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Abstract Causation promotes the understanding of correlation to an advanced stage by elucidating its

underlying mechanism. Although statisticians have specified the possible causal relations among correlations,

inferring causal structures is impossible from only the observed correlations in the classical world. Quantum

correlations encapsulating the most defining aspects of quantum physics have taken a new turn for the

causal inference problem — the two-point spatial and temporal quantum correlations with observationally

discernible characteristics correspond exactly to the two most basic causal structures. However, a direct

causal interpretation for quantum correlations has only been established in very limited cases. Here, we

explore to what extent quantum correlations promote causal inference. Theoretically, we have found that

the distinguishable causal regime of two-point Pauli correlations can be expanded from a single value to

an asymmetric interval, and the causal structures determining the quantum correlations can be interpreted

by a simple distance criterion. Experimentally, we have devised and implemented a versatile non-unital

quantum channel in an optical architecture to directly observe such an asymmetric interval. The setup

enabled quantum causal inference without any requirement of active intervention, which is impossible in the

classical realm. Our work facilitates the identification of causal links among quantum variables and provides

insight into characterizing causation and spatial-temporal correlation in quantum mechanics.

Keywords causality, quantum information, quantum channel, channel-state duality, non-unital channel

1 Introduction

Identifying cause and effect has been one of the most significant objectives in modern science [1]; even
the long-standing Reichenbach’s principle [2] has pointed out the direction to consider this problem:
any observed correlation between two variables can be explained by a direct cause or an unobserved
latent variable acting as the common cause. It is still impossible to distinguish between these two
fundamental causal structures without the assistance of tools like interventions and instrumental vari-
ables [3–5]. All these causal discovery approaches assume access to additional resources beyond obser-
vational data; however, this may not be the case in many scenarios like determination of virus conta-
giousness [6, 7] and drug efficacy [8–10] in a pandemic era. Hence, using fewer resources to dig out the
in-depth causal relationship between variables from the observed correlation data is a significant task
with potentially broad interdisciplinary applications.

On causal discovery in the quantum realm, the simplest quantum correlations that imply the two
basic causal structures are the two-point temporal quantum correlation (TQC) and spatial quantum
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correlation (SQC), the former is obtained by measuring two observables at two ends of a quantum
channel and the latter by measuring two observables at each part of a bipartite system. A counter-intuitive
phenomenon is that it is possible to infer causal structures of quantum correlation with only observational
data [11]: the two-point TQC and SQC exhibit different parity in the vicinity of the correlation polytopes’
extremals [12]. This causal inference of these two quantum correlations hinges on the unique feature
of the quantum system: for TQC, it originates from the coherence owned by the quantum unitary
channel, and for SQC, the maximal entangled state presented by the bipartite state [13]. However, despite
quantum causal modeling is currently a vibrant research frontier with significant theoretical [14–20]
and experimental [21–25] progress, to what extent the quantum feature in causal inference sustains in
practical settings, e.g., in correlations induced by non-unital channels due to the decoherence in a noisy
intermediate-scale quantum [26] network or non-maximally entangled state, is poorly understood.

To address this question, we first start with a full characterization of two-point quantum correlations.
The study of the discrepancies between TQCs and SQCs [27,28] has been a continuous topic of experimen-
tal interest [29,30]. As there is no analog to the monogamy of entanglement [31] governing TQCs [32,33],
multi-point TQCs exhibit a richer behavioral scope than the spatial one [34–36], rendering TQCs indis-
pensable for the interpretation of specific observed statistics [37]. In a preceding work [38], one of us
authors also showed that the sets of two-point TQC and SQC do not have a one-to-one correspondence.
Therefore, the parity of correlations fails to capture the essence of causal structures in general cases, in
contrast to the extremal cases in [11].

Taking such an asymmetry into account, here we have thoroughly analyzed the implication of two-
point quantum correlations to infer their causal structures. We have implemented an optical experiment
to directly observe the asymmetric domains of spatial-temporal Pauli correlations and their influence on
causal discovery. Our main technical contribution is the systematic realization of a fully-controlled pho-
tonic non-unital channel which, together with a non-maximally-mixed input state, suffice to activate the
asymmetry between SQC and TQC. We also visualized this asymmetry with a geometrical representa-
tion of two-point Pauli correlations [38–41]. Furthermore, in the same vein of this geometrical viewpoint,
we used a metric based on Euclidean distance to classify TQC and SQC, and explore their utility as a
causal witness to link quantum correlations and causation. Although the experiment here only involves
two-point quantum correlations, the experimental method is highly general, modular and standardized,
thus applicable in the investigation of multi-point correlations in higher-dimensional systems. Therefore,
we envision that our photonic experiment will facilitate the investigation of quantum correlations and
causality in practical quantum networks in the near future.

