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Appendix A Proof of Lemma 1
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Furthermore, we have
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in which the first equality holds from the identity vec(X1X2X3) = (XST ® X1> vec(Xz2), and the last equality holds according to
XY)! =X" @Y and (X1 ® X2) (X5 ® X4) = (X1X3) ® (X2X4). For K > 1, based on the law of large numbers, we have:

i \/ﬁ\/ﬁ (Fah;,khsz:) ®gkg113 - KmﬁE [(Fﬁh:n,kh?kF:> ®gkgllc{]
k=1

(A3)
= K\/Pm+/PiE [F:thmkh;r’kF:] ®F [gkg‘,j] = K Py, Bu.m Bed (m — i) (anFj‘) ®In,,

where the second last equality holds due to the assumption that h,, » and gp are independent for all PTs and BDs, and the last

equality holds since h,, , are i.i.d. distributed with zero mean, i.e., E [hfnkh?k] — Bh,mINt for m = ¢ and E [h;‘nkh?k] — ONt

K
for m # i. As a result, xkxll;I approaches to
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For notational convenience, we let
® = blkdiag { Pifu1 (FTF}) . Pabuar (FLFa )} (A5)
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It then follows from (20) that
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where the first equality holds due to the identity |X @ Y| = |X|™22k(¥) |y |rank(X) the second last equality holds according to

|blkdiag {X,Y}| = |X]| x |Y|, and the last equality holds according to the Weinstein-Aronszajn identity |I,,, + XY| = |I,, + YX|
and ‘XT| = |X]|. The proof is thus completed.

Appendix B Proof of Lemma 2
Let B (c(n)) = [V/PiHeq,1 (c(n))F1,- -+, V/PyHeq,ar (€ (n)) Fay] € CNrXNsum | Then according to (7), we have

Rpr = Eq() [l0g5]In, + B (e (n) BY (¢ (n)) [] = Ee(n) 1085 Inamn + B (e () B (c (n) []. (B1)

Let gk, denote the rth element of g, ﬁar and hPq m,r (€(n)) denote the rth row of H,, and Heq,m (c ( (n)), respectively. Then
Heq,m (¢ (n)) can be expressed as Heq,m (¢ (7)) = [Beq,m.1 (¢ (1)), Beqm,2 (€ (), s Beqm,n,. (€ ()], where B, v, (c(n)) =

eq,m
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where
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Based on the law of large numbers, for N, > 1 and K > 1, there is
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Based on the law of large numbers, for N,. > 1, there is —H ZHi = BumIn, m=1iand HH H; — On,,m # i. Then (B5)
can be further expressed as
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For notational convenience, denote B (¢ (n)) B (c (n)) — T, where T' is written as
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Thus, Rpr in (7) approaches to
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where the equality holds from the identity |blkdiag {X,Y}| = |X| x |Y], and the last equality holds according to the Weinstein-
Aronszajn identity |I,, + XY| = |I,, + YX|. The proof is completed.
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Appendix C Proof of Proposition 1

By differentiating (48), the resulting equation is expressed as

4092 (@) = (22 n [T+ 0, (Qm @ ©) Wiia])
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where the second last equality holds due to the identity tr (XY) = tr (YX). Furthermore, we have

d(Qm) ®C = (In,d(Qm)) ® (Cly,(k-r)) = (In, ® C) (d(Qm) ® In,(kx—1))

(C2)
= (INt ®C) (KN?(K—R-) (INt(ka)®d(Qm)) KN?(K—k)) ’

where the second last equality holds according to the identity (X; ® X2) (X3 ® X4) = (X1X3) ® (X2X4), and the last equality

follows from Ky, (X® Y)K,, = Y ® X with X € Cm*™ Y € CP*? and Ky, = > (e;r ® L, ®ej) € C™n*™n™  Thus,
i=1

d (g2 (Qm)) in (C1) can be expressed as

d (92 (Qm))
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where In, (k—k) ® d (Qm) is a diagonal matrix that can be written as

d(Qm) On, --- On,
ONt d(an) ONt
In,(k—1k) @d(Qm) = . . (C4)
On, On, -+ d(Qm)
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As defined above, D(Qm) = KNE(K—A-,)‘I'IC-H (T+a¥,, (Qm ®C) ¥pyq) 1“‘I'£I+1 (I, ®C)KNt2(K_k) € CNi (K=F)XN{(K—k)

which can be written in the form of a block matrix with E, ¢(Qm) € CNexXNg denoting the sub-matrix at pth row and gth column.

It follows from (C3) that

logye

d (g2 (Qm)) = Ttr (D(Qm) (In, (5x—k) ® d(Qm)))
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According to the law of differentiation, we have
o m))\ T
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Comparing (C5) and (C6), we have
T
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The proof is thus completed.
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