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The streaming model has been a popular model in big data
computation. Streaming kernelization algorithms can be re-
garded as data compression processes on streaming data. In
this study, we give a general method for developing compu-
tational lower bounds for streaming kernelization algorithms
that is applicable to a large class of computational prob-
lems. As an example, we use the method to prove computa-
tional lower bounds for the well-known problem d-HITTING-
SET. This result shows that a streaming kernelization algo-
roithm we recently developed for the famous NP-hard prob-
lem VERTEX-COVER is optimal in all complexity measures,
including space, update-time, and kernel size.

A parameterized problem @ is a decision problem with
instances of form (z, k), where the parameter k is an inte-
ger. A kernelization algorithm K¢ of @ on an input (z, k)
constructs (zo, ko) satisfying |zo|, ko < h(k) for a fixed func-
tion h, such that (z, k) is a YES-instance of Q iff (zo, ko) is
a YES-instance of ), where x( is the kernel. A determin-
istic context-sensitive problem (DCS) is a problem solvable
by an O(n)-space deterministic algorithm. Note that many
parameterized problems of interests are DCS.

Inputs of a streaming model are given as a stream of in-
put elements. A streaming algorithm must follow the order
of the element arrivals to process the input. The efficiency
of a streaming algorithm is evaluated based on its space and
update-time (i.e., the processing time per input element).
Theorem 1. A DCS parameterized problem Q has an
O(s(k))-space bounded randomized streaming kernelization
algorithm producing kernels of size O(s(k)) iff Q is solvable
by an O(s(k))-space bounded randomized streaming algo-
rithm with the same success probability.

Proof. (<) An O(s(k))-space randomized streaming algo-
rithm Aq solving the problem Q exactly gives the following
streaming kernelization algorithm for @): on a stream of an
instance (z,k) of Q, (1) call the algorithm Ag to decide
in space O(s(k)) if (x,k) is a YES-instance; then (2) con-
struct a proper trivial instance of size O(1). This algorithm
is obviously an O(s(k))-space bounded randomized stream-
ing kernelization algorithm for @) that has the same success
probability and constructs a kernel of size O(1) = O(s(k)).

(=) An O(s(k))-space randomized streaming kerneliza-
tion algorithm K for the problem @ that constructs kernels
of size O(s(k)) can be used to solve Q exactly, as follows: on
a stream of an instance I, call the streaming kernelization
algorithm K¢ to construct, in space O(s(k)), an equivalent
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instance I’ of size O(s(k)), and store I’ in space O(s(k)).
Now we are able to solve the instance I’ using also O(s(k))
space because @ is a DCS problem. This gives an O(s(k))-
space randomized streaming algorithm that has the same
success probability and solves the problem @ exactly.
Theorem 1 suggests a very effective method for develop-
ing lower bounds for streaming kernelization algorithms.

Corollary 1. If a DCS parameterized problem @Q has
space complexity (s(k)) for randomized streaming algo-
rithms, then the problem ) has no streaming kernelization
algorithms with the same success probability that run in
o(s(k)) space and construct a kernel of size o(s(k)).

Lower bounds in space complexity for streaming algo-
rithms have been developed recently for certain DCS prob-
lems [1], which, by Corollary 1, can help develop lower
bounds for streaming kernelization algorithms. In the fol-
lowing, we extend the techniques in [1] and present some
stronger space lower bounds on streaming algorithms for
further DCS parameterized problems.

A set S is a d-set if S consists of exactly d elements. Let
C be a collection of d-sets. A set H is a hitting set of size k
for C if H consists of k elements such that for every d-set S
inC, SN H # (. Consider the following.

Parameterized d-HITTING-SET (P-dHS): given a collection
C of d-sets and k, is there a hitting set H of size k for C?

Our lower bounds will be derived based on the one-way
communication mode, which consists of two randomized al-
gorithms & and % [2]. To compute a 2-variable function
¢(x, z), o is given the input z (but not z) and allowed to
send # a single message M (z), and % based on the in-
put z (but not knowing x) and the message M (z) from <
computes the value ¢(z,z). In this model, we measure the
communication complexity of the protocol by the size of the
message M (z). The protocol works correctly with proba-
bility p if the output computed by % is equal to ¢(z,z)
with probability at least p for all z and z. Consider the
well-known problem as given below.

The INDEX problem: The input to the protocol is (z, z),
where z = z1x2 -z € {0,1}" and 2z € {1,2,...,n}, and
compute the value ¢(z,z2) = x..

Proposition 1 ([2]). For any constant p > 1/2, a commu-
nication protocol that solves INDEX with probability p must
have communication complexity of €(n) bits.

We show how to use a streaming algorithm for problem p-
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dHS to solve the INDEX problem. For an instance (z, z) of IN-
DEX, where z = z1x2 - @, € {0,1}™ and 2z € {1,2,...,n},
let h = [{/n], and fix an injection 7 from {1,2,...,n} to
the set {(b1,b2,...,bq) | 1 < b; < h,1 < i < d} of ordered
d-tuples. Suppose 7(z) = (a1,a2,...,a4).

Let U = {viyb,vi’b,t | 1 <4< d,l < b < h,l <t < d}
Define a collection Cz,. of d-sets of U as follows:

(G1) For each 1 < @ < d and each b; # a;, there is a d-
set {Vib; 1+ Vi i1 Visby» Visby ikl -+ > Vish;,d) i Caz.
There are totally d(h — 1) d-sets in group (G1).

(G2) For each bit xy of x such that z,; = 1, where w(y) =
(b1,b2,...,bq), there is a d-set {v1p,,V2,by,--+>Vd,b,} N
Cz,z. The total number of d-sets in group (G2) is equal
to the number of 1-bits in .

