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Abstract The combination of contextual side information and search is a powerful paradigm in the scope

of artificial intelligence. The prior knowledge enables the identification of possible solutions but may be

imperfect. Contextual information can arise naturally, for example in game AI where prior knowledge is used

to bias move decisions. In this work we investigate the problem of taking quantum advantage of contextual

information, especially searching with prior knowledge. We propose a new generalization of Grover’s search

algorithm that achieves the optimal expected success probability of finding the solution if the number of

queries is fixed. Experiments on small-scale quantum circuits verify the advantage of our algorithm. Since

contextual information exists widely, our method has wide applications. We take game tree search as an

example.
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1 Introduction

Searching is one of the most important paradigms for algorithm design. Many computationally difficult
problems, including deciphering some popular encryption schemes [1, 2], Monte Carlo tree search for
game [3] and NP-hard problems [4] can be reduced to searching problems. Grover’s quantum search
algorithm [5,6] shows a quadratic speedup over the classical algorithm. The problem is represented by an
Oracle function, which gives the solution by flipping the sign of the corresponding quantum state, among
an unsorted list of size N .

Grover’s search algorithm applies Oracle and preparation of the initial state iteratively to implement
the rotation on the 2-dimensional Hilbert space spanned by the initial state and target state. It rotates
a fixed angle, determined by size N and number of solutions, towards the target every time and it may
miss the solution when the fixed angle is not exact. Quantum amplitude amplification [7] generalized
Grover’s standard algorithm to make the success probability of the search reach 100%. The exact query
complexity of this algorithm to find one solution amongN items exactly is the same as Grover’s algorithm,
⌈ π

4 arcsin
√

1/N
− 1

2⌉ ≈ O(
√
N), which is optimal [8]. When required to output an answer in a smaller

limited number of queries, repeating the iteration of Grover’s algorithm can reach the maximum success
probability as well.

These searching algorithms are also suitable for finding one of M solutions among items of size N .
However, the case is complicated when the number of solutions is unknown since too few iterations cannot
reach the target state and too many iterations may pass by the target state. Grover’s π/3-algorithm [9]
and a critically damped quantum search algorithm [10] were proposed to handle this fixed point search
problem. Then an amplitude amplification improvement [11] was made to achieve a quadratic speed-up
of query complexity. An exact algorithm for weight decision has also been proposed recently [12].

Grover’s quantum search algorithm and the above generalizations consider all the items to be searched
to be of equal status. However, the items are rarely equally important. We note that heuristic methods are
commonly used in classical searching algorithms. For practical search problems, some prior knowledge is
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usually known about where the solution is more likely to be located. Then a biased probability distribution
can be obtained from the current problem to instruct how to prune branches or enter branches of the
search tree randomly to improve the expected success probability of the search algorithm. A famous
modern example is Google’s go AI: AlphaGo and AlphaZero [13, 14], despite the emphasis of their work
being machine learning, the subroutine of searching for the best placement is instructed by knowledge
drawn from current patterns and checking whether a placement is good by further recursion. A quantum
algorithm has also been proposed recently to solve learning problems [15].

In this work, we focus on how to take advantage of prior knowledge to improve quantum search.
The prior knowledge can usually be formalized as a probability distribution p = (p1, p2, . . . , pN ), which
indicates the probability of the location of the solution. Let us first consider the classical algorithm in
the face of such a situation. Assuming p1 > p2 > · · · > pN , then the optimal classical search algorithm
with T queries is to query the item from 1 to T , and the maximum expected success is obviously

∑T
i=1 pi.

What about the quantum algorithm? To what extent can we surpass the classical counterpart? A naive
example that shows the advantage of prior knowledge is p = (0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0) with N = 8,
the success probabilities of quantum algorithms in one Oracle query with and without this prior knowledge
are 100% and about 78.1% respectively, while the classical success probability in one query is 25%. If we
consider another example with similar prior knowledge (0.24, 0.24, 0.24, 0.24, 0.01, 0.01, 0.01, 0.01) with
N = 8, can we still achieve a success probability close to 100% with one Oracle query? How close can we
achieve? In this work, we give definite answers to all these questions.

Our result shows that by a variant of the quantum search algorithm with some parametric operations
related to the given probability distribution, we can improve the expected success probability to optimal
with any limited number of Oracle queries.