2 Results

2.1 Observational quantum causal discovery

Our aim in this paper is to distinguish between the two paradigms of basic quantum causal structures,
namely, the direct cause engendering TQCs and the common cause giving rise to SQCs, using only
observational statistics. The scenario is best explained by a quantum comb representation [42]. Explicitly,
Figure 1(a) describes a TQC generated from a single-qubit state ρ0 that evolves into a completely positive
trace-preserving (CPTP) map εB|A, whereas Figure 1(b) describes a SQC generated from two subsystems
connected by a two-qubit state ρAB. Both the two-point TQC and SQC are obtained by measuring the
Pauli operators σA

i and σB
j with i, j ∈ {1, 2, 3} and extracting the statistics restored at the reservoirs RA

and RB .

In general, observational causal discovery is intractable for classical correlations because a properly
chosen latent variable acting as a common cause can nevertheless explain the correlations from a direct
cause structure. Consequently, although the measurement of σA

i temporally precedes that of σB
j , the

nature of the cause and effect between the two events are not a priori known, and additional resources
like active intervention or instrumental variables are required for deducing causation. However, the
diverse behaviors of quantum correlation enable the observational causal discovery between quantum
observables. Our objective is to determine whether the two-point correlation

〈

σA
i σ

B
j

〉

is temporal (induced
by a CPTP channel) or the correlation is spatial (compatible with a bipartite state), as the gray shades in
Figure 1(c).
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Figure 1 (Color online) Inferring causal structure from quantum correlations in space-time. (a) The two-point TQC. A single

qubit ρ0 is measured at two instances in time, tA and tB , by two Pauli measurements, M̂σi
and M̂σj

, with a CPTP map εB|A

between them. The measurements collapse the qubit according to Lüder’s rule [43]. The results are stored in two reservoirs RA

and RB and retrieved later to extract the correlation. (b) The two-point SQC. The two-qubit state ρAB are successively measured

at time instances tA and tB by two Pauli measurements M̂σi
and M̂σj

, respectively. The evolutions of the two subsystems after

preparation occur independently of one another. (c) The simplest task in the quantum causal inference is to identify whether the

statistical two-point quantum correlation of the quantum comb is a TQC induced by a direct causal link or a TQC induced by a

quantum common cause.

To exemplify the quantum feature, we focus upon a subset of two-point Pauli correlations,

{〈

σA
1 σ

B
1

〉

,
〈

σA
2 σ

B
2

〉

,
〈

σA
3 σ

B
3

〉}

.

The correlations in the temporal domain are generated by two sequential measurements: the first mea-
surement σA

i with outcome ±1 causes the quantum state to collapse as ρ0 → ρ′ν = (I+νσi)/2, ν = ±1 [43];
subsequently, the quantum channel is applied on the collapsed state and the second measurement σB

i is
cast after the channel operation. The resulting TQC read

〈

σA
i σ

B
i

〉

t
:=

∑

ν=±1

Tr

(

ρ0
I + νσi

2

)

Tr
[

εB|A(ρ′ν)σi

]

. (1)

As shown in Supporting information and [38], these correlations can be further evaluated as

〈

σA
i σ

B
i

〉

t
= Tr

[

εB|A (σi)σi + 〈σi〉ρ0
εB|A (σ0)σi

]

, (2)

where σ0 = I is the identity matrix, and 〈σi〉ρ0
= Tr (ρ0 σi) is a shorthand for the expectation of the

Pauli matrix σi on the state ρ0. On the other hand, for the correlations in the spatial domain, an SQC
is simply the Pauli correlations of a bipartite system:

〈

σA
i σ

B
i

〉

s
:= Tr

[

ρAB (σA
i ⊗ σB

i )
]

. (3)

Our first observation for an observational quantum causal discovery is that the spatial and temporal Pauli
correlations have different parities. Indeed, the four Bell states are the common eigenstates of the three
Pauli product operators, each with the product of the three eigenvalues being C := Π3

i=k

〈

σA
k σ

B
k

〉

= −1;
whereas the Pauli channels ρ → σiρσi cause the product of the three correlations to be C = +1 due
to the Pauli operators being anti-commutative and involutory. In [11], the authors have exploited this
property of spatial-temporal correlations to realize a causal inference in the above extremal cases.