A proof for Lemma 1 below can be found in Appendix A.

Lemma 1. The collection C;,. has a hitting set of size
d(h — 1) if and only if z, = 0.

We are now prepared to present and prove the following
theorem.

Theorem 2. Any randomized streaming algorithm that
solves the P-dHS problem with probability p, where p > 1/2
can be any constant, uses space of Q(k%) bits.

Proof. Let Si,» be a stream of d-sets for the collection
Cz,. defined above, which is given by a sequence of d-sets
in group (G2) (in arbitrary order), followed by a sequence
of d-sets in group (G1) (in arbitrary order). Let Ap; be
any randomized streaming algorithm for the problem p-dHS.
Thus, the algorithm Ay (Sz,z,d(h — 1)) will decide if the
collection Cz,. has a hitting set of size d(h — 1).

We construct a communication protocol with randomized
algorithms o/ and £ for the INDEX problem, as follows. On
an instance (z, z) of INDEX, algorithm ¢/ takes the input z,
generates all the d-sets in group (G2) for the collection Cq, -
(47 can do so because it knows which bit of z is 1), then runs
the streaming algorithm Ap;(Sz,~,d(h — 1)) for the p-dHS
problem on the generated d-sets in group (G2), until it reads
the last d-set in group (G2). Then, algorithm & sends the
memory contents M (z) of its computation to algorithm 4.
Upon receiving the message M (z) from <7, algorithm % gen-
erates the d-sets in group (G1) (# can do so because it knows
.y ad)), and
then uses the memory contents M (x) of &/’s computation to
continue the execution of the algorithm Ay (Sg,z, d(h—1)),
starting from the first d-set in the d-sets it generated for
group (G1). Therefore, Z will be able to complete the exe-
cution of the algorithm Ap;(Sg,z,d(h — 1)). By Lemma 1,
A will correctly conclude z. = 0 if and only if the algorithm
Apit(Se,z,d(h—1)) claims that the collection Cz . has a hit-
ting set of size d(h — 1). This gives the protocol for the
INDEX problem, whose success probability is equal to that
of the algorithm Ay;; for the p-dHS problem.

Now, suppose that Ay is any randomized streaming al-
gorithm that solves P-dHS with probability p for a constant
p > 1/2. Then, the above communication protocol solves IN-
DEX with probability p. According to Proposition 1, in this
case, the message M (z) sent from &7 to 2 has size at least
Q(|z|) = Q(n) bits. Since the message M (x) sent from & to
A is the memory content of the execution of the algorithm
Apit(Se,z, k) for p-dHS, where k = d(h — 1), as a result, the
algorithm Ay (Sz,z, k) uses memory space of at least Q(n)
bits. Since k = d(h — 1), h = [¥n], and d is a constant,
we have n = Q(k?). Thus, the randomized streaming al-
gorithm Ay;¢(Sz,z, k) that solves the problem p-dHS takes
space of at least Q(k%) bits. The proof of the theorem is now
completed since Ay;¢ is an arbitrary randomized streaming
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algorithm for the problem p-dHS.

The pP-2HS problem is the famous parameterized VER-
TEX COVER problem (abbr. P-VC) that determines if a given
graph has k vertices that can cover all edges of the graph.
Moreover, it is easy to see that the problem p-dHS is DCS for
each fixed d: on an instance (C, k) of P-dHS, simply enumer-
ate all subcollections of k d-sets in C to check if any of them
is a hitting set for the collection C. Thus, by Theorem 2
and Corollary 1, we obtain the following lower bound for
streaming kernelization algorithms for the problem p-VC.

Theorem 3. For any constant p > 1/2, there is no ran-
domized streaming kernelization algorithm that solves the
problem P-VC with probability p, runs in space o(k?), and

constructs a kernel of size o(k?).

Our recent research [3] has given a streaming kerneliza-
tion algorithm for the problem P-VC. The algorithm has
space complexity O(k2?) and update-time O(1), and con-
structs kernels of size O(k?). By Theorem 3, this algorithm
is optimal in all complexity measures, including space, up-
date time, and kernel size.

We give a few remarks on our lower-bound results. The-
orem 3 gives the first lower-bound result simultaneously on
space complexity and kernel size for streaming kerneliza-
tion algorithms for the problem p-VC. Chitnis et al. [1] pre-
sented a space lower bound Q(k?) for streaming algorithms
that solve the problem P-VC, which does not imply The-
orem 3 because solving a problem is obviously more diffi-
cult than kernelizing the problem. Moreover, Theorem 3
is not implied either by the lower-bound result in [4] that
unless the polynomial-time hierarchy collapses, no determin-
istic polynomial-time kernelization algorithms can construct
a kernel of size O(k2~¢) for the problem P-VC for any con-
stant € > 0. The lower bound on kernel size for p-VC given
in [4] relies on an unproved complexity theory conjecture
(i-e., the polynomial-time hierarchy does not collapse), while
our lower-bound result in Theorem 3 holds true uncondi-
tionally, i.e., without needing any complexity theory con-
jectures. In fact, our Theorem 3 presents a stronger lower
bound for kernel size (on a more restricted space-bounded
streaming model): (1) the lower bound holds true uncon-
ditionally; (2) the lower bound holds true for randomized
algorithms; (3) our lower bound Q(k?) is strictly larger than
the lower bound Q(k2~¢) —— there are functions such as
k2/logk that are not in O(k2~¢) for any constant ¢ > 0
but are in o(k?); and (4) it excludes the possibility of super-
polynomial time kernelization algorithms with o(k?) space
complexity.

Supporting information Appendix A. The supporting in-
formation is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.
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