Montanaro [16] shows an algorithm that finds the solution with the asymptotically optimal expected
number of queries. His quantum algorithm is a Las Vegas algorithm, that repeats many times until
finding the solution. The expected number of Oracle queries is proven a constant multiple of the optimal
value. Nevertheless, the constant complexity is not unimportant. An algorithm with an asymptotically
optimal running time is not good enough for time-sensitive tasks, such as game AI which must output
an answer in a limited time the running time directly determines the strength of artificial intelligence.
Our result can offer an improvement of the success probability of finding the best choice with some prior
knowledge when running time is limited.

On the other hand, we note that on noisy intermediate-scale quantum (NISQ) computers, the fidelity
of the circuit decreases rapidly as the number of Oracle queries increases. A three-qubit Grover search
experiment on a scalable quantum computing system [17] uses only one Oracle query, it seems that
searching one solution among eight items using one Oracle query performs better than using two Oracle
queries, although the relationship between their theoretical success probability is opposite. A quantum
algorithm solving subset sum problem has also been demonstrated successfully [18]. Our result can offer
a trade-off between theoretical success probability and experimental error of the circuit, which results in
an algorithm with a suitable number of Oracle queries to reach optimal experiment success probability.

2 Search with prior knowledge

Grover’s quantum search algorithm can be described as a rotation in the space spanned by the initial
state and the target solution state. Given the probability distribution p = (p1, p2, . . . , pN ) as prior
knowledge about where the solution might be located, we show that by replacing the initial state with

|s〉 = ∑N
i=1

√
qi|i〉+

√

1−∑N
i=1 qi|0〉, where qi are some parameters that qi > 0 and

∑N
i=1 qi 6 1, we can

improve the expected success probability.

We first analyze the success probability of our proposed algorithm with parameters q. Let Rs =
I − 2|s〉〈s|, which is the reflection operation about |s〉. Consider the transformation (RsOx)

T applied to
|s〉. For a fixed solution x, let |x⊥〉 = 1/(1− qx)

∑

i6=x

√
qi|i〉, the state after (RsOx)

T applied to |s〉 is

sin((2T + 1) arcsin
√
qx)|x〉 + cos((2T + 1) arcsin

√
qx)|x⊥〉. The success probability of getting solution

x is sin2((2T + 1) arcsin
√
qx) if we use measurement with a standard basis. Hence given distribution

p = (p1, p2, . . . , pN ) indicating where the solution might be, for any non-negative vector q = (q1, . . . , qN )
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Figure 1 We provide a circuit for our quantum search algorithm in T Oracle queries. Here A is a unitary that prepares the

initial state A|0〉 =
∑

N
i=1

√
qi|i〉 +

√

1 −
∑

N
i=1 qi|0〉. Ox is the Oracle that flip an ancilla qubit, that Ox|x〉|b〉 = |x〉|b ⊕ 1〉 and

Ox|x⊥〉|b〉 = |x〉|b ⊕ 1〉.

that
∑N

i=1 qi 6 1, the expected success probability of quantum search in T queries can be

ESPT (p, q) =

N
∑

i=1

pi sin
2((2T + 1) arcsin

√
qi). (1)

Therefore we can choose q to optimize the success probability. Note that sin2((2T +1) arcsin
√
qi) reaches

its maximum value 1 when qi = sin2 π

2(2T+1) and it increases monotonously with qi in [0, sin2 π

2(2T+1) ], so

we can add extra constraints that qi 6 sin2 π

2(2T+1) , without decreasing the maximum value of (1). Let

q
∗(p) denote the parameters that maximize (1).

q
∗(p) = argmax

q

ESPT (p, q) (2)

s.t.

N
∑

i=1

qi 6 1, (3)

∀i : 0 6 qi 6 sin2
π

2(2T + 1)
. (4)

Since sin2((2T + 1) arcsin
√
qi) is a concave function when qi ∈ [0, sin2 π

2(2T+1) ],
∑N

i=1 pi sin
2((2T +

1) arcsin
√
qi) is a concave function about (q1, . . . , qN ). Eq. (2) is a concave optimization with linear con-

straints, which can be solved as a convex optimization problem by Lagrange multiplier method, gradient
descent or some other contemporary methods. For any given probability distribution, the corresponding
state can be prepared efficiently [19]. We show a quantum algorithm framework that can achieve that
value in Figure 1.

