• Supplementary File •

Multi-Party Privacy-Preserving Decision Tree Training with a Privileged Party

Yiwen TONG¹, Qi FENG^{1*}, Min LUO^{1, 2} & Debiao HE^{1, 3*}

¹Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education,

School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China;

²Shanghai Technology Innovation Centre of Distributed Privacy-Preserving Artificial Intelligence,

Matrix Elements Technologies, Shanghai 200232, China;

³Key Laboratory of Computing Power Network and Information Security, Ministry of Education,

Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

Appendix A Proof of Theorem 1

Theorem 1 (Correctness of Π_{div}). For shares $\langle x \rangle$ and $\langle y \rangle$ held by online parties, where $\langle x \rangle$, $\langle y \rangle \in \mathbb{Z}_N$, Π_{div} can correctly outputs shares of division result $\left\langle \frac{x}{y} \right\rangle$ for all parties.

Proof. To prove the correctness of Π_{div} , it is necessary to demonstrate that the shares output by Π_{div} can be reconstructed using Π_{rec} to obtain the correct value of $\frac{x}{y}$. The reconstruction process will be explained for the following two scenarios:

If no assistant party drops out:

$$z = \alpha_0 \cdot \langle z \rangle_0 + \alpha_1 \cdot \langle z \rangle_1 + \alpha_2 \cdot \langle z \rangle_2$$

=
$$\frac{\alpha_0 \cdot \langle r \cdot x \rangle_0 + \alpha_1 \cdot \langle r \cdot x \rangle_1 + \alpha_2 \cdot \langle r \cdot x \rangle_2}{r \cdot y}$$

=
$$\frac{r \cdot x}{r \cdot y} = \frac{x}{y}$$
 (A1)

If one of the assistant parties $(P_2, \text{ for example})$ drops out:

$$z = \alpha'_0 \cdot \langle z \rangle_0 + \alpha'_1 \cdot \langle z \rangle_1 + \alpha'_3 \cdot \langle z \rangle_3$$

$$= \frac{\alpha'_0 \cdot \langle r \cdot x \rangle_0 + \alpha'_1 \cdot \langle r \cdot x \rangle_1 + \alpha'_3 \cdot \langle r \cdot x \rangle_3}{r \cdot y}$$

$$= \frac{r \cdot x}{r \cdot y} = \frac{x}{y}$$
(A2)

Appendix B Proof of Theorem 2

Theorem 2 (Security of Π_{div}). The divison protocol Π_{div} securely realizes the functionality \mathcal{F}_{div} under the passive adversary. *Proof.* The ideal functionality \mathcal{F}_{div} for the division protocol Π_{div} is depicted in Table B1.

Table B1 Ideal Functionality \mathcal{F}_{div}

Funtionality \mathcal{F}_{div}	
Input:	Output:
- P_0 inputs $\langle x \rangle_0$, $\langle x \rangle_3$ and $\langle y \rangle_0$, $\langle y \rangle_3$;	- P_0 outputs $\langle z \rangle_0$ and $\langle z \rangle_3$;
- P_1 inputs $\langle x \rangle_1$ and $\langle y \rangle_1$;	- P_1 outputs $\langle z \rangle_1$;
- P_2 inputs $\langle x \rangle_2$ and $\langle y \rangle_2$.	- P_2 outputs $\langle z \rangle_2$, where $z = \frac{x}{y}$.

For the case of corrupting P_0 , the simulator $S_{div}^{P_0}$ works as follows:

(1) receives $\langle x \rangle_0$, $\langle x \rangle_3$, $\langle y \rangle_0$ and $\langle y \rangle_3$ from P_0 . (2) receives $\langle r \rangle_0$ and $\langle r \rangle_3$ from P_0 .

(3) obtains $\langle r \cdot y \rangle_0$ and $\langle r \cdot y \rangle_3$ by Π_{mul} , which has been formally proven to be secure in [1].

(4) selects random values $\langle r \cdot y \rangle_1$ and $\langle r \cdot y \rangle_2$.

- (5) computes $r \cdot y = \alpha_0 \cdot \langle r \cdot y \rangle_0 + \alpha_1 \cdot \langle r \cdot y \rangle_1 + \alpha_2 \cdot \langle r \cdot y \rangle_2$.

(6) obtains $\langle r \cdot x \rangle_0$ and $\langle r \cdot x \rangle_3$ by Π_{mul} . (7) computes $\langle z \rangle_0 = \frac{\langle r \cdot x \rangle_0}{r \cdot y}$ and $\langle z \rangle_3 = \frac{\langle r \cdot x \rangle_3}{r \cdot y}$. (8) outputs $\langle \langle x \rangle_0, \langle x \rangle_3, \langle r \cdot y \rangle_{i'}, \langle z \rangle_0, \langle z \rangle_3, i' \in \{1, 2\}$).

- For the case of corrupting P_1 and P_2 , the simulator $S_{div}^{P_1,P_2}$ works as follows:
- (1) receives $\langle x \rangle_1$, $\langle x \rangle_2$, $\langle y \rangle_1$ and $\langle y \rangle_2$ from P_1 and P_2 .

