
SCIENCE CHINA
Information Sciences

August 2024, Vol. 67, Iss. 8, 189101:1–189101:2

https://doi.org/10.1007/s11432-023-4080-3

c© Science China Press 2024 info.scichina.com link.springer.com

. LETTER .

On optimal streaming kernelization algorithms

Hao FENG1, Wei YANG1 & Jianer CHEN2*

1School of Computer Science, Guangzhou University, Guangzhou 510006, China;
2Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA

Received 5 July 2023/Revised 7 March 2024/Accepted 18 June 2024/Published online 16 July 2024

The streaming model has been a popular model in big data

computation. Streaming kernelization algorithms can be re-

garded as data compression processes on streaming data. In

this study, we give a general method for developing compu-

tational lower bounds for streaming kernelization algorithms

that is applicable to a large class of computational prob-

lems. As an example, we use the method to prove computa-

tional lower bounds for the well-known problem d-Hitting-

Set. This result shows that a streaming kernelization algo-

roithm we recently developed for the famous NP-hard prob-

lem Vertex-Cover is optimal in all complexity measures,

including space, update-time, and kernel size.

A parameterized problem Q is a decision problem with

instances of form (x, k), where the parameter k is an inte-

ger. A kernelization algorithm KQ of Q on an input (x, k)

constructs (x0, k0) satisfying |x0|, k0 6 h(k) for a fixed func-

tion h, such that (x, k) is a yes-instance of Q iff (x0, k0) is

a yes-instance of Q, where x0 is the kernel. A determin-

istic context-sensitive problem (DCS) is a problem solvable

by an O(n)-space deterministic algorithm. Note that many

parameterized problems of interests are DCS.

Inputs of a streaming model are given as a stream of in-

put elements. A streaming algorithm must follow the order

of the element arrivals to process the input. The efficiency

of a streaming algorithm is evaluated based on its space and

update-time (i.e., the processing time per input element).

Theorem 1. A DCS parameterized problem Q has an

O(s(k))-space bounded randomized streaming kernelization

algorithm producing kernels of size O(s(k)) iff Q is solvable

by an O(s(k))-space bounded randomized streaming algo-

rithm with the same success probability.

Proof. (⇐) An O(s(k))-space randomized streaming algo-

rithm AQ solving the problem Q exactly gives the following

streaming kernelization algorithm for Q: on a stream of an

instance (x, k) of Q, (1) call the algorithm AQ to decide

in space O(s(k)) if (x, k) is a yes-instance; then (2) con-

struct a proper trivial instance of size O(1). This algorithm

is obviously an O(s(k))-space bounded randomized stream-

ing kernelization algorithm for Q that has the same success

probability and constructs a kernel of size O(1) = O(s(k)).

(⇒) An O(s(k))-space randomized streaming kerneliza-

tion algorithm KQ for the problem Q that constructs kernels

of size O(s(k)) can be used to solve Q exactly, as follows: on

a stream of an instance I, call the streaming kernelization

algorithm KQ to construct, in space O(s(k)), an equivalent

instance I′ of size O(s(k)), and store I′ in space O(s(k)).

Now we are able to solve the instance I′ using also O(s(k))

space because Q is a DCS problem. This gives an O(s(k))-

space randomized streaming algorithm that has the same

success probability and solves the problem Q exactly.

Theorem 1 suggests a very effective method for develop-

ing lower bounds for streaming kernelization algorithms.

Corollary 1. If a DCS parameterized problem Q has

space complexity Ω(s(k)) for randomized streaming algo-

rithms, then the problem Q has no streaming kernelization

algorithms with the same success probability that run in

o(s(k)) space and construct a kernel of size o(s(k)).

Lower bounds in space complexity for streaming algo-

rithms have been developed recently for certain DCS prob-

lems [1], which, by Corollary 1, can help develop lower

bounds for streaming kernelization algorithms. In the fol-

lowing, we extend the techniques in [1] and present some

stronger space lower bounds on streaming algorithms for

further DCS parameterized problems.

A set S is a d-set if S consists of exactly d elements. Let

C be a collection of d-sets. A set H is a hitting set of size k

for C if H consists of k elements such that for every d-set S

in C, S ∩H 6= ∅. Consider the following.

