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Abstract Feedback shift registers (FSRs) are pivotal in generating pseudorandom sequences for stream

ciphers and play a crucial role in error detection and code correction. This paper investigates the resilience of

grain-like cascade FSRs (GLC-FSRs) against two types of fault attacks: hard and soft. First, we introduce a

new criterion for assessing the nonsingularity of GLC-FSRs using the structure matrices of feedback functions,

which enable the measurement of the number of nonsingular GLC-FSRs. Second, we demonstrate that

GLC-FSRs subject to hard fault attacks become singular as determined by this new criterion. Ultimately,

by constructing a soft fault bit set, we discuss the resilience of GLC-FSRs to soft fault attacks. Results

demonstrate that singular GLC-FSRs remain singular after being injected by soft fault attacks. Conversely,

for nonsingular GLC-FSRs, suitable soft fault attacks are designed to maintain their nonsingular status.
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1 Introduction

Stream cipher is an important cryptographic mechanism and has several advantages, including high
encryption and decryption efficiency, simple implementation, and prohibition of error propagation [1].
Its widespread application spans fields such as communications [2, 3] and medicine [4, 5]. Side-channel
attacks, such as power analysis, fault attack, and timing analysis, pose significant threats to cipher
implementation [6]. The idea of fault attack was introduced by Biham and Shamir [7], and two types of
fault attacks are identified currently: hard fault attacks, where certain bits are fixed at 0, and soft fault
attacks, which allow attackers to modify the bit values at a certain moment [8]. Obtaining all or part of
the secret information by analyzing the differences between faulty and normal outputs triggered by the
fault attacks is possible. Correspondingly, it is shown in [6] that the attack model is successful for stream
and block ciphers.

Feedback shift registers (FSRs) are fundamental components in stream ciphers, generating pseudoran-
dom bit sequences used as the key streams for encryption. FSRs can be classified into two types based
on the feedback mechanisms: linear (LFSRs) and nonlinear (NFSRs) feedback shift registers. LFSRs
are integral to many classical stream ciphers owing to their fast speed and efficient hardware implemen-
tation [9]. However, the main drawback of n-stage LFSRs is its inability to determine the structure of
LFSRs by checking 2n consecutive bits of the output sequence [10]. Thus, NFSRs have garnered sig-
nificant attention in stream cipher research [11–13]. In particular, the fault attacks against FSRs also
have realistic applications. Hu et al. [8] developed several algorithms to analyze Trivium cascade FSRs
subject to hard fault attacks and simplify the cipher. The security of ACORN cascade FSRs under fault
attacks was analyzed using a fault location identification algorithm in [6]. Roy et al. [14] conducted
the security analysis on Kreyvium cascade FSRs subject to fault attacks based on the key scheduling
algorithm. Although several efficient algorithms were developed to analyze the FSRs subject to fault
attacks, a theoretical framework is still lacking.

Grain is a typical algorithm among stream ciphers based on NFSRs [15] and is a hardware-oriented
finalist for the eSTREAM Stream Cipher Project [16]. In a grain-like cascade FSR (GLC-FSR), an NFSR
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is serially connected to an LFSR using the logical operator ⊕, where the LFSR output is regarded as an
NFSR input. In the last few decades, several significant analyses have been conducted on GLC-FSRs. The
periodicity of GLC-FSRs was examined in [17]. Jiang [18] investigated grain-like structures that generate
at least one sequence with a minimum period. A basic requirement in sequential cipher design — the
nonsingularity of GLC-FSRs — has also been investigated. Lu et al. [19] showed that the nonsingularity
of GLC-FSRs correlates with those of state transition matrices. Wang et al. [20] used the state refresh
transformations to explore the relationship between the nonsingular GLC-FSR configurations and their
feedback functions. To the best of our knowledge, research focusing on the impact of fault attacks on the
nonsingularity of GLC-FSRs is limited.

The semi-tensor product (STP) of matrices is a useful mathematical tool for analyzing logical opera-
tions [21]. Using this approach, a Boolean function can be equivalently converted into an algebraic
form [22–24], facilitating the discussions around Boolean networks (BNs) [25–27]. Recent studies have
also focused on attacks on BNs. Zhu et al. [28] used the algebraic state space representation approach to
investigate undetectable attacks in BNs. The output feedback control stabilization of hidden Markov
Boolean control networks under shifting attacks was studied in [24]. Particularly, STP has greatly
promoted the development of FSRs in recent years [29–32]. A linear representation of FSRs utilizing
the STP was given in [33]. In [34], an innovative approach was introduced for studying the relationship
between Galois NFSRs and Fibonacci NFSRs. In [35], a method was put forward for reconstructing the
period of NFSR with a single input. Furthermore, STP explored the observability of Galois NFSRs over
finite fields [36] and the nonsingularity of multivalued FSRs [37].

Herein, we discuss the nonsingularity of GLC-FSRs subject to fault attacks. The main contributions
of this article are summarized below:

(i) We introduce a new criterion for the nonsingularity of GLC-FSRs. Unlike previous criteria, which
relied on the state transition matrix of the whole FSR [19], our criterion depends solely on the structure
matrices of feedback functions and has a lower computational load. Furthermore, we derive the number
of nonsingular GLC-FSRs using this new criterion.

(ii) We construct the algebraic form of GLC-FSRs subject to fault attacks using the STP framework.
Diverging from specific algorithms in [6, 14], the algebraic form provides a theoretical framework for
analyzing FSRs subject to fault attacks. Based on the algebraic form, we prove that GLC-FSRs subject
to hard fault attacks are always singular. Moreover, we propose the soft fault bit set and establish a
criterion for the nonsingularity of GLC-FSRs subject to soft fault attacks.

We organize the rest of this article as follows. In Section 2, we provide some background information
on GLC-FSRs. In Section 3, we explore the number of nonsingular GLC-FSRs. In Section 4, we examine
the impact of fault attacks on the nonsingularity of GLC-FSRs. In Section 5, we summarize the main
conclusion provided.

