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Appendix A Positive and Negative Sample Construction

We primarily employed the CMI-9905 dataset to validate the performance of BioKG-CMI. Constructed by Wang et al. [1], CMI-9905

is sourced from the circBank and circR2Cancer databases [2,3]. Following filtering, 9905 pairs of CMI relationships were obtained,

including 2346 circRNAs and 962 miRNAs. Additionally, we also utilized the CMI-9589 dataset to assess the generalization of

the model. Originating from the circBank database, CMI-9589 comprises 9589 pairs of CMI relationships with high confidence,

including 2115 circRNAs and 821 miRNAs.

An overview of the subcellular localization-based negative sample generation is shown in Figure B1. Specifically, for circRNA,

drawing inspiration from RNAlight, we utilize lncLocator to predict the subcellular location of circRNA. On the other hand, for

miRNA, we employ miRNALoc to forecast the subcellular location of miRNA [4,5]. Subsequently, samples with different subcellular

locations of circRNA and miRNA were used as candidate negative samples. Then, the positive samples among them are deleted to

obtain usable negative samples. Finally, we randomly select a subset equal to the number of positive samples from the available

negative samples as the negative samples in the experiment.
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Figure A1 Overview of generating negative samples with subcellular localization.
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Appendix B BioKG-CMI algorithm

Appendix B.1 Sequence representation learning

Molecular sequences contain rich biological information, and an increasing number of computational methods are being used to

mine their features [6]. We utilize natural language processing model BERT for pre-training sequences of circRNA and miRNA [7].

BERT consists of the input layer, encoding layer, and output layer, as illustrated in Figure B1. Firstly, at the input layer, BERT

uses the WordPiece algorithm to segment the input sequence and adds [CLS] and [SEP] markers. [CLS] represents the beginning

of a statement, and [SEP] serves as a separator mark. The input sequence is divided into Token embeddings, Segment embeddings,

and Position embeddings, which respectively represent the semantics of the word, the sentences in which the word is located,

and the order relationship within the sentence where the word is located. Then, at the encoding layer, comprising a 12-layer

Transformer, embedding vectors are learned bidirectionally based on the self-attention mechanism. Finally, at the output layer,

semantic representations for each word, incorporating contextual information, are obtained. The acquired sequence features through

this method offer novel possibilities for an in-depth understanding of intricate relationships in biology.
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Figure B1 Architecture for pre-training BERT.

Appendix B.2 Spatial proximity calculation

Word Mover’s Distance utilizes word2vec in conjunction with Earth Mover’s Distance to quantify proximity between sequences [8].

In particular, Word Mover’s Distance maps each sequence into word embedding vectors and then quantifies the distances between

these word vectors. The logarithmic likelihood calculation formula for the conditional probability between the central word and

context word pairs in the sequence is as follows:

1

T

T∑
t=1

∑
j∈nb(t)

log p (wj | wt) , (B1)

where T represents the length of the sequence, wt denotes the current center word, and nb(t) is the set of neighboring words of

word wt.

To incorporate semantic similarity between words into the document distance metric, the distance l calculation formula between

words i and j is as follows:

l(i, j) = ∥xi − xj∥2 , (B2)

where xi represents the embedding of the i-th word in the word2vec mapping space.

The computation of the minimum cumulative cost for the movement of sequence d to sequence d’ is as follows:

min
M⩾0

n∑
i,j=1

Mij l(i, j),

s.t.

n∑
j=1

Mij = di ∀i ∈ {1, . . . , n},

n∑
i=1

Mij = d
′
j ∀j ∈ {1, . . . , n}.

(B3)

The matrix M describes the distance between words in two sequences, where each element signifies the distance a word from

its respective sequence needs to travel to reach another word in the counterpart sequence. Specifically, M is a sparse flow matrix,

indicating how far word i in sequence d needs to move to reach word j in sequence d’. Additionally, to mitigate computational

complexity and filter out noise, we employ PCA to map spatial proximity into a lower-dimensional space representation.
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Appendix B.3 Biological knowledge graph representation learning

The introduction of advanced data mining algorithms can extract more complete features [9–12]. In this study, we adopt DisMult

to characterize the constructed biological knowledge graph. DisMult utilizes a bilinear mapping function to learn the representation

of relationships, which enables the model to embedding-based extraction of logical rules from the knowledge graph [13]. We define

a knowledge graph as a triple of “entity-relationship-entity”. Each input entity corresponds to a vector, such as e1 and e2, and f

is the sigmoid function, which is used to convert the input vector and output it. W represents the initialization projection matrix,

and the learned entities are represented as ye1
and ye2

. The calculation is as follows:

ye1
= f

(
Wxe1

)
, ye2

= f
(
Wxe2

)
. (B4)

For relational representation learning, we employ a fundamental bilinear function to score the relationship between entities e1
and e2. The definition of the bilinear transformation function gb

r is as follows:

g
b
r

(
ye1

,ye2

)
= y

P
e1

Arye2
, (B5)

where P represents the positive sample set. Ar is the parameter learned during the training process, designed to capture a

representation of the specific relationship. Notably, to minimize the number of parameters, the relationship matrix Ar is constrained

to be a diagonal matrix.

