
SCIENCE CHINA
Information Sciences

September 2024, Vol. 67, Iss. 9, 192502:1–192502:15

https://doi.org/10.1007/s11432-023-4039-y

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

The quantum Ising model for perfect matching and
solving it with variational quantum eigensolver

Qilin ZHENG1, Pingyu ZHU1, Chao WU1, Miaomiao YU1,

Weihong LUO1 & Ping XU1,2*

1Institute for Quantum Information and State Key Laboratory of High Performance Computing,

College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;
2Hefei National Laboratory, Hefei 230088, China

Received 21 December 2023/Revised 4 March 2024/Accepted 21 May 2024/Published online 19 August 2024

Abstract Obtaining all perfect matchings of a graph is a tough problem in graph theory, and its complex-

ity belongs to the #P-Complete class. The problem is closely related to combinatorics, marriage matching

problems, dense subgraphs, the Gaussian boson sampling, chemical molecular structures, and dimer physics.

In this paper, we propose a quadratic unconstrained binary optimization formula of the perfect matching

problem and translate it into the quantum Ising model. We can obtain all perfect matchings by mapping

them to the ground state of the quantum Ising Hamiltonian and solving it with the variational quantum

eigensolver. Adjusting the model’s parameters can also achieve the maximum or minimum weighted per-

fect matching. The experimental results on a superconducting quantum computer of the Origin Quantum

Computing Technology Company show that our model can encode 2n dimensional optimization space with

only O(n) qubits consumption and achieve a high success probability of the ground state corresponding to

all perfect matchings. In addition, the further simulation results show that the model can support a scale of

more than 14 qubits, effectively resist the adverse effects of noise, and obtain a high success probability at a

shallow variational depth. This method can be extended to other combinatorial optimization problems.

Keywords perfect matching, Ising model, quantum Hamiltonian, variational quantum eigensolver,

quadratic unconstrained binary optimization

1 Introduction

The perfect matching number of a graph is an interesting problem in graph theory [1], which has a wide
range of applications in Hall’s marriage problem [2], the stable marriage problem [3], Kekulé structures [4],
the Fries number of fullerenes [5], the monomer-dimer models [6], combinatorics [7], the Gaussian boson
sampling [8], dense subgraphs [9], and the molecular vibration spectroscopy [10]. The number of perfect
matchings can be given by calculating the Hafnian value of the corresponding adjacency matrix of the
graph, and its complexity belongs to the #P-Complete class. The fastest algorithm with a time complexity
of O(n320.5n) for calculating Hafnian was proposed by Björklund in 2019 [11], and the Xanadu researchers
designed the open-source Hafnian library [12] based on C++ and Python according to this algorithm.
When the graph is bipartite, calculating the Hafnian of the adjacency matrix is equivalent to calculating
its Permanent [13]. While Hafnian can give us the number of perfect matchings for a graph, it does not
provide what the perfect matchings are for it. In the bipartite graph, if we need to obtain a specific
perfect matching, we can use the Hungarian algorithm to solve it [14].

In addition to using classical computers to calculate the number of perfect matchings, Krenn et al. [1]
discovered the link between perfect matchings and coherent superposition multi-particle states in 2017,
and the method could use the coincidence counts of the optical quantum experimental device to give
the Hafnian value, but they did not perform experimental verification. Brádler et al. [15] encoded the
adjacency matrix of the graph into a Gaussian state and estimated the Hafnian value by measuring the
probability of photons in each output mode, which was able to use the Gaussian boson sampling to
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Figure 1 (Color online) Schematic diagram of the perfect matching model based on variation quantum computing.

complete the calculation of the Hafnian. Two years later, Wan et al. [16] completed the verification of
this theory on a quantum chip. In 2023, Jianwei Pan’s team enhanced two types of classical stochastic
algorithms [17] for the Max-Haf problem [18] and Dense-k subgraph problem [8] by using the Gaussian
boson sampling on “Jiu Zhang”. These above methods used quantum properties for calculations, but
none gave all specific perfect matchings.

In this paper, in order to solve all perfect matchings in the graph exactly. We propose a quadratic
unconstrained binary optimization (QUBO) formula and map this formula to the quantum Ising Hamil-
tonian; then translate the perfect matchings into the ground state of the Hamiltonian. By performing
eigenvalue decomposition on the Hamiltonian, we can obtain the number of perfect matchings and the
specific perfect matching ground state according to the eigenvector corresponding to the smallest eigen-
value. On this basis, we use the variational quantum eigensolver (VQE) [19] to solve the ground state of
the Hamiltonian, which can obtain all perfect matchings corresponding to the ground state of the graph.

The structure of the article is as follows, in Section 2, we propose a perfect matching QUBO formula
and explain the specific mapping and solving process of perfect matchings to quantum Ising Hamiltonians.
In Section 3, we simulate the problem by using the pyPanda [20] and the Qiskit [21] programming tools
according to the proposed theory, and study the scalability of the model, the influence of variational
depth on the model, and the behavior of the model under noise. In Section 4, we deploy the model to
a superconducting quantum computer of the Origin Quantum Computing Technology Company [22] to
experimentally verify the theory. In Section 5, we summarize the entire work.