Parameterized d-Hitting-Set (p-dHS): given a collection

C of d-sets and k, is there a hitting set H of size k for C?
Our lower bounds will be derived based on the one-way

communication mode, which consists of two randomized al-

gorithms A and B [2]. To compute a 2-variable function

φ(x, z), A is given the input x (but not z) and allowed to

send B a single message M(x), and B based on the in-

put z (but not knowing x) and the message M(x) from A

computes the value φ(x, z). In this model, we measure the

communication complexity of the protocol by the size of the

message M(x). The protocol works correctly with proba-

bility p if the output computed by B is equal to φ(x, z)

with probability at least p for all x and z. Consider the

well-known problem as given below.

The Index problem: The input to the protocol is (x, z),

where x = x1x2 · · ·xn ∈ {0, 1}n and z ∈ {1, 2, . . . , n}, and
compute the value φ(x, z) = xz.

Proposition 1 ([2]). For any constant p > 1/2, a commu-

nication protocol that solves Index with probability p must

have communication complexity of Ω(n) bits.

We show how to use a streaming algorithm for problem p-

*Corresponding author (email: chen@cse.tamu.edu)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-4080-3&domain=pdf&date_stamp=2024-7-16
https://doi.org/10.1007/s11432-023-4080-3
info.scichina.com
link.springer.com

Feng H, et al. Sci China Inf Sci August 2024, Vol. 67, Iss. 8, 189101:2

dHS to solve the Index problem. For an instance (x, z) of In-

dex, where x = x1x2 · · · xn ∈ {0, 1}n and z ∈ {1, 2, . . . , n},
let h = ⌈ d

√
n ⌉, and fix an injection π from {1, 2, . . . , n} to

the set {〈b1, b2, . . . , bd〉 | 1 6 bi 6 h, 1 6 i 6 d} of ordered

d-tuples. Suppose π(z) = 〈a1, a2, . . . , ad〉.
Let U = {vi,b, vi,b,t | 1 6 i 6 d, 1 6 b 6 h, 1 6 t 6 d}.

Define a collection Cx,z of d-sets of U as follows:

(G1) For each 1 6 i 6 d and each bi 6= ai, there is a d-

set {vi,bi,1, . . . , vi,bi,i−1, vi,bi , vi,bi,i+1, . . . , vi,bi,d} in Cx,z .
There are totally d(h− 1) d-sets in group (G1).

(G2) For each bit xy of x such that xy = 1, where π(y) =

〈b1, b2, . . . , bd〉, there is a d-set {v1,b1 , v2,b2 , . . . , vd,bd} in

Cx,z . The total number of d-sets in group (G2) is equal

to the number of 1-bits in x.

A proof for Lemma 1 below can be found in Appendix A.

Lemma 1. The collection Cx,z has a hitting set of size

d(h− 1) if and only if xz = 0.

We are now prepared to present and prove the following

theorem.

Theorem 2. Any randomized streaming algorithm that

solves the p-dHS problem with probability p, where p > 1/2

can be any constant, uses space of Ω(kd) bits.

Proof. Let Sx,z be a stream of d-sets for the collection

Cx,z defined above, which is given by a sequence of d-sets

in group (G2) (in arbitrary order), followed by a sequence

of d-sets in group (G1) (in arbitrary order). Let Ahit be

any randomized streaming algorithm for the problem p-dHS.

Thus, the algorithm Ahit(Sx,z, d(h − 1)) will decide if the

collection Cx,z has a hitting set of size d(h− 1).

We construct a communication protocol with randomized

algorithms A and B for the Index problem, as follows. On

an instance (x, z) of Index, algorithm A takes the input x,

generates all the d-sets in group (G2) for the collection Cx,z
(A can do so because it knows which bit of x is 1), then runs

the streaming algorithm Ahit(Sx,z , d(h − 1)) for the p-dHS

problem on the generated d-sets in group (G2), until it reads

the last d-set in group (G2). Then, algorithm A sends the

memory contents M(x) of its computation to algorithm B.

Upon receiving the message M(x) from A , algorithm B gen-

erates the d-sets in group (G1) (B can do so because it knows

the value z so also the values π(z) = 〈a1, a2, . . . , ad〉), and
then uses the memory contents M(x) of A ’s computation to

continue the execution of the algorithm Ahit(Sx,z, d(h−1)),

starting from the first d-set in the d-sets it generated for

group (G1). Therefore, B will be able to complete the exe-

cution of the algorithm Ahit(Sx,z, d(h − 1)). By Lemma 1,

B will correctly conclude xz = 0 if and only if the algorithm

Ahit(Sx,z , d(h−1)) claims that the collection Cx,z has a hit-

ting set of size d(h − 1). This gives the protocol for the

Index problem, whose success probability is equal to that

of the algorithm Ahit for the p-dHS problem.