With the above parity criterion, only some very contrived causal relations can be distinguished; further-
more, the criterion is not robust against any noise. To address these issues and put the unique quantum
feature in causal discovery into a pragmatic context, we use the three two-point Pauli correlations to form
a set of coordinators in the Euclidean space. This geometric perspective actually supplies the generality
and robustness. Starting by considering the spatial domain, the Pauli SQC of any two-qubit state can
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be obtained from its expansion on the Bell states; it is but the average of the Bell states’ correlations
weighed by the moduli of the expansion coefficients. Therefore, in the geometric picture, all SQCs fall in
a tetrahedron with odd-parity vertices {(−1)m, (−1)n, (−1)1+m+n}, m,n ∈ {0, 1} corresponding to the
Bell states [44, 45].

The situation in the temporal domain is comparatively more complicated. The first term of (2) is
a direct analogue of (3), so when the second term of this (2) vanishes, the set of TQCs reduces to a
tetrahedron Tt with its vertices given by even-parity coordinates, {(−1)m, (−1)n, (−1)m+n}. Physically,
this requirement can be specified as either the initial state ρ0 is maximally mixed, or the channel is unital
(εB|A(I) = I). The parity difference between Tt and Ts originates from the renowned Choi-Jamio lkowski
isomorphism, which sets a one-to-one correspondence between an arbitrary quantum channel and a bi-
partite quantum state

ρChoi
AB

(

εB|A

)

=
(

IA ⊗ εB|A

2

)

∑

ij

|ii〉〈jj|AB, (4)

where IA denotes the identity super-operator acting on the first subsystem. With the Choi-Jamio lkowski
isomorphism, every TQC induced by a given channel, with a maximally-mixed input state, can be calcu-
lated as

〈

σA
i σ

B
i

〉

t
= Tr

[

ρChoi
AB

(

εB|A

)PT
(σA

i ⊗ σB
i )

]

,

where PT indicates partial transpose over the first subsystem. This partial transpose causing a geometrical
symmetry about the

〈

σA
2 σ

B
2

〉

= 0 plane between Tt and Ts accounts for the parity difference between
Tt and Ts. However, when the second term of (2) is non-zero, the conditional symmetry from the
Choi-Jamio lkowski isomorphism breaks down. In [38], one of us authors has shown that under this
circumstance, the TQCs stuff a dilated tetrahedron with the same vertices as Tt, denoted as Qt. Its
surfaces are described by the following parametric equations:

〈

σA
1 σ

B
1

〉

= cos(u),
〈

σA
2 σ

B
2

〉

= cos(v),
〈

σA
3 σ

B
3

〉

= cos(u − v), u ∈ [0, 2π], v ∈ [0,π].

In Section 4, we further show that the surfaces of Qt can be efficiently encompassed with a family of
photonic non-unital channels acting upon a pure input state. Next, we proceed to the experimental
implementation of the non-unital evolution and characterization of the bounding set, Qt.

2.2 Experiment

Our photonic setup realizing the non-unital channel is depicted in Figure 2. The single photon’s polar-
ization degree of freedom is used to register the qubit, with |H〉 (|V 〉) denoting the horizontal (vertical)
polarization state. In the preparation stage, heralded, |H〉-polarized single photons are generated by
pumping a poled potassium titanyl phosphate (ppKTP) crystal. After the first projection of σA

i (at time
tA) using a group of the half-wave plate (HWP) and quart-wave plate (QWP), the measurement result
is stored in the orbital angular momentum (OAM) using a spatial light modulator (SLM) temporarily.
The second group of HWP and QWP is used to revert the polarization of the photons. Subsequently, we
implement the non-untial channel εB|A to refactor the two-point TQC beyond the paradigmatic Tt. The
second projection measurement σB

i (at time tB) is achieved by the last pair of HWP and QWP as well as
a polarization beam splitter (PBS). Finally, after the sequential measurements, the photons of different
post-measurement states are split into four spatial modes by two SLMs, which are then collected by four
single-photon avalanche detectors (SPADs). The coincidence counting rates at the four exits with the
trigger photon reveal the desired TQC, 〈σA

i σ
B
i 〉 (here and after we omit the subscript for convenience).