2 Theory

For a random undirected graph G = (V,E) that does not contain self-loops, where the number of nodes
is |V | = m and the number of edges is |E| = n. A single matching refers to the set of edges E′ ⊂ E where
any two edges have no common node. When |E′| = m/2, it is a perfect matching. For an unweighted
graph, our task is to find all perfect matchings with the number of edges equal to m/2. For a weighted
graph, we need to find the maximum weighted perfect matching among them. The solution process
includes the following steps, and Figure 1 shows the corresponding schematic diagram.

(1) Get the adjacency matrix or weighted adjacency matrix of the graph and name it A.

(2) Label the edges according to the upper triangular part of the matrix A. Each edge corresponds to
a spin variable, and a total of n spin variables are required.

(3) Construct the QUBO formula for all perfect matchings according to the idea proposed by Lucas [23].

(4) Translate the QUBO formula into a quantum Ising Hamiltonian.

(5) Solve the ground state of the Ising Hamiltonian with the VQE. The ground state of the minimum
energy corresponds to perfect matchings.
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Algorithm 1 Spin labeling

Require: Vector x[n]; # The spin variable sequence

Matrix A[m][m]; # The adjacency matrix or weighted adjacency matrix

Ensure: Matrix X[m][m];

1: Matrix X[m][m] ← ∅; # The spin matrix

2: Index ← 1;

3: for u ← 0 to m− 1

4: for v ← 0 to m− 1

5: If v > u and A[u][v]! = 0

6: X[u][v] ← x[index];

7: index ← index + 1;

8: Else if u = v or (u < v and A[u][v] = 0)

9: X[u][v] ← ∅;

10: Else

11: X[u][v] ← X[v][u];

12: End

13: End

2.1 Adjacency matrix

For an unweighted graph, its adjacency matrix A is defined as

Auv =

{

1, nodes u and v are connected,

0, nodes u and v are disconnected.
(1)

For a weighted graph, let wuv be the weight between nodes (u, v). The weighted adjacency matrix A
is defined as

Auv =

{

wuv , nodes u and v are connected,

0, nodes u and v are disconnected.
(2)

Therefore, the adjacency matrix or weighted adjacency matrix of a graph that does not contain a
self-loop is a m×m dimensional symmetric square matrix with 0 on its diagonal.

2.2 Spin labeling

The edges are labeled according to the upper triangular part of the adjacency matrix, and each edge
corresponds to a spin variable Xuv (or Xe), whose value is 0 or 1, and a total of n spin variables are
required. Let the adjacency matrix of G be A, define the spin matrix X according to the process shown
in Algorithm 1, and the numbering order is from left to right, then from top to bottom. The spin matrix
is a symmetric matrix, except that there is a spin variable in the position where the adjacency matrix
or weighted adjacency matrix is not 0, and there are no elements in other positions. For example, for
x = {x1, x2, x3, x4} and a adjacency matrix A, according to Algorithm 1, the corresponding spin matrix
can be obtained as

A =













0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0













→ X =













x1 x2

x1 x3

x3 x4

x2 x4













. (3)

2.3 Construct QUBO

Construct the QUBO formula that obtains all perfect matchings when it takes a minimum. Let e1 =
(u, v) ∈ E, e2 = (u2, v2) ∈ E, where u, u2, v, v2 all belong to V . αi is the adjustable parameter. The
constraints that need to be met are as follows.

(1) Any two edges have no common vertices, so the number of edge conflicts is minimized. That is to
say, the absolute value of the difference between the value summed for each row of the spin matrix X
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and 1 is the smallest, and when it is the smallest, it means that there are no common vertices between
all edges, specifically,

C1 = α1

∑

u∈V









∑

v∈V,
(u,v)∈E

Xuv − 1









2

= α1









∑

u∈V

∑

e1∈E,e2∈E,
e1∩e2=u,e16=e2

Xe1Xe2 − 2
∑

e1∈E

Xe1 +
∑

u∈V

1









.

(4)

(2) The number of edges is equal to half of the number of nodes so that the number of edges meets
the minimum energy when it is a perfect matching, specifically,

C2 = α2







m

2
−

∑

(u,v)∈E,
v>u

Xuv







2

= α2









∑

e1∈E,e2∈E,
e16=e2

Xe1Xe2 + (1−m)
∑

e1∈E

Xe1 +
m2

4









.

(5)

(3) Minimize the total weight of the edges participating in the matching, specifically,

C3 = α3

∑

e1=(u,v)∈E,
v>u

AuvXe1. (6)

Therefore, the total QUBO formula is the sum of the above three items, namely C = C1 + C2 + C3.
Observe each item in C, and its highest order is Xe1Xe2. Without loss of generality, it can be abbreviated
as C =

∑

e1,e2 Je1e2Xe1Xe2 +
∑

e1 he1Xe1 + const.