Notations. “⊗”, “∗”, and “⋉” denote Kronecker product, Khatri-Rao product, and semi-tensor
product of matrices [21], respectively. “⊕” represents modulo 2 addition. All α × β real matrices form
the set Mα×β. Given P ∈ Mα×β, Col(P) is the set of columns and Colk(P) is the k-th column.

δin := Coli(In), where In is the n-dimensional identity matrix. Matrix G = [δi1α δi2α · · · δ
iβ
α ] ∈ Mα×β is

called a logical matrix, if Col(L) ⊆ Col(Iα). G is simply represented as G = δα[i1, i2, . . . , iβ ]. The set of
α× β logical matrices is denoted by Gα×β . ∆2 := Col(I2). D := {0, 1}. 1n := [1, 1, . . . , 1

︸ ︷︷ ︸

n

]T. The symbol ⋉

can be removed without creating any confusion.

2 Preliminaries

Given two positive integers p, q > 2, the diagram of a (p+ q)-stage GLC-FSR is shown in Figure 1, which
contains a p-stage NFSR and a q-stage LFSR. The p-stage NFSR and q-stage LFSR are cascaded by the
operation ⊕. Each square in the figure is called a bit, which represents a binary storage device. The states
of p-stage NFSR, q-stage LFSR and (p + q)-stage GLC-FSR are represented by X = (x1, . . . , xp) ∈ Dp,
Z = (z1, . . . , zq) ∈ Dq and W = (x1, . . . , xp, z1, . . . , zq) ∈ Dp+q , respectively.

For GLC-FSRs, the transition from the current state to the next state occurs on each clock pulse.
According to Figure 1, the state transition from time t ∈ N to time t+ 1 satisfies the following group of
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Figure 1 (Color online) Diagram of a (p + q)-stage GLC-FSR.

equations: 




x1(t+ 1) = ψ1

(
x1(t), . . . , zq(t)

)
,

...

xp−1(t+ 1) = ψp−1

(
x1(t), . . . , zq(t)

)
,

xp(t+ 1) = ψp

(
x1(t), . . . , zq(t)

)
,

z1(t+ 1) = φ1
(
x1(t), . . . , zq(t)

)
,

...

zq−1(t+ 1) = φq−1

(
x1(t), . . . , zq(t)

)
,

zq(t+ 1) = φq
(
x1(t), . . . , zq(t)

)
,

(1)

where ψi(x1, . . . , zq) = xi+1, i = 1, . . . , p − 1, φj(x1, . . . , zq) = zj+1, j = 1, . . . , q − 1, ψp(x1, . . . , zq) =
f(x1, . . . , xp)⊕ z1, φq(x1, . . . , zq) = g(z1, . . . , zq), f : Dp → D and g : Dq → D are feedback functions of
NFSR and LFSR, respectively.

STP is a useful tool to derive the equivalent algebraic form of FSRs [33]. Actually, FSR (1) is deter-
mined by some Boolean functions. By expressing the Boolean values 0 and 1 to vectors δ22 and δ12 , respec-
tively. Any Boolean function ϕ : Dn → D can be uniquely expressed as ϕ(x1, . . . , xn) =Mϕ⋉x1⋉· · ·⋉xn,
where xi ∈ ∆2, i = 1, . . . , n, and Mϕ ∈ G2×2n is called the structure matrix of ϕ.

In the following, we introduce the proposition about the deleting operator.

Proposition 1 ([21]). Let X ∈ Gm×1, Y ∈ Gn×1 and Z ∈ Gr×1. The deleting operator P = 1T
m⊗In⊗1T

r

satisfies
P ⋉XY Z = Y,

where ⊗ denotes the Kronecker product, In is the n-dimensional identity matrix, 1T
m = [1, 1, . . . , 1

︸ ︷︷ ︸

m

] and

1T
r = [1, 1, . . . , 1

︸ ︷︷ ︸

r

].

Using the deleting operator, the structure matrices of Boolean functions ψ1, . . . , ψp−1 are calculated as

Ψ1 = 1T
20 ⊗ I2 ⊗ 1T

2p+q−1 = δ2

[
1, 1, . . . , 1︸ ︷︷ ︸

2p+q−2

, 2, 2, . . . , 2︸ ︷︷ ︸
2p+q−2

, 1, 1, . . . , 1︸ ︷︷ ︸
2p+q−2

, 2, 2, . . . , 2︸ ︷︷ ︸
2p+q−2

]
,

...

Ψp−1 = 1T
2p−2 ⊗ I2 ⊗ 1T

2q+1 = δ2

[
1, 1, . . . , 1︸ ︷︷ ︸

2q

, 2, 2, . . . , 2︸ ︷︷ ︸
2q

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
2q

, 2, 2, . . . , 2︸ ︷︷ ︸
2q

]
,

(2)

respectively. Similarly, the structure matrices of Boolean functions φ1, . . . , φq−1 are derived as

Φ1 = 1T
2p ⊗ I2 ⊗ 1T

2q−1 = δ2

[
1, 1, . . . , 1︸ ︷︷ ︸

2q−2

, 2, 2, . . . , 2︸ ︷︷ ︸
2q−2

, 1, 1, . . . , 1︸ ︷︷ ︸
2q−2

, 2, 2, . . . , 2︸ ︷︷ ︸
2q−2

]
,

...

Φq−1 = 1T
2p+q−2 ⊗ I2 ⊗ 1T

2 = δ2 [1, 2, 1, 2, . . . , 1, 2, 1, 2] ,

(3)

respectively.
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One can see from (1) that the structure matrices of ψp and φq are related to the feedback functions f
and g, which will be calculated in Proposition 2.