The details of the experimental setup are given in the Methods section.
We first work with the geometrical picture to illustrate the symmetry and asymmetry between the

set of TQC and SQC. As presented in Figure 3(a), the restricted set of TQCs with a vanishing second
term of (2), Tt, is represented by a red tetrahedron; its spatial counterpart Ts is reflected about the plane
〈

σA
2 σ

B
2

〉

= 0, and is represented by the blue tetrahedron. The set of all possible TQCs is depicted by
the red translucent “inflated tetrahedron”, Qt. Compared with the Tt inside it, the inflated Qt inscribes
a volume that is approximately 85% larger, which manifests additional allowable correlation statistics.
For example, at the face centers of Qt, the parity indicator C = − 1

8 reaches its minima, smaller than
C = − 1

27 obtained at the face centers of Tt. Moreover, Qt has some partial overlap with Ts in addition
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Figure 2 (Color online) Experimental setup. Ultraviolet continuous-wave laser pumped a periodically ppKTP crystal to produce

polarization-entangled photon pairs. The first SLM encoded the measurement outcomes in the spatial profiles of the photons

and the basis of the first measurement is selected by a set of wave plates. After another set of wave plates recovered the initial

polarization of the photon, it entered the non-unital channel implemented by an unbalanced Mach-Zehnder interferometer. Then,

the polarization state of the photon was measured again by wave plates and PBS. Two SLMs transformed different spatial modes

of the signal photon into different propagating directions. Finally, the photos were detected by SPADs at the four exit angles.

Figure 3 (Color online) Geometry of two-point quantum correlations. (a) The red tetrahedron Tt describes the two-point TQC

conditioned on a maximally mixed initial state or unital channel evolution, whereas the blue tetrahedron Ts describes the two-qubit

SQC. They are symmetric about the 〈σA
2
σB
2
〉 = 0 plane. The red translucent “inflated tetrahedron” Qt encircling Tt represents

all sets of TQC resulted by a non-unital channel between two single-qubit measurements. The orange- and cyan-coloured points

represent the experimental results of the two typical parametric Kraus operators with v = 2u and u ∈ [0,π/2], and u = 2π/3 and

v ∈ [0, 2π/3], respectively; the two curves correspond to the theoretical predictions. The 3σ error bars are too small to be displayed.

(b) Schematic illustration of the duality between TQC and SQC. Upper: dependence of TQC upon the mixedness of the initial

state ρ0 (horizontal axis) and the unitality of the CPTP map (vertical axis). Lower: dependence of SQC upon the mixedness of the

two marginal states, ρA = TrB [ρAB ] and ρB = TrA[ρAB ]. The regions with dashed diagonal lines exhibit geometrical symmetry

between Tt and Ts in Euclidean space.

to the octahedral region Os = Ts ∩ Tt, which physically represents the SQC that is generated by the
two-qubit separable states [44, 45].

The above analysis was best illustrated by our experimental results. We chose two trajectories as
instances on the surface of Qt represented by the orange and cyan theoretical curves in Figure 3(a) and

investigate the quantum correlation functions of these two exemplary curves, i.e., C ≡ ∏3
i=1〈σA

i σ
B
i 〉 [11].

By adjusting the parameters of the quantum channel, we obtained the orange and cyan points selected
from these two sets of groups and investigated the detailed information of states in experiments. We
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found that after the evolution of the non-unital channels, most of the points lay outside Tt, and the
maximal distance of the data points from the nearest surface of Tt was 0.250± 0.014, falling just slightly
short of the theoretical maximum of

√
3/6 because of experimental imperfections. The data point at

coordinates (−0.493, 0.515, 0.427) yielded a parity indicator of C = −0.108 very close to the theoretical
lower bound of TQC-allowed domain, [− 1

8 , 1]. We see that the introduction of the non-unital channel
breaks the symmetry in statistics of C between direct cause effects (C ∈

[

− 1
27 , 1

]

) and common cause

effects (C ∈
[

−1, 1
27

]

) [12]. The standard deviation of the distance measure is numerically estimated via
Monte Carlo simulation. More information of the 3D plots is presented in Supporting information.