2.4 Hamiltonian

Converting the QUBO formula into a quantum Ising Hamiltonian, the ground state corresponds to
all perfect matchings, and the linear combination of the eigenvectors corresponding to its minimum
eigenvalue is the perfect matching state. Let Ze be the Pauli-Z matrix acting on the edge named e,

namely Ze = [ 1 0

0 −1
]. Its eigenvalues are 1 and −1, and the corresponding eigenstates are b1 = [ 1

0
] and

b2 = [ 0

1
]. For the basis b ∈ {0, 1}n and Xe ∈ {0, 1}, we have

Ze |b〉 = (−1)Xe |b〉 = (1− 2Xe) |b〉 ⇒ Xe |b〉 =
1− Ze

2
|b〉 . (7)

Therefore, each binary variable Xe can be substituted by (1−Ze)/2. In addition, when Xe is a binary
variable, Xe = Xe

2. Continuously applying the above two substitution rules, all Ci in the QUBO formula
can be replaced by the quantum Ising formula composed of Pauli-Z operator, specifically,
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(1) Calculating H1 according to C1,

C1=α1

∑

u∈V









∑

v∈V,
(u,v)∈E

Xuv − 1









2

⇒ H1 = α1









∑

u∈V

∑

e1∈E,e2∈E,
e1∩e2=u,e16=e2

1− Ze1

2
×

1− Ze2

2
− 2

∑

e1∈E

1− Ze1

2
+

∑

u∈V

1









=α1





















1
4

∑

u∈V

∑

e1∈E,e2∈E,
e1∩e2=u,e16=e2

Ze1Ze2

− 1
4

∑

u∈V

∑

e1∈E,e2∈E,
e1∩e2=u,e16=e2

(Ze1 + Ze2)+
∑

e1∈E
Ze1

+ 1
4

∑

u∈V

∑

e1∈E,e2∈E,
e16=e2,e1∩e2=u

1− n+m





















.

(8)

(2) Calculating H2 according to C2,

C2 = α2







m

2
−

∑

e=(u,v)∈E,
u<v

Xuv







2

⇒ H2 = α2









∑

e1∈E,e2∈E,
e16=e2

1− Ze1

2
×

1− Ze2

2
+ (1−m)

∑

e1∈E

1− Ze1

2
+

m2

4









= α2





















1
4

∑

e1∈E,e2∈E,
e16=e2

Ze1Ze2

− 1
4

∑

e1∈E,e2∈E,
e16=e2

(Ze1 + Ze2) +
m−1
2

∑

e1∈E
Ze1

+ 1
4

∑

e1∈E,e2∈E,
e16=e2

1 + 1
2n(1−m) + m2

4





















.

(9)

(3) Calculating H3 according to C3,

C3 = α3

∑

e1=(u,v)∈E,
v>u

AuvXuv ⇒ H3 = α3

∑

e1=(u,v)∈E,
v>u

Auv
1−Ze1

2

= α3











− 1
2

∑

e1=(u,v)∈E,
v>u

AuvZe1+

1
2

∑

e1=(u,v)∈E,
v>u

Auv.











.

(10)

Sum all of the above sub-Hamiltonians Hi; then the total Hamiltonian is

H = H1 +H2 +H3. (11)

Observe each term in the Hamiltonian H , and it includes the coupling term Ze1Ze2 , the weighted term
Zei , and the constant term. Since constant terms do not affect the optimization process, they can be
ignored here. Without losing generality, the Hamiltonian can be written as H =

∑

e1,e2 γe1e2Ze1Ze2 +
∑

e1 we1Ze1. When α1 = 1, α2 = 1, α3 = 0, the ground state of the minimum energy corresponds to all
perfect matchings. When α1 = 1, α2 = 1, α3 = −1, the ground state corresponds to a perfect matching
with the maximum weight. When α1 = 1, α2 = 1, α3 = 1, the ground state corresponds to a perfect
matching with the least weight.
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Figure 2 (Color online) Quantum circuit diagram of 6 qubits with a variational depth of 1 layer including the initial, variational,

and measurement layers.

2.5 Finding the ground state

After constructing the total Hamiltonian H of the problem, the variational eigenvalue solver can be used
to find the ground state of the quantum Ising Hamiltonian, and the linear combination of the eigenstates
corresponding to the minimum energy value is perfect matchings. When the global constant is ignored,
since all observations of the Hamiltonian H consist only of the coupling term Ze1Ze2 and the weighted
term Zei , both of which are diagonal operators, the total operator H summed for each is also diagonal.
Let H |φi〉 = λi|φi〉, that is, φi is the eigenvector corresponding to λi. Considering the degeneracy case,
let λmin be the smallest value of all eigenvalues, and its corresponding indexes form the set M , and the
number of elements in M is equal to the number of perfect matchings; then all eigenvectors corresponding
to the eigenvalue can be expressed as |φi〉i∈M . According to [19], the eigenvalue problem of observable
values represented by the operatorH can be reformulated as the variational problem on the Rayleigh-Ritz
quotient, such that the linear combination