Therefore, FSR (1) can be converted to the following form:





x1(t+ 1) = Ψ1x1(t) · · · xp(t)z1(t) · · · zq(t),

...

xp(t+ 1) = Ψpx1(t) · · ·xp(t)z1(t) · · · zq(t),

z1(t+ 1) = Φ1x1(t) · · ·xp(t)z1(t) · · · zq(t),

...

zq(t+ 1) = Φqx1(t) · · ·xp(t)z1(t) · · · zq(t),

(4)

where Ψk ∈ G2×2p+q , k = 1, . . . , p and Φs ∈ G2×2p+q , s = 1, . . . , q. Letting w = ⋉p
k=1xk⋉

q
s=1zs ∈ (∆2)

p+q,
FSR (1) has an equivalent algebraic form as

w(t+ 1) = Lw(t), (5)

where L = Ψ1 ∗ · · · ∗Ψp ∗ Φ1 ∗ · · · ∗ Φq ∈ G2p+q×2p+q is the state transition matrix.
Suppose that the structure matrices of feedback functions f , g are

Mf = δ2 [α1, α2, . . . , α2p ] ∈ G2×2p ,

Mg = δ2 [β1, β2, . . . , β2q ] ∈ G2×2q .
(6)

For α ∈ {1, 2}, we define

ᾱ =

{
2, if α = 1,

1, if α = 2.
(7)

Then, the relations between Ψp, Φq and Mf , Mg can be obtained below.

Proposition 2. Consider the algebraic form of FSR (1). The structure matrices Ψp and Φq satisfy

Ψp = δ2

[
ᾱ1, . . . , ᾱ1︸ ︷︷ ︸

2q−1

, α1, . . . , α1︸ ︷︷ ︸
2q−1

, . . . , ᾱ2p , . . . , ᾱ2p︸ ︷︷ ︸
2q−1

, α2p , . . . , α2p︸ ︷︷ ︸
2q−1

]
,

Φq = δ2[β1, β2, . . . , β2q , β1, β2, . . . , β2q , . . . , β1, β2, . . . , β2q ].

(8)

Proof. According to FSR (1), the dynamics of bits xp and zq satisfy xp(t+1) = f
(
x1(t), . . . , xp(t)

)
⊕z1(t)

and zq(t+1) = g
(
z1(t), . . . , zq(t)

)
, respectively. Using the deleting operator, the dynamics of bits xp and

zq are expressed as

xp(t+ 1) = f
(
x1(t), . . . , xp(t)

)
⊕ z1(t)

=M⊕Mfx1(t) · · · xp(t)z1(t)

= δ2[2, 1, 1, 2]δ2[α1, α2, . . . , α2p ]x1(t) · · ·xp(t)z1(t)

= δ2[ᾱ1, α1, ᾱ2, α2, . . . , ᾱ2p , α2p ](I2p+1 ⊗ 1T
2q−1 )x1(t) · · ·xp(t)z1(t) · · · zq(t)

= δ2[ᾱ1, . . . , ᾱ1, α1, . . . , α1, . . . , ᾱ2p , . . . , ᾱ2p , α2p , . . . , α2p ]w(t)

= Ψpw(t),

zq(t+ 1) = g
(
z1(t), . . . , zq(t)

)

=Mgz1(t) · · · zq(t)

= δ2[β1, β2, . . . , β2q ](1
T
2p ⊗ I2q )x1(t) · · ·xp(t)z1(t) · · · zq(t)

= δ2[β1, . . . , β2q , β1, . . . , β2q , . . . , β1, . . . , β2q ]w(t)

= Φqw(t),

where M⊕ = δ2[2, 1, 1, 2] is the structure matrix of operation ⊕. This completes the proof.
In this paper, we devote to further exploring the nonsingularity of FSR (1) and the number of nonsin-

gular GLC-FSRs by using the equivalent algebraic form. Moreover, considering the effect of fault attacks
on FSRs, we also investigate the nonsingularity of GLC-FSRs subject to fault attacks.
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3 Further results on nonsingularity of GLC-FSRs

Nonsingularity is a basic requirement for FSRs in cryptographic design. By ensuring the nonsingularity
of FSRs, the equivalent secret key can be avoided effectively, and the reliability of the system can be
improved. Therefore, when designing nonsingular FSRs, special attention should be paid to the selection
of feedback functions. In this section, we obtain two criteria for the nonsingularity of GLC-FSRs by
analyzing the feedback functions f and g. Then, the number of nonsingular GLC-FSRs is calculated
based on these criteria.

The state transition diagram of FSR (1) has 2p+q nodes and 2p+q directed edges. Each state of FSR
(1) is represented by a node. For two states W1, W2 ∈ Dp+q, W1 is said to be a successor state of W2 if
there exists an directed edge from W2 to W1. Equivalently, W2 is said to be a predecessor state of W1.
Based on the state transition diagram, the definition of nonsingular GLC-FSRs is shown below.

Definition 1 ([38]). FSR (1) is said to be nonsingular if its state transition diagram contains only
cycles.

We observe that there exist two different states with identical successor states if an FSR is singular. In
this case, an equivalent secret key is likely to emerge. Therefore, the nonsingularity of FSRs is necessary
for developing stream ciphers [19].

As was shown in [19], FSR (1) is nonsingular iff its state transition matrix L is nonsingular. Notice
that the nonsingularity of GLC-FSR is determined by the feedback functions f and g. Therefore, we use
the structure matrices Mf and Mg which are given in (6) to further explore the nonsingularity of FSR
(1), and put forward the following new criterion.

