• Supplementary File •

On Optimal Streaming Kernelization Algorithms

Hao FENG¹, Wei YANG¹ & Jianer CHEN^{2*}

¹School of Computer Science, Guangzhou University, Guangzhou 510006, P.R. China; ²Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA

Appendix A The proof of Lemma 1

For an instance (x, z) of the INDEX problem, where $x = x_1 x_2 \cdots x_n \in \{0, 1\}^n$ and $z \in \{1, 2, \dots, n\}$, let $h = \lceil \sqrt[d]{n} \rceil$, and fix an injection π from $\{1, 2, \dots, n\}$ to the set $\{\langle b_1, b_2, \dots, b_d \rangle \mid 1 \leq b_i \leq h, 1 \leq i \leq d\}$ of ordered *d*-tuples. Suppose $\pi(z) = \langle a_1, a_2, \dots, a_d \rangle$.

Let $U = \{v_{i,b}, v_{i,b,t} \mid 1 \leq i \leq d, 1 \leq b \leq h, 1 \leq t \leq d\}$. Define a collection $\mathcal{C}_{x,z}$ of d-sets of U as follows:

(G1) For each $1 \leq i \leq d$ and each $b_i \neq a_i$, there is a *d*-set $\{v_{i,b_i,1}, \ldots, v_{i,b_i,i-1}, v_{i,b_i}, v_{i,b_i,i+1}, \ldots, v_{i,b_i,d}\}$ in $\mathcal{C}_{x,z}$. There are totally d(h-1) *d*-sets in group (G1).

(G2) For each bit x_y of x such that $x_y = 1$, where $\pi(y) = \langle b_1, b_2, \dots, b_d \rangle$, there is a d-set $\{v_{1,b_1}, v_{2,b_2}, \dots, v_{d,b_d}\}$ in $\mathcal{C}_{x,z}$. The total number of d-sets in group (G2) is equal to the number of 1-bits in x.

Lemma 1. A sufficient and necessary condition for the collection $C_{x,z}$ to have a hitting set with exactly d(h-1) elements is that $x_z = 0$.

Proof. Recall $\pi(z) = \langle a_1, a_2, \dots, a_d \rangle$. We say that a set *H* hits another set *S* if $H \cap S \neq \emptyset$.

Case 1. $x_z = 0$. Consider the set $H_0 = \{v_{i,b_i} \mid 1 \leq i \leq d, b_i \neq a_i\}$ of d(h-1) elements.

It is obvious that the set H_0 hits every *d*-set in group (G1): by definition, each *d*-set in group (G1) contains an element v_{i,b_i} for some index *i* such that $b_i \neq a_i$, which is in H_0 .

For each d-set $S = \{v_{1,b_1}, v_{2,b_2}, \ldots, v_{d,b_d}\}$ in group (G2), where $\pi(y) = \langle b_1, b_2, \ldots, b_d \rangle$ and $x_y = 1$, since $x_z = 0$, $\pi(z) = \langle a_1, a_2, \ldots, a_d \rangle$, there must be an index j such that $a_j \neq b_j$. Thus, the element v_{j,b_j} in H_0 is in the set S. As a result, the set H_0 hits every d-set in group (G2).

Thus, under the condition $x_z = 0$, the collection $C_{x,z}$ has a hitting set H_0 with exactly d(h-1) elements.

Case 2. $x_z = 1$. Let H_1 be a hitting set with the minimum number of elements for the collection $\mathcal{C}_{x,z}$.

Since all d-sets in group (G1) are pairwise disjoint, the set H_1 must have d(h-1) distinct elements to hit the d(h-1) d-sets in group (G1).

Since $x_z = 1$ and $\pi(z) = \langle a_1, a_2, \ldots, a_d \rangle$, there is a d-set $S = \{v_{1,a_1}, v_{2,a_2}, \ldots, v_{d,a_d}\}$ in group (G2). None of the elements $v_{1,a_1}, v_{2,a_2}, \ldots, v_{d,a_d}$ in the set S can appear in any d-set in group (G1): by definition, all elements of form v_{i,b_i} in d-sets in group (G1) must satisfy $b_i \neq a_i$. Thus, none of the d(h-1) elements that are used by H_1 to hit the d-sets in group (G1) can be used by H_1 to hit the set S, so H_1 must need an additional element to hit the set S. As a result, the smallest hitting set H_1 for the collection $\mathcal{C}_{x,z}$ contains at least d(h-1) + 1 elements, i.e., the collection $\mathcal{C}_{x,z}$ has no hitting set with d(h-1) elements.

This completes the proof of the lemma.

^{*} Corresponding author (email: chen@cse.tamu.edu)