∑

i∈M βi|φi〉 of all eigenvectors corresponding to the smallest

eigenvalue is the optimal solution |ϕ(θ∗)〉 that minimizes 〈ϕ(θ)|H |ϕ(θ)〉, of which
∑

i∈M |βi|
2
= 1. The

variational operator consists of two parts, the first part is the variational initialization operator of the
state, and the second part is the variational operator composed of the alternating combination of the
entanglement operator and variational unit. The variational operator considered in this paper is composed

of RZ(θ) = [ e−iθ/2 0

0 eiθ/2
] and RY (θ) = [ cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)
]. Specifically, for the variational operator with

depth d,

|ϕ(θ)〉 = UVQC|0〉

= [Usingle(θ)Uentangle]
d
Usingle(θ)|0〉

=









(

n−1
⊗
i=0

RY (i, θ2nd+n+i)×
n−1
⊗
i=0

RZ(i, θ2nd+i)

)

×

(

n−2
∏

i=0

CX(i, i+ 1)

)









d

×

(

n−1
⊗
i=0

RY (i, θn+i)×
n−1
⊗
i=0

RZ(i, θi)

)

|0〉.

(12)

This variational circuit can generate arbitrary n-bit binary strings, which includes the entire optimiza-
tion space of the perfect matchings. Figure 2 shows a variational circuit of 6 qubits with a depth d = 1.
After constructing the experimental wave function, we can use the classical optimizer to minimize the
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expected value,

〈ϕ(θ)|H |ϕ(θ)〉 = 〈ϕ(θ)|
∑

e1,e2

γe1e2Ze1Ze2|ϕ(θ)〉+ 〈ϕ(θ)|
∑

e1

we1Ze1|ϕ(θ)〉

=
∑

e1,e2

γe1e2〈ϕ(θ)|Ze1Ze2|ϕ(θ)〉 +
∑

e1

we1〈ϕ(θ)|Ze1|ϕ(θ)〉

=
∑

i

λi|〈φi|ϕ(θ)〉|
2
.

(13)

Unless otherwise specified, the optimization tool used in this study is the COBYLA optimizer [24,
25]. Preparing |ϕ(θ)〉 by changing the variational parameters, and minimizing the expected value
∑

i λi|〈φi|ϕ(θ)〉|
2
, we can prepare a linear combination of eigenvectors corresponding to all perfect match-

ings, that is
∑

i∈M βi|φi〉. When it converges to the theoretical minimum, the algorithm ends, and the
experiment with the lowest energy value stores the optimal parameter θ∗ for reconstructing the linear com-
bination of eigenvectors and the linear combination of the eigenvectors output by the circuit is the encod-
ing of the answer. Repeating the above optimization process, configuring each set of optimal parameters
θ∗ into the original variational circuit for sampling, we can get the distribution D = |〈φi|ϕ(θ

∗)〉|
2
= |βi|

2
.

Considering the equivalence of each perfect matching, the expectation value for the probability of each
perfect matching after sampling under the optimal parameters of multiple random initializations and
optimization is |βi|

2
= 1
|M| , this can also be used as a basis for judging the number of perfect matchings

and what each perfect matching is. One advantage of using this sampling method over adiabatic methods
is that the target quantum Ising Hamiltonian can be computed directly, making the model independent
of device connectivity.

3 Model simulation

3.1 Scalability of the model

In order to study the scalability of the model, we select the Cycle graph of m > 6 with even-numbered
nodes for testing. A Cycle graph with m nodes has m edges, the degree of each node is 2, and the number
of perfect matchings for each Cycle graph is 2. We select the number of variational circuit layers in the
experiment as d = 1, and the variational parameters are initialized as an equal-weight superposition
state. That is, the probability of all items in the quantum state is 1/2m. Specifically, let all parameters
of RY be π/2 for the initialization operator and all other parameters θ in the variational operator be 0.
Taking the 6-qubits circuit diagram shown in Figure 2 as an example, the initial configuration of the equal
weight superposition state is to make θ[6] to θ[11] be π/2, and the rest of the parameters are 0. All the
quantum states generated under this circuit configuration have a probability of 1/26. We use pyPanda to
simulate the problem, and the scale is selected as [6, 8, 10, 12, 14], and the corresponding graphs and their
perfect matchings are shown in Figure 3(a). Each optimization repeats ten times, and each experiment
samples 8196 times. Figure 3(b) shows the experimental results, where costs are the mean values of
〈ϕ(θ)|H |ϕ(θ)〉, and success probabilities are the sum of probability of all perfect matching items. It can
be seen that as the number of iterations increases, the costs gradually decrease and converge to their
respective theoretical values, and the success probability continues to increase and converge. This shows
that the optimization process plays a role in the proposed model. Table 1 shows more detailed results,
where Params is the number of variational parameters in the circuit, Cost theo represents the theoretical
loss function value, and Cost sim is the loss function value under each optimal parameter, Suc prob is the
success probability of sampling under the optimal parameters of each optimization, that is, the sum of
the probabilities of all perfect matching items. For problems of different scales, our model can obtain the
ground state corresponding to the perfect matching with a high success probability. For Cycle graph 14,
the minimum eigenvalue of Hamiltonian after the eigenvalue decomposition is −10.5, 10 optimizations
converge to 5462 (1010101010110) and 10921 (10101010101001), and the success probability of these two
perfect matchings is 0.989± 0.011, which shows that the simulation scale can reach more than 14 qubits.
In order to verify the performance of the proposed model on other types of graphs, as shown in the upper
part of Figure 3(c), we randomly generated three groups of 14-edge graphs, which contained 6, 8, and 10
nodes, respectively. The bottom parts of Figure 3(c) show the results of the optimization. We can see
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Figure 3 (Color online) (a) Testing Cycle graphs and their perfect matchings, where different colors represent different perfect