Lemma 1. FSR (1) is nonsingular iff Mf and Mg satisfy

αi+2p−1 = ᾱi, βj+2q−1 = β̄j , (9)

where i = 1, 2, . . . , 2p−1, j = 1, 2, . . . , 2q−1.
Proof. From Definition 1, FSR (1) is nonsingular iff any state has only one predecessor state and only
one successor state. Denote the state transition matrix in (5) as L = δ2p+q [η1, η2, . . . , η2p+q ], then state
δτ2p+q has only one successor state Lδτ2p+q = δητ

2p+q , where τ = 1, 2, . . . , 2p+q. Moreover, the uniqueness of
the predecessor state for each state is equivalent to ηc 6= ηv, ∀ c 6= v. Therefore, FSR (1) is nonsingular
iff ηc 6= ηv, ∀ c 6= v. In the following, we prove that ηc 6= ηv, ∀ c 6= v iff (9) is true.

According to (5), it holds that L = Ψ1 ∗ · · · ∗Ψp ∗ Φ1 ∗ · · · ∗ Φq. Hence, we get

Colρ(L) =Colρ(Ψ1)⋉ · · ·⋉ Colρ(Ψp)⋉ Colρ(Φ1)⋉ · · ·⋉ Colρ(Φq). (10)

Then, we define disjoint sets

Λ1 = {r1i,j | r1i,j = j + (i− 1)2q, i = 1, 2, . . . , 2p−1, j = 1, 2, . . . , 2q−1},

Λ2 = {r2i,j | r2i,j = r1i,j + 2q−1, r1i,j ∈ Λ1, i = 1, 2, . . . , 2p−1, j = 1, 2, . . . , 2q−1},

Λ3 = {r3i,j | r3i,j = r1i,j + 2p+q−1, r1i,j ∈ Λ1, i = 1, 2, . . . , 2p−1, j = 1, 2, . . . , 2q−1},

Λ4 = {r4i,j | r4i,j = r1i,j + 2q−1 + 2p+q−1, r1i,j ∈ Λ1, i = 1, 2, . . . , 2p−1, j = 1, 2, . . . , 2q−1}.

(11)

Then
⋃4

k=1 Λk = {1, 2, . . . , 2p+q} and |Λk| = 2p+q−2, k = 1, . . . , 4. Arbitrarily chosen r1u,v ∈ Λ1, it can be
obtained from (10) and (11) that

Colr1u,v
(L) = δu2p−1δ

ᾱu

2 δv2q−1δ
βv

2 = δ
ηr1u,v

2p+q ,

Colr2u,v
(L) = δu2p−1δ

αu

2 δv2q−1δ
β
v+2q−1

2 = δ
η
r2u,v

2p+q ,

Colr3u,v
(L) = δu2p−1δ

ᾱ
u+2p−1

2 δv2q−1δ
βv

2 = δ
η
r3u,v

2p+q ,

Colr4u,v
(L) = δu2p−1δ

α
u+2p−1

2 δv2q−1δ
β
v+2q−1

2 = δ
η
r4u,v

2p+q .

(12)

From (12), for any r1u1,v1
6= r1u2,v2

, one has {r1u1,v1
, r2u1,v1

, r3u1,v1
, r4u1,v1

}∩{r1u2,v2
, r2u2,v2

, r3u2,v2
, r4u2,v2

} = ∅.
Therefore, it is necessary to prove that ηr1u,v

, ηr2u,v
, ηr3u,v

and ηr4u,v
are different from each other iff

αu+2p−1 = ᾱu and βv+2q−1 = β̄v.
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On one hand, if αu+2p−1 = ᾱu and βv+2q−1 = β̄v, one can derive from (7) that

αu = ᾱu+2p−1 6= αu+2p−1 = ᾱu, βv = β̄v+2q−1 6= βv+2q−1 = β̄v.

Based on (12), ηr1u,v
, ηr2u,v

, ηr3u,v
and ηr4u,v

are different from each other.
On the other hand, assume that ηr1u,v

, ηr2u,v
, ηr3u,v

and ηr4u,v
are different from each other. From

ηr2u,v
6= ηr4u,v

, we get

δu2p−1δ
αu

2 δv2q−1δ
β
v+2q−1

2 6= δu2p−1δ
α

u+2p−1

2 δv2q−1δ
β
v+2q−1

2 ,

that is, αu 6= αu+2p−1 , ᾱu = αu+2p−1 . Then from ᾱu = αu+2p−1 and η1u,v 6= η4u,v, we conclude

δu2p−1δ
α

u+2p−1

2 δv2q−1δ
βv

2 6= δu2p−1δ
α

u+2p−1

2 δv2q−1δ
β
v+2q−1

2 ,

that is, βv 6= βv+2q−1 , β̄v = βv+2q−1 . Hence, the structure matrices Mf and Mg satisfy ᾱu = αu+2p−1

and β̄v = βv+2q−1 if FSR (1) is nonsingular.
By the arbitrariness of r1u,v, we conclude that FSR (1) is nonsingular iff αi+2p−1 = ᾱi and βj+2q−1 = β̄j,

where i = 1, 2, . . . , 2p−1, j = 1, 2, . . . , 2q−1.

Remark 1. The nonsingularity of GLC-FSRs was investigated in [19] by using the whole state transition
matrix L ∈ G2p+q×2p+q , and the computational complexity is O(2p+q). Compared with [19], the criterion
of checking the nonsingularity of GLC-FSRs in Lemma 1 is based on the structure matrices Mf and Mg,
whose computational complexity, O(2p + 2q), is much lower.

From (9), we derive the characteristics of structure matrices Mf and Mg when the GLC-FSRs are
nonsingular. In the following, based on the features of the structural matrix Mf and Mg, we present the
properties of feedback functions f and g.

Lemma 2. FSR (1) is nonsingular iff its feedback functions satisfy
(i) f(x1, . . . , xp) = ¬x1 ⊕ f1(x2, . . . , xp) or f(x1, . . . , xp) = x1 ⊕ f2(x2, . . . , xp);
(ii) g(z1, . . . , zq) = z1 ⊕ g2(z2, . . . , zq).