To take full advantage of the performance, the Margin Ranking loss function is employed for optimization. It is defined as

follows:

L(Ω) =
∑

(e1,r,e2)∈P

∑
(e′1,r,e′2)∈P ′

max
{
S(e′1,r,e′2)

− S(e1,r,e2) + 1, 0
}
, (B6)

where P ′ represent sets of triplets corresponding to negative samples, respectively. The scoring function for the triplet (e1,r,e2),

denoted as S(e1, r, e2). This loss function aims to ensure that the predicted score for the positive sample is higher than that of the

negative sample by a certain margin, which promotes the model to learn graph representations better.

Appendix C Results

Appendix C.1 Assessment of prediction ability

The results generated by BioKG-CMI on the CMI-9905 using 5-fold CV are shown in Table C1. BioKG-CMI achieved notable

performance metrics, with Acc., Prec., Spec., Rec., F1, MCC, AUC, and AUPR reaching 82.19%, 94.81%, 68.23%, 96.14%, 79.23%,

67.15%, 0.9063, and 0.9278, respectively. The ROC curve and PR curve obtained by BioKG-CMI through 5-fold CV on the CMI-

9905 data set are shown in Figure C1. In addition, to assess the generalization performance of BioKG-CMI, we conducted a 5-fold

CV on the CMI-9589 dataset. Detailed experimental results are presented in Table C2. BioKG-CMI achieved Acc., Prec., Spec.,

Rec., F1, MCC, AUC, and AUPR of 85.61%, 97.29%, 73.26%, 97.96%, 83.58%, 73.5%, 0.9463, and 0.9581, respectively, on the

CMI-9589 dataset.

The ROC curve and PR curve generated through 5-fold CV for BioKG-CMI on the CMI-9589 dataset are depicted in Figure C2.

Notably, the standard deviation range in the results of the CMI-9905 dataset is larger than that of the CMI-9589 dataset. These

different results may be because the average degree of node connectivity in the CMI-9905 dataset is lower than that in the CMI-9589

dataset.

Table C1 Results of the 5-fold CV for BioKG-CMI on CMI-9905

Test set Acc. (%) Prec. (%) Rec. (%) Spec. (%) F1 (%) MCC (%) AUC AUPR

1 83.27 92.24 72.64 93.89 81.28 68.09 0.9098 0.9316

2 83.19 91.96 72.74 93.64 81.23 67.88 0.9004 0.9257

3 83.80 97.92 69.06 98.54 80.99 70.74 0.8977 0.9213

4 80.34 95.39 63.76 96.92 76.43 64.32 0.9291 0.9420

5 80.34 96.52 62.95 97.73 76.20 64.72 0.8944 0.9186

Average 82.19 94.81 68.23 96.14 79.23 67.15 0.9063 0.9278

Std 1.70 2.63 4.70 2.25 2.66 2.66 0.0140 0.0093

Table C2 Results of the 5-fold CV for BioKG-CMI on CMI-9589

Test set Acc. (%) Prec. (%) Rec. (%) Spec. (%) F1 (%) MCC (%) AUC AUPR

1 86.47 98.08 74.40 98.54 84.61 75.16 0.9460 0.9588

2 86.68 97.44 75.34 98.02 84.98 75.32 0.9447 0.9583

3 84.72 97.23 71.48 97.97 82.39 72.02 0.9420 0.9550

4 85.55 98.10 72.52 98.59 83.39 73.66 0.9514 0.9618

5 84.62 95.60 72.56 96.66 82.50 71.33 0.9475 0.9566

Average 85.61 97.29 73.26 97.96 83.58 73.50 0.9463 0.9581

Std 0.96 1.02 1.57 0.78 1.19 1.80 0.0035 0.0025
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Figure C1 ROC curve and PR curve of BioKG-CMI on CMI-9905.
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Figure C2 ROC curve and PR curve of BioKG-CMI on CMI-9589.