We summarize the main theoretical result as Theorem 1.

Theorem 1. Given probability distribution p = (p1, . . . , pN) indicating which item might be the solu-
tion, the maximum expected success probability of finding the solution in T Oracle queries is

max
q

N
∑

i=1

pi sin
2((2T + 1) arcsin

√
qi) (5)

s.t.
N
∑

i=1

qi 6 1, (6)

∀i : 0 6 qi. (7)

We claim that our algorithm is optimal, which means the maximum expected success probability
in T queries can be reached by our algorithm, regardless of whether the algorithm is adapted based
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Figure 2 (Color online) Comparison of the expected success probability between classical, ranking method and our algorithm

for probability distributions of size 512 which are generated uniformly randomly that generate each pi uniformly randomly in [0, 1]

then normalize p, with 100 samples of the probability distribution for every number of queries. Here ranking method refers to

calling Grover’s search algorithm among items with the highest probability.

on intermediate measurements or using variational diffusion operators. The optimality is proved in
Appendix A.

When the number of Oracle queries is limited to T , a naive quantum algorithm is to call Grover’s
algorithm among the top ⌊ 1

sin2 π

2(2T+1)
⌋ items after ranking by probability values. To achieve the same

expected success probability, the classical algorithm requires at least ⌊ 1
sin2 π

2(2T+1)
⌋ > T 2 queries, which

means quantum has at least quadratic speed-up over classical when given probability distribution of the
solution. Our algorithm performs obviously better than the naive ranking method in that it provides
25% improvement when the number of queries is not close to

√
N , as shown in Figure 2.

Although the perfect information about complete distribution can help to improve the search success
rate optimally by our algorithm, partial information can also help improve search in a simple way that
keeps the known distribution and lets the unknown items share the remaining probability. For example we
know that the first item is 50% likely to be the answer among 8 items, we may assuming the probability
distribution (0.5, 1

14 ,
1
14 ,

1
14 ,

1
14 ,

1
14 ,

1
14 ,

1
14 ), and the perform our algorithm as above.

Finally, we will show that q
∗(p) is robust to the perturbation of p. If we have some imperfect infor-

mation, an estimation of distribution p̂ that the L1 distance d1(p, p̂) =
∑N

i=1 |pi − p̂i| 6 ǫ, then

ESPT (p, q
∗(p̂))

= ESPT (p̂, q
∗(p̂)) + ESPT (p− p̂, q∗(p̂))

> ESPT (p̂, q
∗(p)) + ESPT (p− p̂, q∗(p̂))

= ESPT (p, q
∗(p)) + ESPT (p̂− p, q∗(p))

+ ESPT (p− p̂, q∗(p̂))

> ESPT (p, q
∗(p))−

N
∑

i=1

|pi − p̂i|

> ESPT (p, q
∗(p))− ǫ.

This means that a good estimation of the precise distribution can approach the optimal expected success
probability well.

3 Experimental results

We implement our algorithm on a five-qubit quantum computer provided by IBMQ [20]. We consider
searching among items of size 8 with one solution. The probability distribution of the solution is a
simple biased distribution formed as (18 + σ, 1

8 + σ, 1
8 + σ, 1

8 + σ, 1
8 − σ, 1

8 − σ, 1
8 − σ, 1

8 − σ), for σ ∈
{ 1
80 ,

2
80 ,

3
80 ,

4
80 ,

5
80 ,

6
80 ,

7
80 ,

8
80}.
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Figure 3 (Color online) Quantum search using a single Oracle query, for finding one solution among 8 items on 3 qubits of IMB’s

5-qubit computing system ibmqx2. (a) Comparison of the theoretical maximum expected success probability and the experiment

result of expected success probability. (b) Comparison of the theoretical growth rate and the experimental growth rate of maximum

expected success probability than directly calling Grover’s algorithm without using prior knowledge. The growth rate here is the

ratio of the expected success probability with prior knowledge to the expected success probability directly calling Grover’s algorithm

without using prior knowledge, then minus 1.