Proof. (Sufficiency) Here we only prove the case of f(x1, . . . , xp) = ¬x1⊕f1(x2, . . . , xp) and g(z1, . . . , zq)
= z1 ⊕ g2(z2, . . . , zq). The proof for the case of f(x1, . . . , xp) = x1 ⊕ f2(x2, . . . , xp) and g(z1, . . . , zq) =
z1 ⊕ g2(z2, . . . , zq) is similar.

Suppose that f = ¬x1 ⊕ f1(x2, . . . , xp), g = z1⊕ g2(z2, . . . , zq), and the structure matrices of f1, g2 are
Mf1 = δ2[α1, α2, . . . , α2p−1 ] ∈ G2×2p−1 , Mg2 = δ2[β1, β2, . . . , β2q−1 ] ∈ G2×2q−1 . Using STP, we obtain
that

f(x1, . . . , xp) =M⊕M¬x1Mf1x2 · · ·xp

=M⊕M¬(I2 ⊗Mf1)x1x2 · · ·xp

=Mfx1x2 · · ·xp,

g(z1, . . . , zq) =M⊕z1Mg2z2 · · · zq

=M⊕(I2 ⊗Mg2)z1z2 · · · zq

=Mgx1x2 · · ·xp,

where M¬ = δ2[2, 1] is the structure matrix of operation ¬. Hence, the structure matrices Mf and Mg

are
Mf = δ2[2, 1, 1, 2]δ2[2, 1]δ4[α1, α2, . . . , α2p−1 , 2 + α1, 2 + α2, . . . , 2 + α2p−1 ]

= δ2[1, 2, 2, 1]δ4[α1, α2, . . . , α2p−1 , 2 + α1, 2 + α2, . . . , 2 + α2p−1 ]

= δ2[α1, α2, . . . , α2p−1 , ᾱ1, ᾱ2, . . . , ᾱ2p−1 ] ∈ G2×2p ,

Mg = δ2[2, 1, 1, 2]δ4[β1, β2, . . . , β2p−1 , 2 + β1, 2 + β2, . . . , 2 + β2p−1 ]

= δ2[β̄1, β̄2, . . . , β̄2p−1 , β1, β2, . . . , β2p−1 ] ∈ G2×2q .

According to Lemma 1, FSR (1) is nonsingular.
(Necessity) Assume that FSR (1) is nonsingular. According to (9), we denote the structure matrix of

f as
Mf = δ2[α1, α2, . . . , α2p−1 , α2p−1+1, α2p−1+2, . . . , α2p ]

= δ2[α1, α2, . . . , α2p−1 , ᾱ1, ᾱ2, . . . , ᾱ2p−1 ].

Let Mf1 = δ2[α1, α2, . . . , α2p−1 ], Mf2 = δ2[ᾱ1, ᾱ2, . . . , ᾱ2p−1 ]. From (7), it holds that

Mf2 = δ2[2, 1]δ2[α1, α2, . . . , α2p−1 ] =M¬Mf1 .
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Hence, function f can be expressed as

f(x1, x2, . . . , xp) =[Mf1 M¬Mf1 ]x1x2 · · ·xp

=[I2 M¬]

[
Mf1 0

0 Mf1

]
x1x2 · · ·xp

=M⊕M¬(I2 ⊗Mf1)x1x2 · · ·xp

=M⊕M¬x1Mf1x2 · · ·xp

=¬x1 ⊕ f1(x2, . . . , xp),

or
f(x1, x2, . . . , xp) =[Mf1 M¬Mf1 ]x1x2 · · ·xp

=[M¬ I2]

[
M¬Mf1 0

0 M¬Mf1

]
x1x2 · · ·xp

=M⊕(I2 ⊕M¬Mf1)x1x2 · · ·xp

=M⊕x1M¬Mf1x2 · · ·xp

=x1 ⊕ f2(x2, . . . , xp).

Similar to f , the feedback function g satisfies g = ¬z1 ⊕ g1(z2, . . . , zq) or g = z1 ⊕ g2(z2, . . . , zq). Since g
is a linear function, it holds that g = z1 ⊕ g2(z2, . . . , zq).

Based on Lemmas 1 and 2, we finally calculate the number of nonsingular GLC-FSRs.

Theorem 1. The number of nonsingular GLC-FSRs composed of p-stage NFSRs and q-stage LFSRs
is 2q−1+2p−1

− 2p+q−2.
Proof. According to Lemmas 1 and 2, a GLC-FSR is nonsingular iff the linear feedback function g
satisfies g = z1 ⊕ g2(z2, . . . , zq) and the structure matrix of the nonlinear feedback function f satisfies
αi+2p−1 = ᾱi, i = 1, 2, . . . , 2p−1.

On one hand, since g is linear, then g2 = α2z2 ⊕ · · · ⊕ αqzq, where α2, . . . , αq ∈ D. Hence, there exist
2q−1 linear functions which satisfy the requirement of the linear feedback function g in the nonsingular
GLC-FSRs.

On the other hand, since the Boolean function has a one-to-one correspondence with its structure
matrix, then there exist 22

p−1

Boolean functions whose structure matrices satisfy αi+2p−1 = ᾱi. Moreover,

these 22
p−1

Boolean functions contain 2p−1 linear functions. Hence, there exist 22
p−1

− 2p−1 nonlinear
functions which satisfy the requirement of the nonlinear feedback function f in the nonsingular GLC-
FSRs.

To sum up, the number of nonsingular GLC-FSRs composed of p-stage NFSRs and q-stage LFSRs is
2q−1(22

p−1

− 2p−1) = 2q−1+2p−1

− 2p+q−2.

Remark 2. The proof of Lemma 2 combines the structure matrices and the refresh transformations
of feedback functions. In this way, the number of nonsingular GLC-FSRs can be obtained. Moreover,
Lemma 1 facilitates the exploration of fault attack on the nonsingularity of GLC-FSRs.

To illustrate Theorem 1, we finally provide an example.