matchings; (b) variational optimization process of the costs and success probabilities; (c) three sets of randomly generated test

cases with 14 edges. 6m14e represents 6 nodes and 14 edges, and the rest are similar. The black dashed lines represent theoretical

values.

Table 1 Test results of the Cycle graph under different qubit scalesa)

6 qubits 8 qubits 10 qubits 12 qubits 14 qubits

Params 24 32 40 48 56

Pm ind 22, 41 86, 169 342, 681 1366, 2729 5462, 10921

Cost theo −4.500 −6.000 −7.500 −9.000 −10.500

Cost sim −4.495± 0.006 −5.986± 0.020 −7.486± 0.012 −8.984± 0.015 −10.472 ± 0.030

Suc prob 0.998± 0.002 0.995± 0.008 0.995± 0.004 0.994± 0.005 0.989± 0.011

a) Params represents the number of parameters, Pm ind represents the decimal index form of the perfect matching, Cost theo

represents the theoretical loss function value, Cost sim is the loss function value under the optimal parameters for each optimization,

Suc prob is the success probability of sampling under the optimal parameters of each experiment, that is, the sum of the probabilities

of all perfect matchings.

that the optimization process can be carried out very well. The success probabilities for the three groups
of random graphs tested reached 0.946± 0.0431, 0.978± 0.003, and 0.953± 0.0489, respectively.

3.2 Effect of the variational depth

In order to study the influence of variational depth on the model, 1, 2, and 3 edges are added based on
Cycle graph 6 to form experimental cases. Figure 4(a) shows the specific test graphs. The total qubits
required are 7, 8, and 9. We select the circuit depth from 1 to 10. The decimal representations corre-
sponding to the perfect matching sequence are [38, 49, 73], [26, 70, 97, 145], and [52, 82, 140, 193, 266, 289].
Figure 4(b) shows the change of costs and success probabilities with the number of iterations. We can see
that with the increase in the number of iterations, the costs at different depths gradually decrease and
converge, and the corresponding success probabilities almost increase and converge. Overall, the deeper
the circuit, the more variational parameters are required, and the slower it converges. For a more detailed
result, the cost and success probability of the optimal result for each of the five runs is shown in Table 2.
We can see that the circuit achieves good results at shallow depths. Specifically, for the G7, a circuit
depth of 3 yields a success probability of 0.988± 0.006, for the G8, a circuit depth of 3 yields a success
probability of 0.956±0.015, and for the G9, a circuit depth of 2 yields a success probability 0.967±0.020.
Generally speaking, deeper circuits have more power in quantum computing. But when the capability of
shallow circuits is sufficient to solve the problem, deeper circuits mean a waste of resources and redun-
dancy. At the same time, due to the existence of quantum gate errors, the errors accumulated in deeper
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Figure 4 (Color online) (a) Different graphs used for testing. (b) Costs and success probabilities change during the variational

optimization process of variational circuits with different depths, and the black dashed line represents the theoretical value.

Table 2 Test results of 7, 8, and 9 qubits under different variational depthsa)

7 qubits 8 qubits 9 qubits

d Suc prob Costs Suc prob Costs Suc prob Costs

1 0.893± 0.202 −5.770 ± 0.427 0.726± 0.355 −7.255± 1.051 0.500 ± 0.305 −9.188± 1.056

2 0.889± 0.195 −5.753 ± 0.419 0.600± 0.329 −6.982± 0.852 0.967 ± 0.020 −10.395± 0.067

3 0.988± 0.006 −5.966 ± 0.018 0.956± 0.015 −7.870± 0.052 0.942 ± 0.044 −10.282± 0.185

4 0.958± 0.020 −5.874 ± 0.064 0.885± 0.090 −7.608± 0.321 0.812 ± 0.226 −9.840± 0.831

5 0.898± 0.073 −5.695 ± 0.230 0.932± 0.028 −7.728± 0.128 0.862 ± 0.094 −9.966± 0.385

6 0.924± 0.050 −5.750 ± 0.148 0.427± 0.439 −6.229± 1.326 0.371 ± 0.269 −9.023± 0.600