Figure 4 A 3-qubit circuit for a ‘half-half’ distribution in 1 Oracle query. Here θ depends on the deviation of the probability

distribution.

Table 1 A table of the eight Oracles for N = 8

000 001 010 011

Circuit

100 101 110 111

Circuit

We conclude the experiment results in Figures 3(a) and (b). Data in these figures were obtained on
IBMQ [20] hardware with ‘ibmqx2’ backend, for eight biased and one uniform probability distribution,
eight different Oracles, 8192 shots for each. The CNOT gate and Readout error on this device is about
5%. The coherent time of qubits is about 50 µs. We have run our algorithm on theoretical noiseless
simulators and actual noisy devices. It shows that the experimental success probability is lower than
the theoretical, which is caused by the noise of the device. However, with respect to the growth rate of
success probability caused by prior knowledge, the experiment result agrees with the theory well.

The circuit implementation of our algorithm is shown in Figure 4, the corresponding parameters q
∗

and θ for different probability distributions are provided in Appendix B. The eight Oracles for different
solutions is implemented directly similarly to those in the textbook [21], as shown in Table 1.

4 Application: heuristic tree search

Since contextual information arises naturally in the scope of artificial intelligence [22]. We can hopefully
expect that our quantum method has widespread applications such as quantum exploration algorithm
for multi-armed bandits [23] with episode context and game tree search with some prior knowledge. We
show how to apply our method to game tree search as an example.

When playing a game, an interesting problem is whether and how a player can win. By formalizing



He X Y, et al. Sci China Inf Sci September 2024, Vol. 67, Iss. 9, 192503:6

Figure 5 Example of a weighted search tree, where the edge weights indicate the probability that each choice is good.

Figure 6 We provide a circuit for generating the optimal initial state corresponding to the distribution g(s1 · · · st) for our

algorithm. Gt calculates the probability distribution g(s1 · · · st) as a classical algorithm and stores it to ancillae qubits. Q∗

calculates q
∗(g(s1 · · · st)) as a classical convex optimization algorithm on ancillae qubits, generates the corresponding quantum

state, and then recovers the ancillae qubits. Then ancillae qubits are recovered by reversing the circuit.

a game as a tree whose nodes are positions in the game and edges are actions taken by players, we
can determine whether a player can win at the current position by traversing the game tree. Ambainis
and Kokainis [24] proposed a quantum algorithm that can evaluate a 2-player game quadratically faster
than the classical deterministic algorithm. However, deterministic search does not apply to large-scale
problems such as go. For practical game AI, instead of determining the winning strategy, the algorithm
only needs to provide a good enough choice. Hence the heuristic method is commonly used so that we
have some efficient ways to evaluate the current position and guess the best choice. We will show a nested
framework of searching game trees heuristically by calling our algorithm.

We formalize the heuristic method as a weighted search tree (see Figure 5 as an example), such as
the Monte Carlo tree after training, whose edge weights suggest the probability of each choice to be
good. The classical search strategy at step t is formed as a probability distribution gt(s1 · · · st), where
s1 · · · st is the choice history of players and gt(s1 · · · st)i is the probability that choice i is good at this
position. These strategies can be obtained from domain expert knowledge or by machine learning.
Taking the cheese game as an example, when s1 · · · st represents the first t placement positions that two
players alternately played, gt(s1 · · · st)i is the probability that i might be the best placement. Actually,
gt(s1 · · · st) can be seen as an approximated probability distribution of the real optimal solution. When
the number of queries is limited to T , the top T nodes with the highest probability are evaluated in the
classical algorithm. Directly calling Grover’s algorithm after ranking the probabilities implies a quadratic
speed-up over classical. Our algorithm is better than directly calling Grover’s algorithm after ranking,
as shown in Figure 2. Since the strategy gt can be calculated efficiently by a classical computer, the
quantum operator that generates state

∑

i

√

q∗(g(s1 · · · st))i|i〉 can be implemented efficiently, as shown
in Figure 6.