Now, suppose that Ahit is any randomized streaming al-

gorithm that solves p-dHS with probability p for a constant

p > 1/2. Then, the above communication protocol solves In-

dex with probability p. According to Proposition 1, in this

case, the message M(x) sent from A to B has size at least

Ω(|x|) = Ω(n) bits. Since the message M(x) sent from A to

B is the memory content of the execution of the algorithm

Ahit(Sx,z , k) for p-dHS, where k = d(h− 1), as a result, the

algorithm Ahit(Sx,z , k) uses memory space of at least Ω(n)

bits. Since k = d(h − 1), h = ⌈ d
√
n ⌉, and d is a constant,

we have n = Ω(kd). Thus, the randomized streaming al-

gorithm Ahit(Sx,z, k) that solves the problem p-dHS takes

space of at least Ω(kd) bits. The proof of the theorem is now

completed since Ahit is an arbitrary randomized streaming

algorithm for the problem p-dHS.

The p-2HS problem is the famous parameterized Ver-

tex Cover problem (abbr. p-VC) that determines if a given

graph has k vertices that can cover all edges of the graph.

Moreover, it is easy to see that the problem p-dHS is DCS for

each fixed d: on an instance (C, k) of p-dHS, simply enumer-

ate all subcollections of k d-sets in C to check if any of them

is a hitting set for the collection C. Thus, by Theorem 2

and Corollary 1, we obtain the following lower bound for

streaming kernelization algorithms for the problem p-VC.

Theorem 3. For any constant p > 1/2, there is no ran-

domized streaming kernelization algorithm that solves the

problem p-VC with probability p, runs in space o(k2), and

constructs a kernel of size o(k2).

Our recent research [3] has given a streaming kerneliza-

tion algorithm for the problem p-VC. The algorithm has

space complexity O(k2) and update-time O(1), and con-

structs kernels of size O(k2). By Theorem 3, this algorithm

is optimal in all complexity measures, including space, up-

date time, and kernel size.

We give a few remarks on our lower-bound results. The-

orem 3 gives the first lower-bound result simultaneously on

space complexity and kernel size for streaming kerneliza-

tion algorithms for the problem p-VC. Chitnis et al. [1] pre-

sented a space lower bound Ω(k2) for streaming algorithms

that solve the problem p-VC, which does not imply The-

orem 3 because solving a problem is obviously more diffi-

cult than kernelizing the problem. Moreover, Theorem 3

is not implied either by the lower-bound result in [4] that

unless the polynomial-time hierarchy collapses, no determin-

istic polynomial-time kernelization algorithms can construct

a kernel of size O(k2−ǫ) for the problem p-VC for any con-

stant ǫ > 0. The lower bound on kernel size for p-VC given

in [4] relies on an unproved complexity theory conjecture

(i.e., the polynomial-time hierarchy does not collapse), while

our lower-bound result in Theorem 3 holds true uncondi-

tionally, i.e., without needing any complexity theory con-

jectures. In fact, our Theorem 3 presents a stronger lower

bound for kernel size (on a more restricted space-bounded

streaming model): (1) the lower bound holds true uncon-

ditionally; (2) the lower bound holds true for randomized

algorithms; (3) our lower bound Ω(k2) is strictly larger than

the lower bound Ω(k2−ǫ) —— there are functions such as

k2/ log k that are not in O(k2−ǫ) for any constant ǫ > 0

but are in o(k2); and (4) it excludes the possibility of super-

polynomial time kernelization algorithms with o(k2) space

complexity.

Supporting information Appendix A. The supporting in-
formation is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.

References

1 Chitnis R, Cormode G, Hajiaghayi M, et al. Parameterized

streaming: maximal matching and vertex cover. In: Pro-

ceedings of the 26th Annual ACM-SIAM Symposium on

Discrete Algorithms, 2015. 1234–1251

2 Roughgarden T. Communication complexity (for algorithm

designers). FNT Theor Comput Sci, 2015, 11: 217–404

3 Chen J, Chu Z, Guo Y, et al. Space limited linear-time

graph algorithms on big data. Theor Comput Sci, 2024,

993: 114468

4 Dell H, van Melkebeek D. Satisfiability allows no nontriv-

ial sparsification unless the polynomial-time hierarchy col-

lapses. J ACM, 2014, 61: 1–27

info.scichina.com
link.springer.com
link.springer.com
https://doi.org/10.1561/0400000076
https://doi.org/10.1016/j.tcs.2024.114468
https://doi.org/10.1145/2629620