We now switch to another legible perspective displayed in Figure 3(b) to further expound the rela-
tionships between Qt, Tt and Ts. Here, the upper red square categorizes the possible sets of two-qubit
TQCs, (1), according to different combinations of initial state and quantum channel, which together span
Qt in Figure 3(a). The lower blue square classifies the possible sets of two-point SQCs, (3), captured
by the blue tetrahedron, Ts in Figure 3(a), with different cases of marginal states ρA = TrB[ρAB] and
ρB = TrA[ρAB]. First, due to the Choi-Jamio lkowski isomorphism (4) mapping any quantum channel
to a bipartite quantum state with one of the subsystem being maximally mixed, the TQCs induced by
a maximally mixed initial state corresponding to the red squares 1+2 conjugate with the SQCs from a
one-side maximally mixed two-qubit system corresponding to the blue squares 1+2. As the Bell states
all have maximally mixed marginal states, the blue square 1 already gives all possible SQCs. Second,
according to the form of (2), the set of TQCs from an arbitrary initial state ρ0 subjecting to an unital
channel (red squares 2+3) equals which caused by a maximally mixed initial state ρ0 = I/2 subjecting to
an arbitrary choice of the quantum channel (red squares 1+2). This concludes our analysis that the con-
currence of a non-maximally mixed input state and the non-unital channel (small red square 4) produces
non-trivial TQCs with no SQCs as analog.

2.3 Causal influences

Knowing the asymmetry between TQCs and SQCs, we are now in a position to quantify the domains
of spatial-temporal correlations and realize a robust observational causal inference. Going beyond the
paradigm of the parity criterion [11], our geometric method is capable of identifying a large class of causal
relationships. Here, we focus on a very characteristic region of correlations, (Qt \ Tt) ∩ Ts. As already
discussed in Subsection 2.2, no previous parity criteria overlooking the effect of non-unital channels can
correctly explain the origin of such correlations. To the best of our knowledge, the causal structure of
this region has been little investigated. In this case, further tools are required to reveal the underlying
causality and quantify the two-point quantum correlations.

For the inquiry of causal influence, we now define some useful quantities borrowed from the concepts
of quantum entanglement. For an unknown-type quantum correlation represented by a point in the
geometric picture, the witness of spatial correlation, SC, is defined as its signed Euclidean distance to
the nearest facet of Ts; the witness of entanglement, EW , is defined as the Euclidean distance between
the point and the nearest point of the octahedron Os [46]. When the point is inside the polyhedron, the
corresponding witness is positive. Furthermore, to faithfully certify the TQC, we resort to the pseudo-
density matrix (PDM) (Supporting information and [39]) formalism of the two-point correlation. The
formal definition of the PDM, R, is given in Section 4; note that the PDM contains inhomogeneous
Pauli correlations 〈σA

j σ
B
k 〉, j 6= k and is obtained via tomographic reconstruction. In this language, the

negativity of temporal correlation is defined as T C = ‖RAB‖tr − 1, and a nonzero T C indicates the
two-point correlation must interpreted as a TQC (Supporting information and [39]).

We use the above-defined quantities to analyze the causal aspects of the experimental data points
in Figure 3(a). The results are shown in Figure 4. The green, blue and red curves correspond to the
theoretical T C, SC and EW values of the states, respectively. We see that in both sets of states, T C > 0
was satisfied by all data points, confirming a direct cause origin of the correlations. In Figure 4(a),
wherever u > 0.90 rad, SC > 0, so the TQC and SQC were not distinguishable solely through statistical
analysis of the Pauli correlations 〈σA

i σ
B
i 〉. The same phenomenon can be observed in Figure 4(b) when

0.75 rad < v < 1.33 rad. Note that when both T C > 0 and SC > 0, the latter can serve as a witness of
a quantum non-unital channel as no TQCs located in the region (Qt \ Tt could be induced by an unital
channel. Furthermore, the entanglement witness EW went as low as −0.237 ± 0.016, indicating that
these TQCs generated by our experimental non-unital channel can mimic the correlations of two-qubit
entangled states. From the geometrical picture, the imitation of entangled-state statistics is evidently
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Figure 4 (Color online) Quantified results for the correlations and the entanglement witness. (a) and (b) correspond to the orange

and cyan points in Figure 3, respectively, and each data point corresponds to an experimental PDM R or three Pauli correlations

〈σA
i σB

i 〉 acquired from the measurements of a qubit at two time instances. The horizontal coordinates denote the parameters of the

corresponding channel. The blue lines represent the theoretical SQC values, SC, of the states. There are two SC functions in (b)

because the points in this case need to be bounded by two functions. The green points are the TQC values of the states, and the

red points are the experimental EWs, calculated only for those states satisfying SC > 0. The data points of each color represent

the corresponding experimental values, and the error bars represent the 3σ standard deviation.

not achievable using only the unital channels. Therefore, our experiment has demonstrated an advantage
of the non-unital channel in quantum information tasks.