7 0.797± 0.147 −5.387 ± 0.415 0.892± 0.048 −7.604± 0.192 0.805 ± 0.146 −9.606± 0.639

8 0.772± 0.159 −5.318 ± 0.401 0.715± 0.252 −7.030± 0.798 0.531 ± 0.215 −8.664± 0.869

9 0.841± 0.116 −5.437 ± 0.393 0.610± 0.160 −6.829± 0.496 0.173 ± 0.153 −7.278± 1.139

10 0.742± 0.205 −5.308 ± 0.512 0.637± 0.198 −6.757± 0.538 0.506 ± 0.305 −8.441± 1.234

Theory – −6.000 – −8.000 – −10.500

a) Theory represents the theoretical loss function value, Costs is the loss function value under the optimal parameters for each

optimization, and Suc prob is the success probability of sampling under the optimal parameters for each experiment.

circuits are more significant, thus reducing the probability of success. In the noisy intermediate scale
quantum (NISQ) era, limited by the number of qubits, the fidelity of quantum gates, and the readout
error, models with shallow circuit depths are often required to obtain better experimental results, and
the proposed model can meet this well.
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Figure 5 (Color online) Costs and success probabilities vary with single-qubit or two-qubit gates’ dedepolarizing errors, with the

black dashed line representing the theoretical value.

3.3 Effect of the noise

In general, quantum noise can be divided into depolarizing errors, Pauli errors, amplitude damping
errors, phase damping errors, bit flipping errors, etc. [26]. The influence of depolarizing errors on the
success probability of the model is considered here. For a quantum state ρ, depolarizing errors mean
it has a probability p to be depolarized. That is, it has a probability p becoming a completely mixed
state I/2n, and a probability 1 − p remaining the same. Mathematically it can be expressed as ρend =
(1 − p)ρ + pI/(2n), where error probability p is a freely adjusted parameter and n is the number of
qubits. According to [27], when the circuit consists of two reversible randomly selected Clifford operators
U and U−1, where UU−1 = I, its average fidelity shows a linear growth trend with (1− p)m, where m is
the number of Clifford operators that make up U . However, the output quantum state of the proposed
model is related to the graph of the input and cannot be predicted, so the influence of error on the
success probability cannot be viewed from a global perspective and can only be studied with specific
examples. Since the proposed model only has single qubit gates RY or RZ and two-qubit gates CX , the
following considers its influence on the success probability of the model. Here, the depolarizing errors
encapsulated in Qiskit were used for simulation, with five replicates per optimization and 8196 samples
per experiment. Take a cycle graph of 6, 8, and 10 qubits with layer d = 1 as an example, where the
theoretical minimum energy value is [−4.5,−6.0,−7.5]. When the error of all single qubit gates and CX
is set to [0.1, 0.01, 0.001, 0.0001, 0.00001], respectively, the success probability of the model changes as in
Figure 5, and it can be seen that the success probability increases as the error decreases. The larger the
problem scale, the lower the success probability with the same error. For the test case, the depolarizing
error of a single qubit gate has a greater effect than that of a two-qubit gate, mainly because the number
of two-qubit gates increases by nearly 50% of that of a single qubit gate for each additional layer of
the variational circuit. In addition, when the error of single-qubit or two-qubit gate is set to 0.001, the
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Figure 6 (Color online) (a) Topological structure diagram of “OriginQ Wuyuan” superconducting quantum computer; (b) four

edges unweighted graph and weighted graph used in the experiment, and schematic diagram of the solution process; (c) experimental

variational circuit diagram.

success probability of the model can reach more than 97%, respectively. This shows that the proposed
model has good resistance to noise.

4 Experiments

The Origin Quantum Computing Technology Company is one of the leading quantum computing en-
terprises in China, and its official website has launched the quantum computing cloud platform. The
platform provides the quantum simulation tool pyPanda and the 6-qubit superconducting quantum com-
puter “OriginQ Wuyuan” [22] and provides a program interface for remote access [20]. The topology
of “OriginQ Wuyuan” is shown in Figure 6(a). It shows that six qubits are connected in a chain and
contain a set of logic gates that enable universal quantum computing. Table 3 shows more detailed pros-
perity of the superconducting quantum computer, including the operating frequency of each qubit, the
T 1/T 2 time, the readout fidelity, the single-qubit gate fidelity, and the CZ gate fidelity. The experimen-
tal verification of the proposed model in this study is carried out on this quantum computer. Here, the
unweighted graph and weighted graph of four edges are considered, and the graph to be solved and the
solution process are shown in Figure 6(b). In order to solve this problem, a total of 4 qubits are required
for the experiment. The single qubit variational operator is RZ(θ1)RY (θ2), the entanglement unit is four
qubits linear entanglement, and the variational circuit depth is one layer. The circuit diagram used is
shown in Figure 6(c), with a total of 16 parameters.