Example 1. Consider the GLC-FSRs composed of 2-stage NFSRs and 2-stage LFSRs.
From Lemma 1, the structure matrix Mf in nonsingular GLC-FSRs satisfies

Mf = δ2[1, 1, 2, 2] or Mf = δ2[1, 2, 2, 1] or Mf = δ2[2, 1, 1, 2] or Mf = δ2[2, 2, 1, 1].

Hence, feedback function f satisfies f = x1 or f = ¬x1 ⊕ x2 or f = x1 ⊕ x2 or f = ¬x1. Since f is a
nonlinear function, we further derive

f = ¬x1 ⊕ x2 or f = ¬x1.

From Lemma 2, the linear feedback function g of nonsingular GLC-FSRs satisfies

g = z1 or g = z1 ⊕ z2.

Hence, the number of nonsingular GLC-FSRs composed of 2-stage NFSRs and 2-stage LFSRs is 4,
which is consistent with 22−1+2 − 24−2 = 4 in Theorem 1.
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Figure 2 (Color online) FSR under fault attack which injects only one bit.

4 Nonsingularity of GLC-FSRs subject to fault attacks

The fault attack is a feasible way to achieve the side-channel attacks in cryptography. The attacker can
destroy the normal operation of the cryptosystem through fault attacks, which may cause the cryptosys-
tem to produce the wrong output. Then, the attacker can analyze the fault information and deduce the
key or plaintext information. In this section, we establish the algebraic form of GLC-FSRs subject to
fault attacks under the STP framework, and then explore the effect of fault attacks on the nonsingularity
of GLC-FSRs.

In this article, we discuss two types of fault attacks [8]: hard fault attack and soft fault attack. Hard
fault attack indicates that the attacker permanently fixes some random bits to 0. Thus, the bits injected
by hard fault will always be read out as 0, but will never be written in. Besides, hard fault attack
is destructive, and thus it can only be injected once. Soft fault attack indicates that the attacker will
change the value of some random bits in FSRs and has the power to reset the register. Hence, soft fault
attack can be injected multiple times. Figure 2 shows these two kinds of fault attacks on FSRs, where
the injection position is xr.

Firstly, we investigate the nonsingularity of GLC-FSRs which are attacked by a hard fault. Since all
hard fault attacks are destructive, we only need to consider the case that a single bit is attacked and
make Assumption 1.

Assumption 1. The hard fault attack is injected into a single bit of FSR (1).

According to the structure matrices of GLC-FSRs, we come to the following conclusion.

Theorem 2. Under Assumption 1, FSR (1) subject to the hard fault attack is singular.

Proof. Here we only prove the situation where the hard fault attack is injected into the NFSR of FSR
(1). The proof for the situation where the hard fault attack is injected into the LFSR of FSR (1) is
similar.

Suppose that the hard fault attack is injected into bit xk, where k ∈ {1, 2, . . . , p}. Correspondingly,
the attacked bit is denoted as xFk and the dynamics of xFk becomes xFk (t + 1) = 0. Hence, the structure
matrix of xFk satisfies ΨF

k = δ2[2, 2, . . . , 2] ∈ G2×2p+q . The state transition matrix of FSR (1) subject to
this type of hard fault is represented as LF = δ2p+q [ηF1 , η

F
2 , . . . , η

F
2p+q ] ∈ G2p+q×2p+q . Then

Colτ (L
F ) = Colτ (Ψ1)⋉ · · ·⋉ Colτ (Ψk−1)⋉ Colτ (Ψ

F
k )⋉ Colτ (Ψk+1)⋉ · · ·Colτ (Φq) = δ

ηF
τ

2p+q , (13)

where τ = 1, 2, . . . , 2p+q.

Without losing generality, let δ
ηF
τ

2p+q = δµ
2k−1δ

2
2δ

ν
2p+q−k . Using STP, we obtain that

δ
ηF
τ

2p+q = δµ
2k−1δ

2
2δ

ν
2p+q−k = δ

2(µ−1)+2

2k
δν2p+q−k = δ2µ

2k
δν2p+q−k = δ

2p+q−k(2µ−1)+ν

2p+q .

Noticing that µ ∈ {1, 2, . . . , 2k−1} and ν ∈ {1, 2, . . . , 2p+q−k}, it holds that

2p+q−k(2µ− 1) + ν ∈
{
2p+q−k + 1, . . . , 2p+q−k + 2p+q−k,

3 · 2p+q−k + 1, . . . , 3 · 2p+q−k + 2p+q−k, . . . ,

(2k − 1) · 2p+q−k + 1, . . . , 2k − 1 · 2p+q−k + 2p+q−k
}
= Ωk,

where |Ωk| = 2p+q−1. Since the state transition matrix LF has 2p+q columns and the set Ωk has 2p+q−1

elements, there must exist identical columns in matrix LF . According to Lemma 1, FSR (1) subject to
the hard fault is singular.
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Remark 3. Similar to the proof of Theorem 2, the state transition matrix LF has at most 2p+q−ω

different columns when the hard fault attack is injected into ω bits, where ω = 2, 3, . . . , p + q. Hence,
FSR (1) subject to any hard fault attack becomes singular.

Next, we investigate the nonsingularity of GLC-FSRs subject to soft fault attacks. For the convenience
of the following discussion under the framework of STP, we give some necessary preliminaries. Let
ℜ = {xk1

, . . . , xkι
, zs1 , . . . , zsσ} be the soft fault bit set, where k1 < · · · < kι, s1 < · · · < sσ. Based on the

definition of soft fault attack, the soft fault function with respect to ℜ is described as

Sℜ(W ) = (x∗1, . . . , x
∗
p, z

∗
1 , . . . , z

∗
q ), (14)

where W = (x1, . . . , xp, z1, . . . , zq) and





x∗k = ¬xk, if xk ∈ ℜ;

z∗s = ¬zs, if zs ∈ ℜ;

x∗k = xk, if xk /∈ ℜ;

z∗s = zs, if zs /∈ ℜ.