Consider the case when Alice and Bob are playing a cheese game. Note that determining whether Alice
can win by taking choice i can be implemented by determining whether Bob can win after Alice takes
choice i. Hence the “Oracle” determining whether a choice is good can be implemented by calling our
search algorithm instead of using the heuristic function directly to improve the estimation accuracy. We
can call our algorithm recursively to notea certain depth in the game tree and then use “approximated
Oracle” such as a neural network or rule-based evaluation, just like the classic game tree search in practice.
This leads to a quantum framework similar to the classical game tree search, which can speed up the
game tree search. Our algorithm is optimal at each level of the tree locally, we believe it would perform
well globally as well.
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5 Conclusion

We consider how to take advantage of contextual information in quantum computation. We provide an
optimal quantum search algorithm that achieves the maximum expected success probability with a given
number of queries when the probability distribution of the solution is given. In particular, the quantum
advantage of our algorithm increases as the distribution of the solution becomes more biased. We also
provide a framework showing how to apply our quantum algorithm to the heuristic search algorithm for
the game tree. Since a significant advantage of our algorithm has been shown by implementation on
state-of-the-art devices with a very limited number of items, more practical problems of larger size can
be expected to perform much better in the future.
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For unit vectors |a〉, |b〉, |c〉, let 〈a, c〉 = 2arcsin(|a − c|) denotes the angle between a and c, then 〈a − c|a − c〉 = 4 sin2(〈a, c〉/2).
Since 〈a, c〉 6 〈a, b〉 + 〈b, c〉 by triangle inequality,

|a− c| (A5)

= 2 sin(〈a, c〉/2) (A6)

6 2 sin(min(〈a, b〉/2 + 〈b, c〉/2,π/2)) (A7)

= 2f(〈a, b〉/2 + 〈b, c〉/2). (A8)

Quantum states are unit vectors in Hilbert space. Note that φx
t is unit vector for all t and φx

0 = (φx
0 − φx

1 ) + (φx
1 − φx

2 ) + · · ·+
(φx

T−1 − φx
T ) + φx

T , Mx is the measurement which outputs x. We have

cos(〈φx

0 , φ
x

T 〉) = |〈φx

0 |φ
x

T 〉| (A9)

= 〈φx

0 |MxMx|φx

T 〉 + 〈φx

0 |(I − Mx)(I − Mx)|φx

T 〉 (A10)

6 |Mx|φx

0 〉||Mx|φx

T 〉| +
√

1 − |Mx|φx
0 〉|2

√

|Mx|φx
T
〉|2 (A11)

= cos(arcsin(|Mxφ
x

0 |) − arcsin(|Mxφ
x

T |)). (A12)

Then

arcsin(|Mxφ
x

0 |) − arcsin(|Mxφ
x

T |) (A13)

6 〈φx

0 , φ
x

T 〉 (A14)

6 〈φx

0 , φ
x

1 〉 + 〈φx

2 , φ
x

3 〉 + · · · + 〈φx

T−1, φ
x

T 〉 (A15)

= 2 arcsin(|φx

0 − φx

1 |/2) + · · · + 2arcsin(|φx

T−1 − φx

T |/2). (A16)

Hence the the probability of outputting x with input solution x is

|Mxφ
x
0 |

2 (A17)

6 f2(arcsin(|Mxφ
x
T |) +

T
∑

t=1

2 arcsin(|φx
t−1 − φx

t |/2)). (A18)

On the other hand

〈φx

t − φx

t+1|φ
x

t − φx

t+1〉 (A19)

= 〈0|U†
0 · · ·U†

t (Ox − I)U†
t+1Ox · · ·OxU

†
TUTOxUT−1 · · ·OxUt+1(Ox − I)Ut . . . U0|0〉 (A20)

= 〈0|U†
0 · · ·U†

t (2|x〉〈x|)(2|x〉〈x|)Ut · · ·U0|0〉 (A21)

= 4|〈x|Ut · · ·U0|0〉|2. (A22)

Let ut,x = |〈x|Ut · · ·U0〉|2, we have

|Mxφ
x
0 |

2 (A23)

6 f2

(

arcsin(|Mxφ
x
T |) +

T
∑

t=1

2 arcsin(|φx
t−1 − φx

1 |/2)
)

(A24)

= f2

(

arcsin
√
uT,x + 2

T−1
∑

t=0

arcsin
√
u0,x

)

. (A25)

So the expected success probability is upper bounded by

max
{ut,x}

N
∑

x=1

pxf
2

(

arcsin
√
uT,x + 2

T−1
∑

t=0

arcsin
√
u0,x

)

(A26)

s.t. ∀t :
N
∑

x=1

ut,x 6 1, (A27)

∀t, x : ut,x > 0. (A28)

The optimization function (A26) increases monotonously with ut,x, so we can replace the 6 1 with = 1 in constraints (A27)

without changing the maximum value. By Lemma A1, the function can reach its maximum when ut,x = u0,x, which matches

Theorem A1.

