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Motor imagery (MI) is a classic paradigm of elec-

troencephalogram (EEG)-based brain-computer interfaces

(BCIs). It entails individuals mentally imagining the move-

ment of a body part without physically performing it. EEG

signals from MI are induced by imagination of movement

and do not rely on external stimuli. With minimal training,

individuals can achieve autonomous control, making MI-

based BCI systems highly convenient. During MI, specific

regions of the cerebral cortex exhibit changes in sensory-

motor rhythms (SMR), which is mainly manifested through

event-related desynchronization (ERD) and event-related

synchronization (ERS), which are noticeable power decrease

and increase at specific frequency bands, respectively. Gen-

erally, ERD occurs on the contralateral side of the brain,

whereas ERS occurs on the ipsilateral side. Therefore, de-

tecting SMR in specific areas of the cerebral cortex from

EEG can be used to decode the subject’s motor intentions,

and then control external devices to execute the correspond-

ing movements. Many approaches have been proposed to

distinguish the ERD/ERS patterns, which can be broadly

categorized into traditional approaches and deep learning

approaches.

Traditional approaches perform signal processing, feature

extraction and classification separately. Many signal pro-

cessing and feature extraction algorithms have been pro-

posed, e.g., common spatial pattern (CSP), independent

component analysis, autoregressive components, Rieman-

nian geometry, tangent space features, recurrence quantifi-

cation analysis, and so on [1]. Due to the SMR characteristic

of MI-EEG, CSP is widely used to improve the spatial res-

olution, which transforms the raw EEG data into output

data with optimal variance for subsequent feature extrac-

tion and classification. It was originally proposed for binary

classification, but extensions to multi-class tasks and many

other variants have also been proposed. In the classifica-

tion phase, various traditional classifiers can be used on the

extracted features, such as logistic regression (LR), support

vector machine (SVM), linear discriminant analysis (LDA),

and so on [1]. Traditional signal processing, feature extrac-

tion, and machine learning approaches may perform more

robustly with small data; however, their performance may

still need improvements. For example, the goal of CSP is to

maximize the variance of the filtered EEG signals for differ-

ent classes, which is related to but not completely consistent

with the classification performance.

Deep learning approaches integrate signal processing, fea-

ture extraction, and classification into a single neural net-

work, allowing end-to-end training with raw EEG data. For

example, Schirrmeister et al. [2] proposed ShallowCNN and

DeepCNN which include convolution kernels in temporal

and spatial dimensions for raw EEG classification. Lawh-

ern et al. [3] introduced EEGNet, a compact network that

uses a depthwise convolution and a separable convolution

for reducing the parameter count. Zhang et al. [4] proposed

a hybrid deep neural network composed of convolution neu-

ral network (CNN) and long short-term memory (LSTM).

Miao et al. [5] designed LMDA-Net, which includes a chan-

nel attention module and a depth attention module to ex-

tract features from multiple dimensions. However, these

deep learning models have much more parameters than tra-

ditional models, and require more training data to avoid

overfitting. Unfortunately, collecting EEG training data is

time-consuming and user-unfriendly; publicly available MI

datasets usually only contain a limited number of samples,

resulting in degraded performance of the trained model.

This study proposes a retraining framework to combine

prior knowledge from CSP and additional information from

the raw EEG data for optimizing CSP and its variants based

on traditional models. Specifically, the retraining framework

consists of two stages: (1) traditional model training, where

the CSP filters and a traditional classifier are designed, and

(2) retraining, where an end-to-end neural network is ini-

tialized with the parameters of the traditional model and

further optimized using gradient descent. Thus, the retrain-

ing framework complements prior knowledge from CSP with

knowledge from the training data. The algorithm details on

CSP and its variants will be given in Appendix A. Here we

only introduce the overall CSP-based retraining framework.

Retraining framework. The objective of CSP is to maxi-

mize the variance difference of EEG signals between differ-

ent classes, which is not completely consistent with the final

classification objective. Our proposed retraining framework

aims to exploit the prior knowledge from CSP and additional

task-specific knowledge from the training data. It consists
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Figure 1 (Color online) CSP retraining framework, which consists of two stages. In the first stage (top blue block), a CSP-based

traditional model is trained on the training data. In the second stage (bottom green block), a neural network is initialized with

the same computational process and parameters as the traditional model, and then retrained using gradient descent.

of two training stages, as shown in Figure 1.

Stage 1. Traditional model training. A traditional clas-

sification pipeline with the CSP algorithm is applied to the

training data. This includes CSP spatial filtering, feature

extraction, and classifier optimization. Taking the classic

CSP algorithm and LR classifier as an example, there are

three steps: (1) Optimize the CSP filter matrix W using

the objective of (A1) and each EEG trial is projected into

a discriminative space by (A3) in Appendix A; (2) calculate

a logarithmic variance feature vector x from each spatially

filtered EEG trial by (A4) in Appendix A; and, (3) design

an LR classifier with weights Wc and bias b to classify x,

where the softmax function σ(·) is used for multi-nominal

LR model.

Stage 2. Retraining. A feed-forward neural network

consisting of two blocks, each corresponding to a specific

step in the traditional classification pipeline, is constructed.

The first block, defined as feature extractor f , consists

of a convolutional layer with c′ convolutional kernels of size

(c, 1) followed by a logarithmic variance activation, where

c is the number of EEG channels and c′ is consistent with

the number of CSP filters. This block simulates the CSP fil-

ter and feature calculation process, mapping the raw EEG

signal X into a feature vector x, i.e.,

x = f(X; θf ) = log
(

var
(

Conv(X; θf )
))

, (1)

where θf is the parameter of the convolutional kernels, which

has the same dimensionality as the CSP filter matrix W .

The second block, defined as classifier h, maps the feature

vector x into a label y, which consists of a fully-connected

layer with parameters θh followed by softmax activation for

classification, i.e.,

p(y = i|x) = h(x; θh) = σ(xθThw
+ θhb

). (2)

The parameter θf in f is initialized with the CSP filter

matrix W . θhw
and θhb

in h are initialized with the LR

classifier weights Wc and bias b, respectively, to introduce

prior knowledge from the traditional model. During retrain-

ing, the model parameters are further optimized to minimize

the following empirical loss on the training samples using

gradient descent:

L = −
1

N

N
∑

n

C
∑

i

I(yn = i) log
(

h(f(Xn; θf ); θh)
)

, (3)

where I(·) is the indicator function, N is the number of train-

ing samples, and C is the number of class labels.

We verified the effectiveness of the retraining framework

with the standard CSP algorithm and its two variants across

a wide range of testing scenarios with more advantages in

small-sample settings. Detailed experimental results and

analysis can be found in Appendix B.

Conclusion. CSP is one of the most widely used sig-

nal processing approaches in EEG-based MI classification;

however, the CSP optimization objective is not completely

consistent with the final classification objective, and hence

it does not necessarily lead to the best classification per-

formance. This study has proposed a retraining framework,

which retrains a neural network with the same forward com-

putational process and initial parameters as the CSP-based

traditional model, and further optimizes it on the labeled

training data using gradient descent. Experiments on four

MI datasets demonstrated that retraining improved tradi-

tional models’ classification performance and outperformed

several popular deep neural network models, especially when

the amount of labeled training data was very small. Our

work demonstrates the advantage of integrating knowledge

from traditional models and from the training data in EEG-

based BCIs.
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