• Supplementary File •

Achieving Full Mutualism with Massive Passive Devices for Multiuser MIMO Symbiotic Radio

Jingran XU¹, Zhuoyin DAI¹, Yong ZENG^{1,2*}, Shi JIN¹ & Tao JIANG³

¹National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China;
²Purple Mountain Laboratories, Nanjing 211111, China;

Appendix A Proof of Lemma 1

By substituting $\mathbf{x}_k = \text{vec}\left(\mathbf{X}_k\right) = \left[\text{vec}^{\text{T}}\left(\sqrt{P_1}\mathbf{g}_k\mathbf{h}_{1,k}^{\text{H}}\mathbf{F}_1\right), \cdots, \text{vec}^{\text{T}}\left(\sqrt{P_M}\mathbf{g}_k\mathbf{h}_{M,k}^{\text{H}}\mathbf{F}_M\right)\right]^{\text{T}}, \sum_{k=1}^K \mathbf{x}_k\mathbf{x}_k^{\text{H}} \text{ can be expressed as } \mathbf{x}_k^{\text{H}}$

$$\sum_{k=1}^{K} \mathbf{x}_{k} \mathbf{x}_{k}^{H} = \begin{bmatrix} \sum_{k=1}^{K} \operatorname{vec} \left(\sqrt{P_{1}} \mathbf{g}_{k} \mathbf{h}_{1,k}^{H} \mathbf{F}_{1} \right) \operatorname{vec}^{H} \left(\sqrt{P_{1}} \mathbf{g}_{k} \mathbf{h}_{1,k}^{H} \mathbf{F}_{1} \right) & \cdots & \sum_{k=1}^{K} \operatorname{vec} \left(\sqrt{P_{1}} \mathbf{g}_{k} \mathbf{h}_{1,k}^{H} \mathbf{F}_{1} \right) \operatorname{vec}^{H} \left(\sqrt{P_{M}} \mathbf{g}_{k} \mathbf{h}_{M,k}^{H} \mathbf{F}_{M} \right) \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{K} \operatorname{vec} \left(\sqrt{P_{M}} \mathbf{g}_{k} \mathbf{h}_{M,k}^{H} \mathbf{F}_{M} \right) \operatorname{vec}^{H} \left(\sqrt{P_{1}} \mathbf{g}_{k} \mathbf{h}_{1,k}^{H} \mathbf{F}_{1} \right) & \cdots & \sum_{k=1}^{K} \operatorname{vec} \left(\sqrt{P_{M}} \mathbf{g}_{k} \mathbf{h}_{M,k}^{H} \mathbf{F}_{M} \right) \operatorname{vec}^{H} \left(\sqrt{P_{M}} \mathbf{g}_{k} \mathbf{h}_{M,k}^{H} \mathbf{F}_{M} \right) \end{bmatrix}.$$
(A1)

Furthermore, we have

$$\sum_{k=1}^{K} \operatorname{vec}\left(\sqrt{P_{m}} \mathbf{g}_{k} \mathbf{h}_{m,k}^{H} \mathbf{F}_{m}\right) \operatorname{vec}^{H}\left(\sqrt{P_{i}} \mathbf{g}_{k} \mathbf{h}_{i,k}^{H} \mathbf{F}_{i}\right) = \sum_{k=1}^{K} \sqrt{P_{m}} \sqrt{P_{i}} \left(\left(\mathbf{h}_{m,k}^{H} \mathbf{F}_{m}\right)^{T} \otimes \mathbf{g}_{k}\right) \left(\left(\mathbf{h}_{i,k}^{H} \mathbf{F}_{i}\right)^{T} \otimes \mathbf{g}_{k}\right)^{H}$$

$$= \sum_{k=1}^{K} \sqrt{P_{m}} \sqrt{P_{i}} \left(\mathbf{F}_{m}^{T} \mathbf{h}_{m,k}^{*} \mathbf{h}_{i,k}^{T} \mathbf{F}_{i}^{*}\right) \otimes \left(\mathbf{g}_{k} \mathbf{g}_{k}^{H}\right), \tag{A2}$$

