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Increasing experimental evidence has shown that circRNA

has the potential to serve as a biomarker for disease diagno-

sis and prognosis, especially in cancer [1]. circRNA actively

participates in numerous pathological processes by serving

as an miRNA sponge. Consequently, the precise prediction

of circRNA-miRNA interactions (CMIs) is crucial for nar-

rowing down the scope of biological experiments and expe-

diting the research and development of disease treatments.

Due to the time-consuming and costly nature of biologi-

cal experiments, there is a pressing need for computational

methods to expedite the research process. For example,

Luo et al. [2] proposed a method for representing large-scale

weighted networks, which was applied to describe weighted

biological molecular networks. Bi et al. [3] introduced a fea-

ture analysis method based on nonnegative AutoEncoder,

which can perform representation learning on missing bio-

logical data. He et al. [4] proposed a variant of the random

forest algorithm, which selects features for modeling from

all subsequence sets and outperforms state-of-the-art clas-

sification algorithms in terms of computational speed and

accuracy.

These methods have effectively propelled research in

CMI prediction and achieved commendable results. How-

ever, there are still some factors that have been overlooked.

(1) Graph representation learning is a complex and challeng-

ing task, and traditional graph embedding algorithms may

not fully consider the heterogeneity of entities and relation-

ships. (2) A reasonable negative sample generation strat-

egy can effectively utilize biological logic and enhance the

prediction performance of the model. (3) The sequences of

circRNAs and miRNAs harbor a wealth of biological infor-

mation, but this information remains inadequately explored

at present.

In this study, we propose a model named BioKG-CMI

based on a biological knowledge graph that employs multi-

source features to predict CMIs. The flowchart of BioKG-

CMI is shown in Figure 1. Initially, BioKG-CMI performs

subcellular localization by utilizing the sequence informa-

tion of circRNAs and miRNAs, generating negative sam-

ples accordingly. Subsequently, we construct a biological

knowledge graph containing known relationships between

circRNAs and miRNAs. The DisMult algorithm is used to

learn feature representations of entities and relationships in

graphs. Then, the spatial proximity between nodes of the

same type is calculated, and the bidirectional encoder rep-

resentations from transformers (BERT) is used to learn the

representation of sequence features. Finally, these features

are fused and an AdaBoost classifier is used to predict po-

tential CMIs. The results indicate that the prediction per-

formance of the model can be effectively improved by gener-

ating negative samples through subcellular localization and

adopting a multi-feature fusion strategy.

Dataset. In the experiments, we primarily utilize the

CMI-9905 dataset to validate the performance of BioKG-

CMI, and the CMI-9589 dataset to assess the model’s gen-

eralization ability. The subcellular localization information

is used to generate negative samples. For more detailed in-

formation about the datasets, please refer to Appendix A.

BioKG-CMI algorithm. BioKG-CMI introduced the pre-

training algorithm BERT to learn the sequence representa-

tions of circRNAs and miRNAs. Neighboring molecules of

the same type typically share similar functionalities. Based

on this principle, we employ Word Mover’s distance to

capture spatial proximity among nodes of the same type.

To capture the representation of entities and relationships

in the biological knowledge graph accurately, BioKG-CMI

adopts DisMult to learn low-dimensional vectors of entities

based on neural networks. Please refer to Appendix B for

details of the BioKG-CMI algorithm.

Results. In this study, we plotted receiver operating char-

acteristic (ROC) curves and precision-recall (PR) curves,

and calculated the area under ROC curve (AUC) and the
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Figure 1 (Color online) Flowchart of BioKG-CMI. (a) Constructing a biological knowledge graph and generating negative samples;

(b) learning multi-source features of circRNAs and miRNAs; (c) features are fused, and CMIs are predicted using AdaBoost.

area under PR curve (AUPR) as standard evaluation indi-

cators. Besides, the accuracy rate, precision rate, specificity,

etc. are also employed as indicators to validate the model.

To comprehensively assess the predictive performance of the

model, we first conducted validation using two benchmark

datasets, CMI-9589 and CMI-9905 (Tables C1 and C2, Fig-

ures C1 and C2). The implementation of a judicious strat-

egy for generating negative samples is pivotal in enhanc-

ing model’s performance, so we compare the performance of

BioKG-CMI under various strategies for generating negative

samples (Figure C3). Secondly, to assess the extent to which

different types of features contribute to model performance,

we performed ablation experiments (Table C3). Then, we

compared DisMult with other graph embedding methods

and further explored the impact of knowledge graph features

with different embedding dimensions on model performance

(Figure C4, Table C4). Next, we also conducted compar-

ative experiments with different classifiers (Table C5, Fig-

ure C5). Subsequently, to demonstrate the exceptional per-

formance of BioKG-CMI, we compare it with other cutting-

edge models (Tables C6 and C7). Finally, case studies re-

lated to diseases have demonstrated the practicality of the

model (Table C8).

Conclusion. This study proposes a model named BioKG-

CMI to predict CMIs based on a biological knowledge graph.

Faced with limited data, we employ subcellular localization

to generate negative samples that align more closely with

biological logic. To mine semantic information in circRNA

and miRNA sequences, we introduce the pre-trained model

BERT to learn sequence feature representation. Guided by

the hypothesis that adjacent molecules have similar func-

tions, we calculate spatial proximity between nodes of the

same class. The DisMult algorithm is applied to extract

the potential logical rules of the knowledge graph and learn

entity and relationship representations. Subsequently, the

integration of multi-feature successfully addresses the chal-

lenge of expressing the complex biological knowledge graph

and overcoming the limitation of single-feature inadequacy.

Multiple comparative experiments and case studies demon-

strate the robustness of the proposed model.

Discussion. However, due to limitations in the dataset,

the full potential of BioKG-CMI remains to be explored.

Additionally, by integrating advanced graph representation

methods into the model, more representative features can be

extracted [5]. In the future, we are committed to collecting

more relevant data to improve the predictive capability and

applicability of BioKG-CMI further.
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