The experiment is divided into two parts: the first is to verify whether the quantum computer can
correctly obtain all perfect matchings, and the second is whether the quantum computer can correctly
obtain the maximum weighted perfect matching. The adjacency matrix of the graph is obtained first,
then the edges are labeled according to the adjacency matrix, and each edge is mapped to a spin variable.
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Table 3 Operating frequency, the T1/T2 time, the readout fidelity, the single-qubit gate fidelity, and the CZ gate fidelity of

“OriginQ Wuyuan” superconducting quantum computera)

Qubit Frequency (MHz) T1/T2 (µs) Readout fidelity F0/F1 Single gate fidelity CZ(i, j) fidelity

q0 5442 17/12.6 0.989/0.965 0.9993 (0,1)/0.9909

q1 4470 30/2.3 0.950/0.859 0.9990 (1,2)/0.9881

q2 5319 20/2.6 0.975/0.951 0.9990 (2,3)/0.9707

q3 4696 32/6.6 0.958/0.923 0.9991 (3,4)/0.9834

q4 5214.995 36/3.3 0.984/0.967 0.9992 (4,5)/0.9858

q5 4579.685 28/5.4 0.914/0.845 0.9992 –

a) The data in the table was archived from Origin Quantum Computing Technology’s website [22] on April 23, 2023.

We use the COBYLA optimizer [24] to optimize the energy to obtain the minimum energy value, and
count the costs and the success probability during each iteration (the success probability here is defined
as the sum of the probabilities corresponding to the perfect matching in the sampling of the circuit
under each set of parameter configuration). The answer is obtained based on the probability distribution
corresponding to the lowest energy. Select the variational parameters corresponding to the lowest energy,
sample the output distribution, and count the total probability corresponding to the perfect matching
to obtain the final success probability. To explore whether the initialization of parameters affects the
result, we consider two cases, the equal-weight superposition state, and the random state. For the equal
weight superposition state, let all parameter values of the second column of the initialization operator
be π/2, and all the remaining parameters be 0 so that the corresponding initial probability distribution
is uniformly distributed, that is, the probability value of each item is 1/16. For random states, the
value range of each parameter is limited to (0, 2π). Each optimization was repeated five times with 1024
samples per test.

4.1 Perfect matching of the unweighted graph

For the unweighted graph in Figure 6(b), let α1 = 1, α2 = 1, α3 = 0. According to (11), the final
Hamiltonian is

H = H1 +H2 +H3

= {0.5× ZZII + 0.5× ZIZI + 0.5× IZIZ + 0.5× IIZZ + 2}H1

+

{

0.5× ZZII + 0.5× ZIZI + 0.5× IZZI + 0.5× ZIIZ + 0.5× IZIZ

+0.5× IIZZ + 1

}

H2

= ZZII + ZIZI + 0.5× IZZI + 0.5× ZIIZ + IZIZ + IIZZ + 3.

(14)

After obtaining the Hamiltonian, we conduct experiments according to Figure 1, ignore the constant
term here, and test the optimization process from the equal weight superposition state and the random
state initialization. Among them, costs represent energy, and success probabilities represent the sum of
probabilities corresponding to perfect matchings. As can be seen from Figure 7(a), starting from the equal
weight superposition state and the random state can eventually converge. As the optimization proceeds,
the energy value gradually decreases and approaches the theoretical value −3, and the success probability
gradually increases. Both can obtain the perfect matching with a high success probability, among which
the equal weight simulation is 0.985 ± 0.017, the equal weight quantum is 0.803 ± 0.013, the random
simulation is 0.990 ± 0.011, and the random quantum is 0.692 ± 0.079. Overall, the simulation results
are better than the actual experiments. For quantum experiments, the final energy standard deviation
of the equal-weight superposition state after convergence is significantly smaller than that of random
initialization, which leads to a better success probability starting from the equal-weight superposition
state than from the random state. In order to see what the final solution is, Figure 7(b) shows the mean
value of the distribution D obtained under the optimal parameters in each optimization process. It can be
seen that the probability is mainly concentrated in 6 (0110) and 9 (1001). The 4-digit binary expressions
of 6 and 9 are 0110 and 1001, respectively. A bit of 0 in the binary expression indicates that the edge
corresponding to the position is not selected, and a bit of 1 indicates that it is selected. Therefore, 0110
represents that the second edge (1, 4) and the third edge (2, 3) are selected, and 1001 represents that the
first edge (1, 2) and the fourth edge (3, 4) are selected. These two sets {(1, 4), (2, 3)} and {(1, 2), (3, 4)}
represent two perfect matchings of the test graph. For comparison, the bottom figure in Figure 7(b)



Zheng Q L, et al. Sci China Inf Sci September 2024, Vol. 67, Iss. 9, 192502:13

Figure 7 (Color online) Obtain all perfect matchings of the unweighted graph. (a) Costs and success probabilities change during

the optimization process. The equal weight means that the initial states are equal-weight superposition states, and the random

weight means that the initial states are random quantum states. Sim. is the simulation result, and Real is the test result on a real

quantum computer. (b) The mean of the sampling distribution under the optimal parameters of multiple runs and the theoretical

eigenvalue distribution of the Hamiltonian.

shows the distribution of eigenvalues after Hamiltonian decomposition. It can be seen that the minimum
eigenvalue is −3, and its corresponding positions are 6 (0110) and 9 (1001), which are the two perfect
matching indexes of the original graph. This shows that the model can achieve all perfect matchings,
and the experiment is consistent with the theory.