in which the first equality holds from the identity $\text{vec}(\mathbf{X}_1\mathbf{X}_2\mathbf{X}_3) = \left(\mathbf{X}_3^T \otimes \mathbf{X}_1\right) \text{vec}(\mathbf{X}_2)$, and the last equality holds according to $(\mathbf{X} \otimes \mathbf{Y})^H = \mathbf{X}^H \otimes \mathbf{Y}^H$ and $(\mathbf{X}_1 \otimes \mathbf{X}_2) (\mathbf{X}_3 \otimes \mathbf{X}_4) = (\mathbf{X}_1\mathbf{X}_3) \otimes (\mathbf{X}_2\mathbf{X}_4)$. For $K \gg 1$, based on the law of large numbers, we have:

$$\sum_{k=1}^{K} \sqrt{P_{m}} \sqrt{P_{i}} \left(\mathbf{F}_{m}^{T} \mathbf{h}_{m,k}^{*} \mathbf{h}_{i,k}^{T} \mathbf{F}_{i}^{*} \right) \otimes \mathbf{g}_{k} \mathbf{g}_{k}^{H} \to K \sqrt{P_{m}} \sqrt{P_{i}} \mathbb{E} \left[\left(\mathbf{F}_{m}^{T} \mathbf{h}_{m,k}^{*} \mathbf{h}_{i,k}^{T} \mathbf{F}_{i}^{*} \right) \otimes \mathbf{g}_{k} \mathbf{g}_{k}^{H} \right] \\
= K \sqrt{P_{m}} \sqrt{P_{i}} \mathbb{E} \left[\mathbf{F}_{m}^{T} \mathbf{h}_{m,k}^{*} \mathbf{h}_{i,k}^{T} \mathbf{F}_{i}^{*} \right] \otimes \mathbb{E} \left[\mathbf{g}_{k} \mathbf{g}_{k}^{H} \right] = K P_{m} \beta_{h,m} \beta_{g} \delta \left(m - i \right) \left(\mathbf{F}_{m}^{T} \mathbf{F}_{i}^{*} \right) \otimes \mathbf{I}_{N_{T}}, \tag{A3}$$

where the second last equality holds due to the assumption that $\mathbf{h}_{m,k}$ and \mathbf{g}_k are independent for all PTs and BDs, and the last equality holds since $\mathbf{h}_{m,k}$ are i.i.d. distributed with zero mean, i.e., $\mathbb{E}\left[\mathbf{h}_{m,k}^*\mathbf{h}_{i,k}^{\mathrm{T}}\right] \to \beta_{\mathrm{h},m}\mathbf{I}_{N_t}$ for m=i and $\mathbb{E}\left[\mathbf{h}_{m,k}^*\mathbf{h}_{i,k}^{\mathrm{T}}\right] \to \mathbf{O}_{N_t}$ for $m\neq i$. As a result, $\sum_{k=1}^{K}\mathbf{x}_k\mathbf{x}_k^{\mathrm{H}}$ approaches to

$$\sum_{k=1}^{K} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{H}} \to K \beta_{\mathrm{g}} \begin{bmatrix} P_{1} \beta_{\mathrm{h},1} \left(\mathbf{F}_{1}^{\mathrm{T}} \mathbf{F}_{1}^{*} \right) \otimes \mathbf{I}_{N_{r}} & \cdots & \mathbf{O}_{N_{1} N_{r} \times N_{M} N_{r}} \\ \vdots & \ddots & \vdots \\ \mathbf{O}_{N_{M} N_{r} \times N_{1} N_{r}} & \cdots & P_{M} \beta_{\mathrm{h},M} \left(\mathbf{F}_{M}^{\mathrm{T}} \mathbf{F}_{M}^{*} \right) \otimes \mathbf{I}_{N_{r}} \end{bmatrix}$$

