5)

For the ’Future’ corner,

α =
VE

d(E, e3)
−

VP

d(P, ηB)
. (6)

The key point to note here is that the ‘d(·)’ is not the short-

est straight-line distance, but rather the distance defined by

the shortest polyline that avoids traversing through obsta-

cles.

As mentioned earlier, the strategy sets for both pursuer

and evader consist of N strategies each, resulting in N ×N

possible action scenarios. By evaluating each action scenario

with the action value function, we can construct an N ×N

matrix, represented as:

AfE
=

P1 P2 · · · PN

E1

E2

..

.

EN

















fE(α11) fE(α12) · · · fE(α1N )

fE(α21) fE(α22) · · · fE(α2N )

..

.
..
.

. . .
..
.

fE(αN1) fE(αN2) · · · fE(αNN )

















. (7)

The variables E1, E2, · · · , EN and P1, P2, · · · , PN represent

the strategies of the evader and pursuer formed by N cor-

ners. The expression fE(αXY ) signifies the value for the

evader when the evader adopts the strategy of corner X

and the pursuer adopts the strategy of corner Y , depicting

the outcome of this particular action scenario. It is im-

portant to note that when both pursuer and evader for-

mulate strategies based on different corners, two action

value functions, fE(α,X) and fE(α, Y ), are formed. We

choose the one most favorable to the evader, denoted as

fE(αXY ) = max(fE(α,X), fE(α, Y )).

Utilizing the theory of mixed Nash equilibrium, the

mixed strategy for the evader is determined as pE =

(pE1, pE2, · · · , pEN), where pEj denotes the probability

that evader executing the strategy Ej . Consequently,

the expected payoff for the evader, denoted as UE(p) =

pEAfE
pTP , is characterized by the inequality UE(pE , pP ) >

UE(p′
E
, pP ), where p′

E
represents any probability distribu-

tion over the N strategies for the evader. For the pur-

suer, UP (p) = −UE(p), where UP (p) satisfies UP (pE , pP ) >

UP (pE , p′
P
). Therefore, we obtain the optimal mixed strat-

egy pE and pP .

Subsequently, the evader and pursuer each choose among

theirN strategies with probabilities pE and pP , respectively.

It is worth noting that after both the pursuer and evader

execute a strategy, a re-analysis and game take place. As

time progresses, the states of the pursuer and evader change.

Since both parties continuously adjust their strategies based

on the actions of the other, this process occurs continuously.

Through multiple instances of static games, the aim is to ad-

dress dynamic game problems.

Conclusion. We provided a solution for visibility-based

pursuit-evasion games with multiple obstacles. By employ-

ing explicit strategy analysis, we extended the corner model

to a multi-obstacle case. The evaluation of several strate-

gies for both pursuer and evader was conducted using the

action value function. We identified the optimal strategies

through the application of mixed Nash equilibrium theory.

The proposed method has high scalability and is suitable for

decision-making problems in multi-task scenarios involving

agents. In the future, we intend to employ Q-learning as an

alternative approach to the current action value function,

addressing disturbances introduced by additional variables.
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