Appendix C.2 Comparison of different negative samples

We conducted 5-fold CV experiments on the CMI-9905 dataset, utilizing negative samples generated through subcellular localization

and randomly generated negative samples, respectively. Randomly generating negative samples is to pair known circRNAs and

miRNAs. Subsequently, after removing the interaction pairs in the known samples, an equal number of samples is randomly selected

from the remaining samples to serve as negative samples. The specific comparison results are shown in Figure C3.
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Figure C3 Performance comparison of BioKG-CMI with different negative samples on CMI-9905.

The results show that the predictive performance of negative samples generated by BioKG-CMI through subcellular localization

outperforms randomly generated ones. This confirms the effectiveness of employing subcellular localization as a strategy for negative

sample generation.
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Appendix C.3 Comparison of different feature combinations

The multi-source feature extracted by BioKG-CMI were categorized into three classes: sequence feature, spatial proximity, and

knowledge graph feature, marked as SF, SP, and KG. Remove these features in turn to observe the impact on the prediction results.

The ablation experiment results of BioKG-CMI on the CMI-9905 dataset using 5-fold CV are shown in Table C3.

Table C3 Ablation experimental of results on CMI-9905

Model Acc. (%) Prec. (%) Rec. (%) Spec. (%) F1 (%) MCC (%) AUC AUPR

SF+SP 71.50 77.10 61.10 81.90 68.15 43.96 0.7928 0.8169

SP+KG 78.35 93.89 60.73 95.97 73.62 60.66 0.8897 0.9122

SF+KG 81.08 94.22 66.30 95.85 77.74 65.13 0.9039 0.9251

Ours 82.19 94.81 68.23 96.14 79.23 67.15 0.9063 0.9278

The results show that the model’s predictive performance, which fuses multi-source feature, achieved optimal results. On the

other hand, the model that excluded the knowledge graph feature exhibited the poorest performance, followed by the model without

the sequence feature. This indicates that effectively integrating of multi-source feature is crucial for improving model performance,

with knowledge graph features playing a key role in feature fusion.

Appendix C.4 Comparison with other graph representation methods

We compared DisMult with SDNE [14], DeepWalk [15], and LINE [16], while keeping other parts of BioKG-CMI unchanged. The

objective prediction results of 5-fold CV experiments using different graph representation methods are shown in Figure C4, where

the width of the line represents the standard deviation. The findings indicate that the neural learning-based bilinear model,

DisMult, outperforms the performance of three other methods.

 SDNE
 DeepWalk
 LINE
 BioKG-CMI

Figure C4 Performance comparison of BioKG-CMI using different graph representation learning methods on CMI-9905.

Embedding dimension is a crucial parameter in graph representation learning methods, which can directly affect the expressive

ability of the learned features. A lower embedding dimension may result in information loss, hindering the model’s ability to

capture the intricate structure information of the graph fully. Conversely, a higher embedding dimension may give rise to the curse

of dimensionality, increasing computational costs and making the model more prone to overfitting. Therefore, we systematically

examine the impact of knowledge graph features at different dimensions on performance, including 32, 64, 128, 256, and 512. The

experimental results of comparing different embedding dimensions on the CMI-9905 dataset are shown in Table C4. The AUC

values under embedding dimensions 32, 64, 128, 256, and 512 are 0.8501, 0.8857, 0.9063, 0.8510, and 0.9019, respectively.

Table C4 Results of different embedding dimensions on CMI-9905

Dimensions Acc. (%) Prec. (%) Rec. (%) Spec. (%) F1 (%) MCC (%) AUC AUPR

32 78.21 91.23 62.44 93.98 74.12 59.47 0.8501 0.8777

64 81.20 89.47 70.87 91.52 78.99 63.88 0.8857 0.9053

128 82.19 94.81 68.23 96.14 79.23 67.15 0.9063 0.9278

256 76.17 79.94 69.94 82.39 74.58 52.78 0.8510 0.8785

512 81.68 91.62 69.69 93.66 79.08 65.29 0.9019 0.9164

Appendix C.5 Comparison of different classifiers

We used the Gradient Boosting Decision Tree (GBDT) [17], Logistic Regression (LR), Random Forest (RF), and AdaBoost classifier

for prediction, respectively. The results of 5-fold CV experiments on the CMI-9905 dataset using different classifiers are presented

in Table C5. Additionally, we have plotted the mean ROC curve, as illustrated in Figure C5.
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The AUC values of GBDT, LR, RF, and AdaBoost are 0.8887, 0.854, 0.8913, and 0.9063, respectively. This suggests that

the choice of AdaBoost classifier is reasonable, as its robust classification and predictive capabilities provide strong support for

accurately predicting CMI.