$$= K \beta_{\mathrm{g}} \begin{bmatrix} P_{1} \beta_{\mathrm{h},1} \left(\mathbf{F}_{1}^{\mathrm{T}} \mathbf{F}_{1}^{*} \right) & \cdots & \mathbf{O}_{N_{1} \times N_{M}} \\ \vdots & \ddots & \vdots \\ \mathbf{O}_{N_{M} \times N_{1}} & \cdots & P_{M} \beta_{\mathrm{h},M} \left(\mathbf{F}_{M}^{\mathrm{T}} \mathbf{F}_{M}^{*} \right) \end{bmatrix} \otimes \mathbf{I}_{N_{r}}.$$

$$(A4)$$

For notational convenience, we let

$$\mathbf{\Phi} = \text{blkdiag}\left\{P_{1}\beta_{h,1}\left(\mathbf{F}_{1}^{\mathsf{T}}\mathbf{F}_{1}^{*}\right), \cdots, P_{M}\beta_{h,M}\left(\mathbf{F}_{M}^{\mathsf{T}}\mathbf{F}_{M}^{*}\right)\right\}. \tag{A5}$$

³Research Center of 6G Mobile Communications, School of Cyber Science and Engineering, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

^{*} Corresponding author (email: yong_zeng@seu.edu.cn)

It then follows from (20) that

$$R_{\rm BD} \to \frac{1}{L} \log_2 \left| \left(\mathbf{I}_{N_{\rm sum}} + \frac{KL\alpha\beta_{\rm g}}{\sigma^2} \mathbf{\Phi} \right) \otimes \mathbf{I}_{N_r} \right| = \frac{1}{L} \log_2 \left(\left| \mathbf{I}_{N_{\rm sum}} + \frac{KL\alpha\beta_{\rm g}}{\sigma^2} \mathbf{\Phi} \right|^{N_r} \left| \mathbf{I}_{N_r} \right|^{N_{\rm sum}} \right)$$

$$= \frac{N_r}{L} \log_2 \left| \mathbf{I}_{N_{\rm sum}} + \frac{KL\alpha\beta_{\rm g}}{\sigma^2} \mathbf{\Phi} \right| = \frac{N_r}{L} \sum_{m=1}^{M} \log_2 \left| \mathbf{I}_{N_m} + KL\bar{P}_m\alpha\beta_{\rm h,m}\beta_{\rm g} \mathbf{F}_m^{\rm T} \mathbf{F}_m^* \right|$$

$$= \frac{N_r}{L} \sum_{m=1}^{M} \log_2 \left| \mathbf{I}_{N_t} + KL\bar{P}_m\alpha\beta_{\rm h,m}\beta_{\rm g} \mathbf{F}_m \mathbf{F}_m^{\rm H} \right|, \tag{A6}$$

where the first equality holds due to the identity $|\mathbf{X} \otimes \mathbf{Y}| = |\mathbf{X}|^{\mathrm{rank}(\mathbf{Y})} |\mathbf{Y}|^{\mathrm{rank}(\mathbf{X})}$, the second last equality holds according to |blkdiag $\{\mathbf{X}, \mathbf{Y}\}| = |\mathbf{X}| \times |\mathbf{Y}|$, and the last equality holds according to the Weinstein-Aronszajn identity $|\mathbf{I}_m + \mathbf{X}\mathbf{Y}| = |\mathbf{I}_n + \mathbf{Y}\mathbf{X}|$ and $|\mathbf{X}^{\mathsf{T}}| = |\mathbf{X}|$. The proof is thus completed.

Appendix B Proof of Lemma 2

Let $\mathbf{B}\left(\mathbf{c}\left(n\right)\right)=\left[\sqrt{\bar{P}_{1}}\mathbf{H}_{\mathrm{eq},1}\left(\mathbf{c}\left(n\right)\right)\mathbf{F}_{1},\cdots,\sqrt{\bar{P}_{M}}\mathbf{H}_{\mathrm{eq},M}\left(\mathbf{c}\left(n\right)\right)\mathbf{F}_{M}\right]\in\mathbb{C}^{N_{r}\times N_{\mathrm{sum}}}.$ Then according to (7), we have

$$R_{\text{PT}} = \mathbb{E}_{\mathbf{c}(n)} \left[\log_2 |\mathbf{I}_{N_r} + \mathbf{B}(\mathbf{c}(n)) \mathbf{B}^{\text{H}}(\mathbf{c}(n))| \right] = \mathbb{E}_{\mathbf{c}(n)} \left[\log_2 |\mathbf{I}_{N_{\text{sum}}} + \mathbf{B}^{\text{H}}(\mathbf{c}(n)) \mathbf{B}(\mathbf{c}(n))| \right]. \tag{B1}$$