It is interesting to remark that the existence of direct causal links logically implies signaling, i.e.,
information is passed forward in time, which intuitively motivated a bound for quantum channel capacities
based on quantifying temporal correlations in [47]. Indeed, such ability to signal is part and parcel of
the distinction between TQC and SQC, and therefore ultimately responsible for the difference in the
bounding sets for the temporal and spatial scenarios. Here we have seen that, as a result of the broken
symmetry there is an overlapping region of allowable two-point TQCs and SQCs (Qt ∩ Ts) \ Os, which
allows for temporal signaling to mimic statistics produced by spatial entanglement and vice versa, albeit
not maximally in either case.

3 Methods

3.1 Detailed experiment setup

In our experiment, a photonic setup is adopted to generate a non-unital evolution on a single-qubit state
and implement two temporal measurements at two ends of the channel in order to extract the two-
point TQC. The detailed experimental setup has been shown in the main text as Figure 2. It contains
the following components: photon source, state preparation, first measurement, the non-unital channel
evolution, second measurement, and results readout. Here, we give a detailed account of the techniques
used in our experiment. A periodic ppKTP crystal is pumped by an ultraviolet continuous-wave laser
with a central wavelength of 404 nm to generate heralded single photons with a central wavelength of
808 nm through type-II spontaneous parametric down-conversion. An interference filter (not shown in
the figure) is inserted to remove the residual pumping light.

3.1.1 First measurement

The application of the first SLM in this step is to register the outcome of the first polarization measure-
ment, implemented by the first group of QWP and HWP, into the OAM degree of freedom. Throughout
this subsection, we denote the state of the photon by the tensor product of its polarization state and
OAM state. The computational basis of are related to the polarization state by the correspondence
|0〉pol ↔ |H〉 , |1〉pol ↔ |V 〉 with |H〉 and |V 〉 denoting the horizontal and vertical polarization of the

photon, and to the OAM state by |0〉OAM ↔ |ℓ = 0〉 , |1〉OAM ↔ |ℓ = +2〉 with ℓ denoting the OAM
charge (modulo ~) of the photon.

To achieve this non-demolition measurement of the polarization state it is enough to cast a controlled-
not gate from the polarization qubit to a blank OAM state. The gate is based on the polarization-
sensitive nature of the SLM: it only imprints the phase of the hologram onto vertically-polarized photons.
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Therefore, measurement of σA
i can be achieved by first casting a polarization unitary |H〉

〈

σ+
i

∣

∣+ |V 〉
〈

σ−
i

∣

∣,

in which
∣

∣σ±
i

〉

denotes the eigenstate of σi with an eigenvalue of ±1, then imprinting a spiral phase which
adds an OAM charge of ∆ℓ = +2 on the photonic wavefunction, and finally reverting the polarization
unitary with the second group of HWP and QWP. For an arbitrary polarization state α

∣

∣σ+
i

〉

+ β
∣

∣σ−
i

〉

,
the first measurement effectively performs the controlled-not gate with the state conversion

(

α
∣

∣σ+
i

〉

+ β
∣

∣σ−
i

〉)A |0〉 → α
∣

∣σ+
i

〉A |0〉 + β
∣

∣σ−
i

〉A |1〉 .
After the measurement, the OAM state |0〉OAM is carried by a zeroth-order Gaussian mode and |1〉OAM

is carried by a co-propagating second-order Laguerre-Gaussian mode.

3.1.2 Photonic non-unital channel

After finishing the first measurement procedure, the photon enters into the non-unital channel step.
This realization forms the principal contribution of our experimental work. The completely positive
requirement enables some sets of possible channel εB|A to be trigonometrically polarized in the Pauli
basis, and can be characterized by the Kraus operators [48, 49]:

K+ =
[

cos
v

2
cos

u

2

]

σ0 +
[

sin
v

2
sin

u

2

]

σ3

=





cos
v − u

2
0

0 cos
v + u

2



 , (5)

K− =
[

sin
v

2
cos

u

2

]

σ1 − i
[

cos
v

2
sin

u

2

]

σ2

=





0 sin
v − u

2

sin
v + u

2
0



 , (6)

where v ∈ [0,π], u ∈ [0, 2π]. The effect of this CPTP channel applied on an arbitrary single qubit in state

ρ is εB|A(ρ) = K+ρK
†
+ + K−ρK

†
−, which maps the family of density operators from the state space HA

at time tA to the state space HB at time tB. Observe that from the definition of the Kraus operators,
the matrix form of K+ (5) will have only real terms in the diagonal entries and K− (6) will have only
real terms in the off-diagonal entries in the computational basis. The mathematical form of the Kraus
operators inspires us to construct the non-unital evolution by first implementing two qubit non-unital
channels with diagonal matrix form, i.e., K+ρK