By converting W and Sℜ(W ) into vector forms as W = x1 · · ·xpz1 · · · zq and Sℜ(W ) = x∗1 · · ·x
∗
pz

∗
1 · · · z

∗
q ,

respectively, the soft fault function Sℜ can expressed as

Sℜ(W ) = x∗1 · · ·x
∗
pz

∗
1 · · · z

∗
q =MSℜ

x1 · · ·xpz1 · · · zq, (15)

where MSℜ
= [⋉ι

i=1(I2ki−1 ⊗M¬)][⋉σ
j=1(I2p+sj−1 ⊗M¬)]⋉ I2p+q ∈ G2p+q×2p+q .

Since the attacker has the ability to inject the soft fault at any random bit, we denote the power set
of {x1, . . . , xp, z1, . . . , zq} as Υ = {ℜ1, ℜ2, . . . , ℜ2p+q}, where ℜ1,ℜ2, . . . ,ℜ2p+q are all possible soft fault
bit sets. For example, for a GLC-FSR consisting of a 3-stage NFSR and a 2-stage LFSR, the soft fault
bit sets are

ℜ1 = ∅, ℜ2 = {x1}, ℜ3 = {x2}, ℜ4 = {x3}, ℜ5 = {z1}, ℜ6 = {z2},

ℜ7 = {x1, x2}, ℜ8 = {x1, x3}, ℜ9 = {x1, z1}, ℜ10 = {x1, z2},

· · · , ℜ31 = {x2, x3, z1, z2}, ℜ32 = {x1, x2, x3, z1, z2},

where ℜ1 indicates that the GLC-FSR is not attacked by the soft fault, and ℜ32 indicates that all bits are
attacked by the soft fault. Since soft fault attack can be injected multiple time, we make the following
natural assumption.

Assumption 2. The attacker can inject the soft fault attack ℜ(t) with respect to the state w(t) of FSR
(1) at time t, where ℜ(t) ∈ {ℜ1,ℜ2, . . . ,ℜ2p+q}.

Soft fault attacks mean that the attacker can modify the values of one or more random bits and has
the ability to reset FSRs. Thus, the soft fault attack can be injected into xp and zq. When the soft fault
attack is injected into only one bit at each time, say xr, we only need to consider the impact of Φr−1 on
the state transition matrix L. However, the more general case is that the soft fault attacks are injected
into several bits at different times. Therefore, we use the soft fault bit sets to analyze the state transition
of GLC-FSRs subject to soft fault attacks.

Similar to (14) and (15), we obtain the soft fault functions and the corresponding structure matrices
with respect ℜ1, ℜ2, . . . ,ℜ2p+q , which are denoted as

Sℜ1
, Sℜ2

, . . . , Sℜ
2p+q

and MSℜ1
, MSℜ2

, . . . , MSℜ
2p+q

∈ G2p+q×2p+q . (16)

Moreover, we convert all the soft fault bit sets into vector forms below:

ℜ1 ∼ δ12p+q , ℜ2 ∼ δ22p+q , . . . , ℜ2p+q ∼ δ2
p+q

2p+q . (17)

Now, based on Assumption 2, the soft fault attack depending on the state can be represented as

ℜ(t) = Hw(t), (18)

where H = δ2p+q [h1, h2, . . . , h2p+q ] ∈ G2p+q×2p+q .



Li H T, et al. Sci China Inf Sci September 2024, Vol. 67, Iss. 9, 192203:10

Since the structure matrix corresponding to the soft fault attack ℜ(t) can be represented as [MSℜ1
MSℜ2

· · · MSℜ
2p+q

]ℜ(t), the state of FSR (1) with the soft fault attack (18) is

w̃(t) = [MSℜ1
MSℜ2

· · · MSℜ
2p+q

]ℜ(t)w(t)

= [MSℜ1
MSℜ2

· · · MSℜ
2p+q

]Hw(t)w(t).

Given w(t) = δλ2p+q , λ ∈ {1, 2, . . . , 2p+q}, using STP, we get w(t)w(t) = δλ2p+qδλ2p+q = δ
(λ−1)2p+q+λ

22p+2q .
Hence, we construct the power-reducing matrix J = δ22p+2q [1, 2p+q+2, . . . , 22p+2q] ∈ G22p+2q×2p+q , which
satisfies Jw(t) = w(t)w(t).

According to (16)–(18), the algebraic form of FSR (1) subject to the soft fault attack (18) is represented
as

w(t + 1) = Lw̃(t) = LSHJw(t), (19)

where LS = L[MSℜ1
MSℜ2

· · · MSℜ
2p+q

] ∈ G2p+q×22p+2q .

Similar to Definition 1, FSR (1) subject to the soft fault attack (18) is nonsingular if the state transition
diagram of system (19) contains only cycles. The following result shows that singular FSR (1) is still
singular when a soft fault attack occurs.

Theorem 3. FSR (1) subject to the soft fault attack (18) is singular, if FSR (1) is singular.
Proof. Since FSR (1) is singular, according to the proof of Lemma 1, we get Col(L) $ (∆2)

p+q. Then
there exists λ ∈ {1, 2, . . . , 2p+q} such that δλ2p+q /∈ Col(L).

Arbitrarily choose the state w(t) = δτ2p+q of system (19). Then, the successor state of δτ2p+q is

w(t + 1) = L[MSℜ1
MSℜ2

· · · MSℜ
2p+q

]δ2p+q [h1, h2, . . . , h2p+q ]δτ2p+qδτ2p+q

= L[MSℜ1
MSℜ2

· · · MSℜ
2p+q

]δhτ

2p+qδ
τ
2p+q

= LMSℜhτ
δτ2p+q = LColτ (MSℜhτ

).