Let $g_{k,r}$ denote the rth element of \mathbf{g}_k , $\widetilde{\mathbf{h}}_{m,r}^{\mathrm{T}}$ and $\widetilde{\mathbf{h}}_{\mathrm{eq},m,r}^{\mathrm{T}}(\mathbf{c}\left(n\right))$ denote the rth row of \mathbf{H}_m and $\mathbf{H}_{\mathrm{eq},m}(\mathbf{c}\left(n\right))$, respectively. Then $\mathbf{H}_{\mathrm{eq},m}(\mathbf{c}\left(n\right))$ can be expressed as $\mathbf{H}_{\mathrm{eq},m}(\mathbf{c}\left(n\right)) = \left[\widetilde{\mathbf{h}}_{\mathrm{eq},m,1}\left(\mathbf{c}\left(n\right)\right),\widetilde{\mathbf{h}}_{\mathrm{eq},m,2}\left(\mathbf{c}\left(n\right)\right),\cdots,\widetilde{\mathbf{h}}_{\mathrm{eq},m,N_r}\left(\mathbf{c}\left(n\right)\right)\right]^{\mathrm{T}}$, where $\widetilde{\mathbf{h}}_{\mathrm{eq},m,N_r}^{\mathrm{T}}(\mathbf{c}\left(n\right)) = \widetilde{\mathbf{h}}_{m,r}^{\mathrm{T}} + \sum_{k=1}^{K} \sqrt{\alpha} g_{k,r} \mathbf{h}_{m,k}^{\mathrm{H}} c_k(n)$. We have

$$\left(\sqrt{\bar{P}_{m}}\mathbf{H}_{\mathrm{eq},m}\left(\mathbf{c}\left(n\right)\right)\mathbf{F}_{m}\right)^{\mathrm{H}}\sqrt{\bar{P}_{i}}\mathbf{H}_{\mathrm{eq},i}\left(\mathbf{c}\left(n\right)\right)\mathbf{F}_{i} = \sqrt{\bar{P}_{m}\bar{P}_{i}}\mathbf{F}_{m}^{\mathrm{H}}\mathbf{H}_{\mathrm{eq},m}^{\mathrm{H}}\left(\mathbf{c}\left(n\right)\right)\mathbf{H}_{\mathrm{eq},i}\left(\mathbf{c}\left(n\right)\right)\mathbf{F}_{i},\tag{B2}$$

where

$$\mathbf{H}_{\mathrm{eq},m}^{\mathrm{H}}\left(\mathbf{c}\left(n\right)\right)\mathbf{H}_{\mathrm{eq},i}\left(\mathbf{c}\left(n\right)\right) = \sum_{r=1}^{N_{r}}\widetilde{\mathbf{h}}_{\mathrm{eq},m,r}^{*}\left(\mathbf{c}\left(n\right)\right)\widetilde{\mathbf{h}}_{\mathrm{eq},i,r}^{\mathrm{T}}\left(\mathbf{c}\left(n\right)\right) = \sum_{r=1}^{N_{r}}\left(\widetilde{\mathbf{h}}_{m,r}^{*} + \sum_{k=1}^{K}\sqrt{\alpha}g_{k,r}^{*}\mathbf{h}_{m,k}c_{k}^{*}(n)\right)\left(\widetilde{\mathbf{h}}_{i,r}^{\mathrm{T}} + \sum_{k=1}^{K}\sqrt{\alpha}g_{k,r}\mathbf{h}_{i,k}^{\mathrm{H}}c_{k}(n)\right)$$