†
+, then apply on one of them a σx transformation to

switch to evolution with off-diagonal form, i.e., K−ρK
†
−, and finally synthesize the non-unital channel

from the probabilistic mixture of the two subchannels.
Experimentally, the non-unital channel is constituted by an unbalanced Mach-Zehnder interferometer,

with the photonic wavefunction undergoing the K+ (K−)-induced evolution in the upper (lower) arm of
the interferometer. The length difference between the two arms is about 20 cm, which is much longer
than the coherence length (≈ 0.2 mm) of the photons used in the experiment; this way, the coherence
between the two arms is destroyed and the output of the unbalanced Mach-Zehnder interferometer can
be expressed by two Kraus operators. For the range of parameters u, v that we are interested in, the
matrix element in the second row (which is applied on the |V 〉-polarized photonic wavefunction) of both
K+ and K− will have no greater absolute values than the one in the first row (which is applied on the
|H〉-polarized photonic wavefunction). Therefore, an amplitude filtering on the |V 〉-polarized photons
suffices to realize the K+-induced evolution up to a renormalization of the wavefunction [50]; together
with an HWP oriented at 45◦ the K+-induced evolution can also be implemented.

The neutral density filters (NDs) are used to induce a decrease of the wavefunction amplitude cor-
responding to the photons on a specific path. We use two sets of beam displacers (BDs) to separate
and re-combine the propagating paths of the |H〉- and |V 〉-polarized photons, and add an adjustable
density filter on the path of the |V 〉-polarized photons to induce the on-demand amplitude damping. We
also add an HWP with its optical axis oriented at 45◦(0◦) in the lower (upper) arm of the unbalanced
interferometer to induce the σx transformation necessary for the K− Kraus operator, and two adjustable
density filters in both arms before the BDs to compensate the amplitude ratio before the K+ and K−

subchannels. The four filters are installed on motorized rotation stages controlled by a lab computer, and
programmed to conduct the precise control of our non-unital channel parameters u, v with high precision.
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3.1.3 Second measurement and extraction of TQC

At this stage, the photons have finished the non-unital evolution, and we make the second measurement to
extract the desired TQCs. The second measurement is a joint measurement on the polarization and OAM
degrees of freedom. The measurement of the polarization state σB

i is a standard projective measurement
implemented by a set of wave plates and a PBS; the orientations of the wave plates are selected such that
the +1(−1) eigenstate of σi, viz,

∣

∣σ+
i

〉

(
∣

∣σ+
i

〉

), is rotated to |H〉 (|V 〉) and pass through (is reflected by)
the PBS.

The measurement of the OAM state that now carries the information of σA
i , on the other hand, is based

on the observation that a photon carries nonzero OAM charge ℓ 6= 0 cannot be collected by a single-mode
fiber due to their orthogonal spatial modes. We put two SLMs on the two outbound paths of the PBS
to implement the OAM state discrimination, with one HWP oriented at 45◦ inserted before one of the
SLMs so it can modulate horizontally-polarized photons. The phase holograms displayed on the SLM
are comprised of two parts: a blazed grating in the central area that deflect the photons with |ℓ = 0〉 to
the left, and a forked grating in the peripheral area that deflects the photons with |ℓ = +2〉 to the right
and add an OAM charge of ∆ℓ = −2 to these photons. The photons, now propagating along different
directions according to their initial OAM state, are collected by four SPADs (two for each polarization
state) whose counting rates give the detection probabilities on a specific basis. Although the intensity
profiles of |ℓ = 0〉 and |ℓ = +2〉 photons are not completely separated and some photons in the transition
area may be deflected to the opposite direction, they will have nonzero OAM charge at the fiber coupler
and consequently cannot contribute to the counting events. The separation of |∆ℓ| = 2 provides decent
orthogonality between the two spatial modes and the extinction ratio between the two OAM modes is
estimated to be above 104. To guarantee the collection efficiency of the l = 0 and l = 2 modes to be the
same, we have used an adjustable collimator and fine-tuned the distance between it and the fiber tip. We
have measured the counting rate of the two bases and the difference is within 2%.