Table C5 Results of different classifiers on CMI-9905

Classifier Acc. (%) Prec. (%) Rec. (%) Spec. (%) F1 (%) MCC (%) AUC AUPR

GBDT 79.96 89.84 67.62 92.30 76.95 61.95 0.8887 0.8940

LR 78.04 79.74 75.17 80.90 77.37 56.19 0.8540 0.8655

RF 79.87 84.93 72.77 86.97 78.28 60.47 0.8913 0.9093

AdaBoost 82.19 94.81 68.23 96.14 79.23 67.15 0.9063 0.9278
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Figure C5 Mean ROC curves of BioKG-CMI using different classifiers on CMI-9905.

Appendix C.6 Comparison with other cutting-edge methods

The comparison results on the CMI-9905 dataset are presented in Table C6, where the AUC values of KGDCMI [18], WSCD [19],

SGCNCMI [20], JSNDCMI [1], KS-CMI [21], and BioKG-CMI are 0.893, 0.8923, 0.8942, 0.9003, 0.9086 and 0.9063 respectively.

The comparison results on the CMI-9589 dataset are shown in Table C7, with AUC values for CMIVGSD [22], SGCNCMI, KGD-

CMI, GCNCMI [23], BioDGW-CMI [24], and BioKG-CMI being 0.8804, 0.9015, 0.9041, 0.9320, 0.9179, and 0.9463, respectively.

Additionally, the p-values of AUC on CMI-9905 and CMI-9589 are 0.0092 and 0.0106, both less than 0.05. These results further

indicate that BioKG-CMI exhibits significant differences compared to other models.

Table C6 Comparison results with cutting-edge methods on CMI-9905

Model KGDCMI WSCD SGCNCMI JSNDCMI BioDGW-CMI BioKG-CMI

AUC 0.8930 0.8923 0.8942 0.9003 0.9026 0.9063

AUPR 0.8767 0.8935 0.8887 0.8999 0.8962 0.9278

Table C7 Comparison results with cutting-edge methods on CMI-9589

Model CMIVGSD SGCNCMI KGDCMI GCNCMI KS-CMI BioKG-CMI

AUC 0.8804 0.9015 0.9041 0.9320 0.9179 0.9463

AUPR 0.8629 0.9011 0.8937 0.9396 0.9181 0.9581

Appendix C.7 Case studies

Annually, over 12,500 individuals in the United States receive a diagnosis of laryngeal cancer, with laryngeal squamous cell carcinoma

(LSCC) constituting 90% of all malignant tumors in the larynx [25, 26]. Research indicates that ncRNA can influence LSCC cells

through miRNA sponging [27]. Glioblastoma (GBM) is a tumor type caused by astrocytes, a type of glial cell [28]. GBM tumor cells

are composed of various cells that multiply rapidly in the body, making them difficult to treat. Gastric cancer ranks second in cancer

mortality rates, and a growing body of evidence suggests that the aberrant expression of miRNA may present novel therapeutic
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Table C8 The top 10 circRNAs and miRNAs associated with cancers

Rank CircRNA MiRNA Evidence (PMID)

1 hsa circ 0044520 hsa-miR-4726-5p 30282067

2 hsa circ 0023303 hsa-miR-646 31951319

3 hsa circ 0092012 miR-486-3p 31384171

4 hsa circ 0081119 hsa-miR-4726-5p Unconfirmed

6 hsa circ 0043949 hsa-miR-5195-3p 31823158

4 hsa circ 0043949 hsa-miR-1257 31823158

5 hsa circ 0043949 hsa-miR-140-3p Unconfirmed

6 hsa circ 0000376 hsa-miR-375 31307199

7 hsa circ 0008365 hsa-miR-375 31199037

8 hsa circ 0004928 hsa-miR-375 31307199

9 hsa circ 0044520 hsa-miR-4726-5p 30282067

10 hsa circ 0023303 hsa-miR-646 31951319

opportunities [29, 30]. The top 10 circRNA-miRNA relationships associated with these three types of cancer are presented in

Table C8, with eight pairs validated and evidence provided.

For instance, hsa circ 0044520 exhibits a significant upregulation in LSCC. It plays a crucial regulatory role by acting as a

sponge for hsa-miR-4726-5p [31]. Resistance of temozolomide (TMZ) limits its efficacy in GBM. The hsa circ 0043949 regulates

TMZ resistance by acting as a sponge for hsa-miR-876-3p and provides a potential therapeutic target for GBM treatment [32]. The

hsa circ 0008365 suppresses solid tumor growth by upregulating the expression of has-miR-375, potentially offering novel insights

into the treatment of GC [33].
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