$$=\sum_{r=1}^{N_{r}}\widetilde{\mathbf{h}}_{m,r}^{*}\widetilde{\mathbf{h}}_{i,r}^{T}+\sum_{r=1}^{N_{r}}\sum_{k=1}^{K}\sqrt{\alpha}g_{k,r}^{*}\mathbf{h}_{m,k}c_{k}^{*}(n)\widetilde{\mathbf{h}}_{i,r}^{T}+\sum_{r=1}^{N_{r}}\widetilde{\mathbf{h}}_{m,r}^{*}\sum_{k=1}^{K}\sqrt{\alpha}g_{k,r}\mathbf{h}_{i,k}^{H}c_{k}(n)+\sum_{r=1}^{N_{r}}\sum_{k=1}^{K}\sum_{k'=1}^{K}\alpha g_{k,r}^{*}g_{k',r}c_{k}^{*}(n)c_{k'}(n)\mathbf{h}_{m,k}\mathbf{h}_{i,k'}^{H}c_{k'}(n)$$
(B3)

Based on the law of large numbers, for $N_r\gg 1$ and $K\gg 1$, there is

$$\sum_{r=1}^{N_{r}} \sum_{k=1}^{K} \sum_{k'=1}^{K} \alpha g_{k,r}^{*} g_{k',r} c_{k}^{*}(n) c_{k'}(n) \mathbf{h}_{m,k} \mathbf{h}_{i,k'}^{H} \to N_{r} \mathbb{E}_{g} \left[\sum_{k=1}^{K} \sum_{k'=1}^{K} \alpha g_{k,r}^{*} g_{k',r} c_{k}^{*}(n) c_{k'}(n) \mathbf{h}_{m,k} \mathbf{h}_{i,k'}^{H} \right] \\
= N_{r} \sum_{k=1}^{K} \alpha |g_{k,r}|^{2} |c_{k}(n)|^{2} \mathbf{h}_{m,k} \mathbf{h}_{i,k}^{H} \to K N_{r} \mathbb{E} \left[\alpha |g_{k,r}|^{2} |c_{k}(n)|^{2} \mathbf{h}_{m,k} \mathbf{h}_{i,k}^{H} \right] = K \alpha N_{r} \beta_{g} \beta_{h,m} \delta (m-i) \mathbf{I}_{N_{t}}.$$
(B4)

Therefore,

$$\begin{aligned} &\mathbf{H}_{\mathrm{eq},m}^{\mathrm{H}}\left(\mathbf{c}\left(n\right)\right)\mathbf{H}_{\mathrm{eq},i}\left(\mathbf{c}\left(n\right)\right) \\ &\rightarrow \sum_{r=1}^{N_{r}}\widetilde{\mathbf{h}}_{m,r}^{*}\widetilde{\mathbf{h}}_{i,r}^{\mathrm{T}} + K\sum_{r=1}^{N_{r}}\mathbb{E}\left[\sqrt{\alpha}g_{k,r}^{*}\mathbf{h}_{m,k}c_{k}^{*}(n)\right]\widetilde{\mathbf{h}}_{i,r}^{\mathrm{T}} + K\sum_{r=1}^{N_{r}}\widetilde{\mathbf{h}}_{m,r}^{*}\mathbb{E}\left[\sqrt{\alpha}g_{k,r}\mathbf{h}_{i,k}^{\mathrm{H}}c_{k}(n)\right] + K\alpha N_{r}\beta_{\mathrm{g}}\beta_{\mathrm{h},m}\delta\left(m-i\right)\mathbf{I}_{N_{t}} \\ &= \mathbf{H}_{m}^{\mathrm{H}}\mathbf{H}_{i} + K\alpha N_{r}\beta_{\mathrm{g}}\beta_{\mathrm{h},m}\delta\left(m-i\right)\mathbf{I}_{N_{t}}. \end{aligned} \tag{B5}$$