Since δλ2p+q /∈ Col(L), we get LColτ (MSℜζ
) 6= δλ2p+q , that is, δτ2p+q is not a predecessor state of δλ2p+q . By

the arbitrariness of δτ2p+q , we conclude that δλ2p+q has no predecessor state in system (19). Hence, FSR
(1) subject to the soft fault attack (18) is singular.

The following presents a necessary and sufficient condition for the nonsingularity of FSR (1) subject
to the soft fault attack (18).

Theorem 4. FSR (1) subject to the soft fault attack (18) is nonsingular iff

Col(LSHJ) = (∆2)
p+q. (20)

Proof. (Sufficiency) Arbitrarily chosen state w(t) = δϑ2p+q of system (19), the successor state of δϑ2p+q is

w(t+ 1) = LSHJδϑ2p+q = Colϑ(L
SHJ).

According to (20), there exists only one state δζ2p+q which satisfies

LSHJδζ2p+q = Colζ(L
SHJ) = δϑ2p+q ,

that is, δϑ2p+q has only one predecessor state δζ2p+q .
By the arbitrariness of δϑ2p+q , we conclude that any state of system (19) has the unique predecessor

state and the unique successor state. Therefore, there exist only cycles in the state transition diagram of
system (19), which implies that FSR (1) subject to the soft attack (18) is nonsingular.

(Necessity) We prove the necessity by a reduction to absurdity. Suppose that

Col(LSHJ) $ (∆2)
p+q.

Hence, there must exist identical columns in matrix LSHJ . Without loss of generality, we denote
Colϑ(L

SHJ) = Colζ(L
SHJ) = δϕ2p+q . Then, it holds that

LSHJδϑ2p+q = LSHJδζ2p+q = δϕ2p+q ,
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that is, δϕ2p+q has two different predecessor states, which contradicts the fact that FSR (1) subject to the
soft fault attack (18) is nonsingular.

According to Theorems 3 and 4, we conclude that singular GLC-FSRs remain singular after soft fault
attacks, and nonsingular GLC-FSRs remain nonsingular after the specific soft fault attacks satisfying
(20).

At last, an illustrative example is used to interpret Theorems 2 and 4.

Example 2. Consider a GLC-FSR below:





x1(t+ 1) = x2(t),

x2(t+ 1) = x3(t),

x3(t+ 1) =
[
x1(t)⊕

(
¬x2(t) ∧ x3(t)

)]
⊕ z1(t),

z1(t+ 1) = z2(t),

z2(t+ 1) = z1(t)⊕ z2(t),

(21)

where xk, zs ∈ D, k = 1, 2, 3, s = 1, 2.

Firstly, we analyze the nonsingularity of FSR (21). The feedback functions of FSR (21) are f(x1, x2, x3) =
x1 ⊕ (¬x2 ∧ x3) and g(z1, z2) = z1 ⊕ z2. Using STP, we obtain the structure matrices of f , g below:

Mf = δ2[1, 1, 2, 1, 2, 2, 1, 2], Mg = δ2[2, 1, 1, 2].

According to Lemma 1, FSR (21) is nonsingular. To verify our result, the algebraic form of FSR (21) is
derived from (2), (3) and Proposition 2, which is shown below:

w(t+ 1) = Lw(t),

where
L = δ32[6, 7, 1, 4, 14, 15, 9, 12, 18, 19, 21, 24, 30, 31, 25, 28,

2, 3, 5, 8, 10, 11, 13, 16, 22, 23, 17, 20, 26, 27, 29, 32].

Based on L, there exist only four cycles in the state transition diagram of FSR (21): δ432 → δ432, δ
32
32 → δ3232 ,

δ832 → δ1232 → δ2432 → δ1632 → δ2832 → δ2032 → δ832 and δ132 → δ632 → δ1532 → δ2532 → δ2232 → δ1132 → δ2132 → δ1032 →
δ1932 → δ532 → δ1432 → δ3132 → δ2932 → δ2632 → δ2332 → δ1332 → δ3032 → δ2732 → δ1732 → δ232 → δ732 → δ932 → δ1832 →
δ332 → δ132. Hence, FSR (21) is nonsingular, which is consistent with Lemma 1.

Now, we discuss the nonsingularity of FSR (21) subject to the hard fault attack. Assume that the
hard fault is injected into bit x2 and the attacked bit is denoted as xF2 . Then the structure matrix of xF2
satisfies ΨF

2 = δ2[2, 2, . . . , 2] ∈ G2×32. Hence, the state transition matrix of the attacked FSR is

LF = δ32[14, 15, 9, 12, 14, 15, 9, 12, 26, 27, 29, 32, 30, 31, 25, 28,

10, 11, 13, 16, 10, 11, 13, 16, 30, 31, 25, 28, 26, 27, 29, 32].

According to Lemma 1, FSR (21) subject to the hard fault attacks is singular, which is consistent with
Theorem 2.

Finally, we analyze the nonsingularity of FSR (21) subject to soft fault attack. Assume that the soft
fault attack is

ℜ(t) = Hw(t), (22)

where H = I32. According to (15) and (17), we obtain

LSHJδ1432 = LSHδ1432δ
14
32 = LMSℜ14

δ1432 = LCol14(MSℜ14
) = Lδ1232 = δ2432 ,

LSHJδ1532 = LSHδ1532δ
15
32 = LMSℜ15

δ1532 = LCol15(MSℜ15
) = Lδ1232 = δ2432 .

Hence, it holds that

Col(LSHJ) $ (∆2)
5.

According to Theorem 4, GLC-FSR (21) subject to the soft fault attack (22) is singular.
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5 Conclusion

We have derived the number of nonsingular GLC-FSRs by constructing the structure matrices of feed-
back functions. Next, we have demonstrated that any GLC-FSR is singular under hard fault attacks.
Furthermore, we have analyzed the nonsingularity of GLC-FSRs subject to soft fault attacks, utilizing
the soft fault function and soft fault bit set. Future research could explore the nonsingularity of other
types of FSRs subject to fault attacks.
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