4.2 Maximum weight perfect matching of the weighted graph

For the weighted graph in Figure 6(b), the weight of the fourth edge is 2, and the rest are 1. The goal at
this time is to obtain the maximum weighted perfect matching of the graph. Let α1 = 1, α2 = 1, α3 = −1.
According to (11), the final Hamiltonian is

H = H1 +H2 +H3

= {0.5× ZZII + 0.5× ZIZI + 0.5× IZIZ + 0.5× IIZZ + 2}H1

+

{

0.5× ZZII + 0.5× ZIZI + 0.5× IZZI + 0.5× ZIIZ+

0.5× IZIZ + 0.5× IIZZ + 1

}

H2

+{ZIII + 0.5× IZII + 0.5× IIZI + 0.5× IIIZ − 2.5}H3

= ZIII + 0.5× IZII + 0.5× IIZI + 0.5× IIIZ + ZZII

+ZIZI + 0.5× IZZI + 0.5× ZIIZ + IZIZ + IIZZ + 0.5.

(15)

We perform experiments according to Figure 1 after obtaining the Hamiltonian, where constant terms
are ignored. The optimization processes initialized from the equal weight superposition state and the
random state are tested in Figure 8(a), where costs represent energy and success probabilities represent
the probabilities of the maximum weighted perfect matching. We can see that both the equal weight
superposition state and the random state initialization can eventually converge. As the optimization
processes, the energy value gradually decreases and approaches the theoretical value of −3.5, and the
success probability gradually increases and converges. As shown in Figure 8(b), the correct answer
can be obtained from both the equal weight superposition state and the random state initialization.
Both can obtain the maximum weighted perfect matching with a high success probability, including the
equal weight simulation with 0.974 ± 0.018, the equal weight quantum with 0.787 ± 0.020, the random
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Figure 8 (Color online) Obtaining the maximum weight perfect matching of the weighted graph. (a) Changes in costs and success

probabilities during the optimization process. The equal weight indicates that the initial state is an equal-weight superposition

state, and the random weight indicates that the initial state is a random quantum state. Sim. is the simulation result, and Real

is the test result on a real quantum computer. (b) The mean value of the sampling distribution under the optimal parameters of

multiple runs and the theoretical eigenvalues distribution of the Hamiltonian.

simulation with 0.966± 0.039, and the random quantum with 0.610± 0.126. Overall, the results of the
simulation are better than those of the quantum experiments. For quantum experiments, we gain a better
success probability from the equal-weight superposition state than from the random state. In order to see
what the final solution is, Figure 8(b) shows the mean of the resulting distribution D under the optimal
parameters during each optimization. We can see that the probability is mainly concentrated on 9 (1001).
For comparison, the bottom figure in Figure 8(b) shows the distribution of eigenvalues after Hamiltonian
decomposition, and we can see that the minimum eigenvalue is −3.5, and its corresponding position is
9 (1001), which is the maximum weighted perfect matching index of the original graph. This shows that
the experiment is consistent with the theory, and the model can correctly obtain the maximum weighted
perfect matching.

5 Conclusion

In conclusion, in order to solve the problem of what exactly the perfect matchings of the graph are. We
propose a QUBO formula for the perfect matchings and translate it into the Ising Hamiltonian. The
Hamiltonian that ignores the constant term is the diagonal operator. By decomposing the Hamiltonian,
we can obtain the solution to the problem according to the eigenvectors corresponding to the minimum
eigenvalue. On one of Origin Quantum Computing Technology Company’s quantum computers, we sim-
ulate and test the unweighted and weighted graphs of 4 edges. The experimental results show that for the
setting of initial parameters for the variational quantum circuit, whether starting from the random state
or from the equal weight superposition state, the loss function can eventually converge. After repeating
the experiment multiple times, the success probability of perfect matchings or maximum weighted perfect
matching can be significantly higher than that of other terms, and the test and simulation results match
well. In terms of model scalability, we choose the Cycle graph for testing, and the scale of the simulation
can support more than 14 qubits. In addition, we study the influence of noise on the proposed model and
show that it can effectively resist the influence of depolarizing noise and obtain a high success probability
at shallow variational depths. However, the proposed method also has some limitations. For example,
as a hybrid model of a quantum annealing model and artificial intelligence (AI) method, the proposed
method requires multiple samplings to obtain results and requires a combination of quantum and classical
computers to run. In addition, due to the heuristic algorithm used in the optimization process, like other



Zheng Q L, et al. Sci China Inf Sci September 2024, Vol. 67, Iss. 9, 192502:15

AI methods, there is no guarantee that the best results will be obtained. However, this problem can be
improved by increasing the number of repeated runs. The proposed model provides a new perspective
for solving combinatorial optimization problems.
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