Based on the law of large numbers, for $N_r \gg 1$, there is $\frac{1}{N_r} \mathbf{H}_m^{\mathrm{H}} \mathbf{H}_i \to \beta_{\mathrm{H},m} \mathbf{I}_{N_t}, m = i$ and $\frac{1}{N_r} \mathbf{H}_m^{\mathrm{H}} \mathbf{H}_i \to \mathbf{O}_{N_t}, m \neq i$. Then (B5) can be further expressed as

$$\mathbf{H}_{\mathrm{eq},m}^{\mathrm{H}}\left(\mathbf{c}(n)\right)\mathbf{H}_{\mathrm{eq},i}\left(\mathbf{c}(n)\right) \to \left(N_{r}\beta_{\mathrm{H},m} + K\alpha N_{r}\beta_{\mathrm{g}}\beta_{\mathrm{h},m}\right)\delta\left(m-i\right)\mathbf{I}_{N_{t}}.\tag{B6}$$

For notational convenience, denote $\mathbf{B}^{\mathrm{H}}\left(\mathbf{c}\left(n\right)\right)\mathbf{B}\left(\mathbf{c}\left(n\right)\right)\to\mathbf{\Gamma}$, where $\mathbf{\Gamma}$ is written as

$$\mathbf{\Gamma} = \begin{bmatrix}
\bar{P}_{1} \left(N_{r} \beta_{\mathrm{H},1} + K \alpha N_{r} \beta_{\mathrm{g}} \beta_{\mathrm{h},1} \right) \mathbf{F}_{1}^{\mathrm{H}} \mathbf{F}_{1} & \cdots & \mathbf{O}_{N_{1}} \\
\vdots & \ddots & \vdots \\
\mathbf{O}_{N_{M}} & \cdots & \bar{P}_{M} \left(N_{r} \beta_{\mathrm{H},M} + K \alpha N_{r} \beta_{\mathrm{g}} \beta_{\mathrm{h},M} \right) \mathbf{F}_{M}^{\mathrm{H}} \mathbf{F}_{M}
\end{bmatrix}.$$
(B7)

Thus, $R_{\rm PT}$ in (7) approaches to

$$R_{\text{PT}} \to \log_{2}|\mathbf{I}_{N_{\text{sum}}} + \mathbf{\Gamma}| = \sum_{m=1}^{M} \log_{2} \left| \mathbf{I}_{N_{m}} + \bar{P}_{m} \left(N_{r} \beta_{\text{H},m} + K \alpha N_{r} \beta_{\text{g}} \beta_{\text{h},m} \right) \mathbf{F}_{m}^{\text{H}} \mathbf{F}_{m} \right|$$

$$= \sum_{m=1}^{M} \log_{2} \left| \mathbf{I}_{N_{t}} + \bar{P}_{m} N_{r} \left(\beta_{\text{H},m} + K \alpha \beta_{\text{g}} \beta_{\text{h},m} \right) \mathbf{F}_{m} \mathbf{F}_{m}^{\text{H}} \right|,$$
(B8)

where the equality holds from the identity $|\text{blkdiag}\{\mathbf{X},\mathbf{Y}\}| = |\mathbf{X}| \times |\mathbf{Y}|$, and the last equality holds according to the Weinstein-Aronszajn identity $|\mathbf{I}_n + \mathbf{X}\mathbf{Y}| = |\mathbf{I}_n + \mathbf{Y}\mathbf{X}|$. The proof is completed.

Appendix C Proof of Proposition 1

By differentiating (48), the resulting equation is expressed as

$$d(g_{2}(\mathbf{Q}_{m})) = d\left(\frac{\log_{2}e}{L} \ln \left| \mathbf{T} + a\mathbf{\Psi}_{k+1}^{H} \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right| \right)$$

$$= \frac{\log_{2}e}{L} \operatorname{tr} \left(\left(\mathbf{T} + a\mathbf{\Psi}_{k+1}^{H} \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right)^{-1} d \left(\mathbf{T} + a\mathbf{\Psi}_{k+1}^{H} \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right) \right)$$

$$= \frac{\log_{2}e}{L} \operatorname{tr} \left(\left(\mathbf{T} + a\mathbf{\Psi}_{k+1}^{H} \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right)^{-1} a\mathbf{\Psi}_{k+1}^{H} d \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right)$$