Lemma A1. The following optimization problem:

max
{ut,x}

N
∑

x=1

pxf
2

(

m
∑

t=1

arcsin
√
ut,x

)

(A29)

s.t. ∀t :

N
∑

x=1

ut,x = 1, (A30)

∀t, x : ut,x > 0 (A31)

can reach the maximum when ∀x, t : ut,x = u0,x.
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Proof. Let the function reach its maximum value with the sum of the variance

m
∑

t=1

N
∑

x=1

(

ut,x −
N
∑

x=1

ut,x/n

)2

, (A32)

minimized at the same time. If there exists x, t that ut,x 6= u0,x, assuming u0,1 < u1,1, u0,2 > u1,2 without loss of generality.

First, if u0,1 + u1,1 > 1, we can update u0,1 and u1,1 to u0,1 + δ and u1,1 − δ without decreasing the maximum value when

δ 6 |u0,1 − u1,1|/2, since arcsin
√

u0,1 + δ + arcsin
√

u1,1 − δ > π/2.

Second, if u0,1 + u1,1 < 1, we have differentials

d arcsin
√
u0,1 = 1/

√

(1 − u0,1)u0,1du0,1, (A33)

d arcsin
√
u1,1 = 1/

√

(1 − u1,1)u1,1du1,1, (A34)

and

1/
√

(1 − u0,1)u0,1 − 1/
√

(1 − u1,1)u1,1 > 0, (A35)

when u0,1 + u1,1 < 1, u0,1 < u1,1. So when δ 6 |u0,1 − u1,1|/2

arcsin
√

u0,1 + δ + arcsin
√

u1,1 − δ (A36)

> arcsin
√
u0,1 + arcsin

√
u1,1. (A37)

Similarly, when δ 6 |u0,2 − u1,2|/2

arcsin
√

u0,2 − δ + arcsin
√

u1,2 + δ (A38)

> arcsin
√
u0,2 + arcsin

√
u1,2. (A39)

So we can choose suitable δ to update u0,1 and u1,1 or u0,2 and u1,2 to their average without decreasing the maximum value.

Then the maximum can be obtained with a smaller summation of variance in (A32), which contradicts the assumption!

Hence the maximum value of the optimization function can be obtained when ∀x, t : ut,x = u0,x.

Appendix B How to calculate parameters q
∗

Here we show how to find the optimal parameters q
∗ = (q∗1 , . . . , q

∗
N ) by Lagrange multiplier method when T = 1.

Note that sin2((2T + 1) arcsin
√
qi) is a polynomial of degree 2T +1 with respect to qi. When T = 1, the optimization function

is
∑

N
i=1 pi sin

2(3 arcsin
√
qi) =

∑

N
i=1 piqi(3 − 4qi)

2. Note that when n 6 4, the success probability can reach 1. When n > 4,

Eq. (2) always reaches its maximum value when
∑

N
i=1 qi = 1 since the function increases monotonously with increase of qi. The

Lagrangian function

L(q, λ) =
N
∑

i=1

piqi(3 − 4qi)
2 − λ

(

1 −
N
∑

i=1

qi

)

, (B1)

By ∇L(q, λ) = 0, we get














pi(48q
2
i − 48qi + 9) + λ = 0,

N
∑

i=1

qi = 1,
(B2)

which can be simplified to
N
∑

i=1

1

2
−
√

1

16
− λ

48pi

= 1, (B3)

and

qi =
1

2
−
√

1

16
− λ

48pi

, (B4)

Eq. (B3) can be solved efficiently by binary search of λ since the left side is a monotone function of x.


	Introduction
	Search with prior knowledge
	Experimental results
	Application: heuristic tree search
	Conclusion
	Proof of the optimality
	How to calculate parameters q*