The probabilities of different measurement outcomes are obtained by normalizing photon counts in
certain paths to the total photon counts. Here, we denote the probabilities by p±±

AB , where the two
superscripts denote the outcomes of the first and second measurements. With these four probability
distributions at hand, we can calculate the expectation value of the correlation as

〈

σA
i σ

B
i

〉

=(+1) × (+1) · p++
AB + (+1) × (−1) · p+−

AB

+ (−1) × (+1) · p−+
AB + (−1) × (−1) · p−−

AB

=p++
AB + p−−

AB − p+−
AB − p−+

AB.

(7)

Because we have adopted four SPADs to record the counting rates of all four possible combinations
of the two-qubit measurements, the normalization of detection probabilities can be made within an
orthonormal basis and does not span over different settings of the non-unital channel and different phase
masks displayed by the SLM, making the recorded statistics more robust against possible experimental
imperfections.

3.2 PDM

The PDM formalism introduced in [39] is particularly useful for more deeply investigating into the
relationship between TQC and SQC in the overlapping region. A two-point PDM is determined by
the expectation values of all combinations of two-point Pauli measurements on the qubit: RAB :=
1
4

∑3
j=0

∑3
k=0

〈

σA
j σ

B
k

〉

σA
j σ

B
k . To this end, we experimentally measure all of the correlations of the dark

orange and cyan points in Figure 3(a) and deduce the PDM using quantum-state tomography, which
allows for computation of a scalar measure of causality based on the trace norms of the PDM: T C =
‖RAB‖tr − 1, and ‖RAB‖tr represent the sums of the singular values of the PDM.

4 Conclusion

We have investigated the cause and effect relation in two-point quantum correlations which has several
drastically different properties from the classical cases. First, we gave a geometrical illustration of the
bounding sets of the two-point temporal and SQC and observed an inherent asymmetry between them by
transferring a non-maximally mixed initial state into a specifically designed non-unital quantum channel.
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The experiment results showed that the two-point TQC in three-dimensional space inscribes a volume
85% larger than the spatial one. Second, this asymmetry inspired us to apply the two-point spatial-
temporal correlations in a robust observational causal inference scheme without introducing additional
unnecessary uncertainties or disturbances. The observational scheme also has the practical advantage
that it uses fewer resources than its interventional counterpart; for example, the measurement of T C only
requires 15 two-point correlations — less than one-quarter of a full causal tomography [11]. Third, using
three causal quantifiers, we have directly measured the causal influences of the non-unital channel, and
demonstrated that the observed statistics can mimic the correlations in the spatial domain to highlight
the role of non-unitality in quantum information tasks.

Inferring causal relationships between variables is at the heart of any statistical inquiry. It was not until
recently that the concept of cause and effect began to come into the quantum realm and the framework
of quantum causality is gradually being refined. Although it has been widely accepted that classical
correlation does not necessarily imply causation, the more profound physical connotation among quantum
variables makes such a statement does not always hold for quantum correlation: the inherent non-classical
properties of quantum systems such as quantum coherence and entanglement provide advantages in
causal inferences for quantum variables, which endows people with the ability to acquire causality from
correlations directly. With an experimental insight, our results provide support for such assertion. The
geometric approach in this work could offer quantum variables with a novel perspective or even be
generalized to the causal inferences of classical correlations. It can be further applied to provide people
with a less consumed methodology to investigate the non-classicality of a quantum system or even be
utilized to construct quantum causal networks upon quantum variable [51, 52].

Finally, our method is naturally applicable in measuring multi-point and qudit TQCs since it is feasible
to record multiple TQCs into a single photonic OAM state. The OAM state has infinitely many eigen-
states [53] which can be extracted simultaneously [54] to finish the registering task. Besides, our non-unital
channel is implemented by an unbalanced Mach-Zehnder interferometer, so conventional optical elements
are sufficient for adjusting its parameters with high precision. This devised and implemented versatile
photonic non-unital channel can be extended to construct generic quantum channels with the arbitrary
parameterization of Kraus operators, which may have applications in optical computing [55, 56] and the
study of and non-Markovianity [57–59]. Also, by inducing amplitude damping, our specialized parametric
non-unital quantum channel is capable of realizing equivalent photonic non-Hermitian evolution. Thus,
our methodology may facilitate the investigation of the PT -symmetric theory [60–62], quantum simulation
based on adiabatic quantum computation [63], and enhance optical quantum sensing with non-Hermitian
dynamics [64].
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41 Kübler J M, Braun D. Two-qubit causal structures and the geometry of positive qubit-maps. New J Phys, 2018, 20: 083015

42 Chiribella G, D’Ariano G M, Perinotti P. Quantum circuit architecture. Phys Rev Lett, 2007, 101: 060401
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