$$= \frac{\log_{2}e}{L} \operatorname{tr} \left(\mathbf{\Psi}_{k+1} \left(\mathbf{T} + a\mathbf{\Psi}_{k+1}^{H} \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right)^{-1} a\mathbf{\Psi}_{k+1}^{H} d \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \right)$$

$$= \frac{\log_{2}e}{L} \operatorname{tr} \left(\mathbf{\Psi}_{k+1} \left(\mathbf{T} + a\mathbf{\Psi}_{k+1}^{H} \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \mathbf{\Psi}_{k+1} \right)^{-1} a\mathbf{\Psi}_{k+1}^{H} d \left(\mathbf{Q}_{m} \otimes \mathbf{C} \right) \right),$$
(C1)

where the second last equality holds due to the identity $\operatorname{tr}(\mathbf{XY}) = \operatorname{tr}(\mathbf{YX})$. Furthermore, we have

$$d\left(\mathbf{Q}_{m}\right) \otimes \mathbf{C} = \left(\mathbf{I}_{N_{t}} d\left(\mathbf{Q}_{m}\right)\right) \otimes \left(\mathbf{C}\mathbf{I}_{N_{t}(K-k)}\right) = \left(\mathbf{I}_{N_{t}} \otimes \mathbf{C}\right) \left(d\left(\mathbf{Q}_{m}\right) \otimes \mathbf{I}_{N_{t}(K-k)}\right)$$

$$= \left(\mathbf{I}_{N_{t}} \otimes \mathbf{C}\right) \left(\mathbf{K}_{N_{t}^{2}(K-k)} \left(\mathbf{I}_{N_{t}(K-k)} \otimes d(\mathbf{Q}_{m})\right) \mathbf{K}_{N_{t}^{2}(K-k)}\right), \tag{C2}$$

where the second last equality holds according to the identity $(\mathbf{X}_1 \otimes \mathbf{X}_2) (\mathbf{X}_3 \otimes \mathbf{X}_4) = (\mathbf{X}_1 \mathbf{X}_3) \otimes (\mathbf{X}_2 \mathbf{X}_4)$, and the last equality follows from $\mathbf{K}_{pm} (\mathbf{X} \otimes \mathbf{Y}) \mathbf{K}_{np} = \mathbf{Y} \otimes \mathbf{X}$ with $\mathbf{X} \in \mathbb{C}^{m \times n}$, $\mathbf{Y} \in \mathbb{C}^{p \times q}$ and $\mathbf{K}_{mn} = \sum_{j=1}^{n} \left(\mathbf{e}_j^{\mathsf{T}} \otimes \mathbf{I}_m \otimes \mathbf{e}_j \right) \in \mathbb{C}^{mn \times mn}$. Thus, $d(g_2(\mathbf{Q}_m))$ in (C1) can be expressed as

$$d\left(g_{2}\left(\mathbf{Q}_{m}\right)\right)$$

$$=\frac{\log_{2}e}{L}\operatorname{tr}\left(\mathbf{\Psi}_{k+1}\left(\mathbf{T}+a\mathbf{\Psi}_{k+1}^{H}\left(\mathbf{Q}_{m}\otimes\mathbf{C}\right)\mathbf{\Psi}_{k+1}\right)^{-1}a\mathbf{\Psi}_{k+1}^{H}\left(\mathbf{I}_{N_{t}}\otimes\mathbf{C}\right)\mathbf{K}_{N_{t}^{2}\left(K-k\right)}\left(\mathbf{I}_{N_{t}\left(K-k\right)}\otimes d\left(\mathbf{Q}_{m}\right)\right)\mathbf{K}_{N_{t}^{2}\left(K-k\right)}\right)$$

$$=\frac{\log_{2}e}{L}\operatorname{tr}\left(\mathbf{K}_{N_{t}^{2}\left(K-k\right)}\mathbf{\Psi}_{k+1}\left(\mathbf{T}+a\mathbf{\Psi}_{k+1}^{H}\left(\mathbf{Q}_{m}\otimes\mathbf{C}\right)\mathbf{\Psi}_{k+1}\right)^{-1}a\mathbf{\Psi}_{k+1}^{H}\left(\mathbf{I}_{N_{t}}\otimes\mathbf{C}\right)\mathbf{K}_{N_{t}^{2}\left(K-k\right)}\left(\mathbf{I}_{N_{t}\left(K-k\right)}\otimes d\left(\mathbf{Q}_{m}\right)\right)\right),$$
(C3)

where $\mathbf{I}_{N_{t}(K-k)}\otimes d\left(\mathbf{Q}_{m}\right)$ is a diagonal matrix that can be written as

$$\mathbf{I}_{N_{t}(K-k)} \otimes d\left(\mathbf{Q}_{m}\right) = \begin{bmatrix} d\left(\mathbf{Q}_{m}\right) & \mathbf{O}_{N_{t}} & \cdots & \mathbf{O}_{N_{t}} \\ \mathbf{O}_{N_{t}} & d\left(\mathbf{Q}_{m}\right) & \cdots & \mathbf{O}_{N_{t}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{O}_{N_{t}} & \mathbf{O}_{N_{t}} & \cdots & d\left(\mathbf{Q}_{m}\right) \end{bmatrix}.$$
(C4)

As defined above, $\mathbf{D}(\mathbf{Q}_m) = \mathbf{K}_{N_t^2(K-k)} \Psi_{k+1} \left(\mathbf{T} + a \Psi_{k+1}^{\mathrm{H}} \left(\mathbf{Q}_m \otimes \mathbf{C} \right) \Psi_{k+1} \right)^{-1} a \Psi_{k+1}^{\mathrm{H}} \left(\mathbf{I}_{N_t} \otimes \mathbf{C} \right) \mathbf{K}_{N_t^2(K-k)} \in \mathbb{C}^{N_t^2(K-k) \times N_t^2(K-k)}$, which can be written in the form of a block matrix with $\mathbf{E}_{p,g}(\mathbf{Q}_m) \in \mathbb{C}^{N_t \times N_t}$ denoting the sub-matrix at pth row and qth column. It follows from (C3) that

$$d\left(g_{2}\left(\mathbf{Q}_{m}\right)\right) = \frac{\log_{2}e}{L} \operatorname{tr}\left(\mathbf{D}(\mathbf{Q}_{m})\left(\mathbf{I}_{N_{t}(K-k)} \otimes d\left(\mathbf{Q}_{m}\right)\right)\right)$$

$$= \frac{\log_{2}e}{L} \sum_{i=1}^{N_{t}(K-k)} \operatorname{tr}\left(\mathbf{E}_{i,i}(\mathbf{Q}_{m})d\left(\mathbf{Q}_{m}\right)\right)$$

$$= \operatorname{tr}\left(\frac{\log_{2}e}{L} \sum_{i=1}^{N_{t}(K-k)} \mathbf{E}_{i,i}(\mathbf{Q}_{m})d\left(\mathbf{Q}_{m}\right)\right).$$
(C5)

According to the law of differentiation, we have

$$d\left(g_{2}\left(\mathbf{Q}_{m}\right)\right) = \operatorname{tr}\left(\left(\frac{\partial\left(g_{2}\left(\mathbf{Q}_{m}\right)\right)}{\partial\left(\mathbf{Q}_{m}\right)}\right)^{\mathrm{T}}d\left(\mathbf{Q}_{m}\right)\right). \tag{C6}$$

Comparing (C5) and (C6), we have

$$z_2\left(\mathbf{Q}_m\right) = \frac{\partial \left(g_2\left(\mathbf{Q}_m\right)\right)}{\partial \left(\mathbf{Q}_m\right)} = \left(\frac{\log_2 e}{L} \sum_{i=1}^{N_t(K-k)} \mathbf{E}_{i,i}(\mathbf{Q}_m)\right)^{\mathrm{T}} = \frac{\log_2 e}{L} \sum_{i=1}^{N_t(K-k)} \mathbf{E}_{i,i}^{\mathrm{T}}(\mathbf{Q}_m). \tag{C7}$$

The proof is thus completed.