^{*} Corresponding author (email: fengqi.whu@whu.edu.cn, hedebiao@163.com)

- (2) receives $\langle r \rangle_1$ and $\langle r \rangle_2$ from P_1 and P_2 .
- (3) obtains $\langle r \cdot y \rangle_1$ and $\langle r \cdot y \rangle_2$ by Π_{mul} .
- (4) selects random values $\langle r \cdot y \rangle_0$.
- (5) computes $r \cdot y = \alpha_0 \cdot \langle r \cdot y \rangle_0 + \alpha_1 \cdot \langle r \cdot y \rangle_1 + \alpha_2 \cdot \langle r \cdot y \rangle_2$. (6) obtains $\langle r \cdot x \rangle_1$ and $\langle r \cdot x \rangle_2$ by Π_{mul} .
- (7) computes $\langle z \rangle_0 = \frac{\langle r \cdot x \rangle_0}{r \cdot y}$ and $\langle z \rangle_1 = \frac{\langle r \cdot x \rangle_2}{r \cdot y}$ (8) outputs $(\langle x \rangle_{i'}, \langle r \cdot y \rangle_0, \langle z \rangle_{i'}, i' \in \{1, 2\})$.

We represent the view of P_0 and P1, P2 as $view_{P_0}^{div}$ and $view_{P_1,P_2}^{div}$ respectively. It is clear that the distribution of P_0 's simulated view in the ideal world is identical to the distribution of its view in the actual execution, that is,

$$view_{P_0}^{aiv}(\langle x \rangle_j, \langle y \rangle_j, \langle z \rangle_j, j \in \{0, 1, 2, 3\}) \cong S_{div}^{F_0}(\langle x \rangle_0, \langle y \rangle_0, \langle x \rangle_3, \langle y \rangle_3, \langle z \rangle_0, \langle z \rangle_3)$$
(B1)

Besides, the view of P_1 and P_2 in the real world is the same as $\mathcal{S}_{div}^{P_0,P_1}$'s output. Mathematically,

$$\boldsymbol{view}_{P_1,P_2}^{div}(\langle x \rangle_j, \langle y \rangle_j, \langle z \rangle_j, j \in \{0, 1, 2, 3\}) \cong \mathcal{S}_{div}^{P_1,P_2}(\langle x \rangle_1, \langle y \rangle_1, \langle x \rangle_2, \langle y \rangle_2, \langle z \rangle_1, \langle z \rangle_2) \tag{B2}$$

Appendix C Proof of Theorem 4

Theorem 4 (Security of Π_{comp}). The comparison protocol Π_{comp} securely realizes the functionality \mathcal{F}_{comp} under the passive adversary.

Proof. The ideal functionality \mathcal{F}_{comp} for the comparison protocol Π_{comp} is depicted in Table C1.

Table C1 Ideal Functionality \mathcal{F}_{comp}

Funtionality \mathcal{F}_{comp}	
Input:	Output:
- P_0 inputs $\langle x \rangle_0$, $\langle x \rangle_3$, $\langle y \rangle_0$ and $\langle y \rangle_3$;	- P_0 outputs $\langle z \rangle_0$ and $\langle z \rangle_3$;
- P_1 inputs $\langle x \rangle_1$ and $\langle y \rangle_1$;	- P_1 outputs $\langle z \rangle_1$;
- P_2 inputs $\langle x \rangle_2$ and $\langle y \rangle_2$.	- P_2 outputs $\langle z \rangle_2$, where $z = 1 \{ x > y \}$.

For the case of corrupting P_0 , the simulator $S_{comp}^{P_0}$ works as follows:

- (1) receives $\langle x \rangle_0$, $\langle x \rangle_3$, $\langle y \rangle_0$ and $\langle y \rangle_3$ from P_0 .
- (2) receives k_1 and k_2 from P_0 .
- (3) receives r from P_0 .
- (4) computes $\langle x y \rangle_i = \langle x \rangle_i \langle y \rangle_i$, where $i \in \{0, 3\}$.
- (5) obtains $\langle r \cdot (x-y) \rangle_0$ and $\langle r \cdot (x-y) \rangle_3$ by Π_{extmul} , which has been formally proven to be secure in Appendix E.
- (6) obtains $\langle f \rangle_0$ and $\langle f \rangle_3$ by Π_{shr} , which has been formally proven to be secure in [1].
- (7) select random values $\langle f \rangle_1$ and $\langle f \rangle_2$.

(8) computes $\langle z \rangle_0 = \langle f \rangle_0 \oplus \mathsf{MSB}(r)$ and $\langle z \rangle_3 = \langle f \rangle_3$.

(9) outputs $(\langle x \rangle_0, \langle x \rangle_3, \langle f \rangle_{i'}, \langle z \rangle_0, \langle z \rangle_3, i' \in \{0, 3\}).$

For the case of corrupting P_1 and P_2 , the simulator $\mathcal{S}_{comp}^{P_1,P_2}$ works as follows:

- (1) receives $\langle x \rangle_1$, $\langle x \rangle_2$, $\langle y \rangle_1$ and $\langle y \rangle_2$ from P_1 and P_2 .
- (2) receives k_1 and k_2 from P_1 and P_2 .

- (a) computes $\langle x y \rangle_i = \langle x \rangle_i \langle y \rangle_i$, where $i \in \{1, 2\}$. (4) obtains $\langle r \cdot (x y) \rangle_1$ and $\langle r \cdot (x y) \rangle_2$ by \prod_{extmul} , which has been formally proven to be secure in Appendix E. (5) obtains $r \cdot (x y)$ by computing $r \cdot (x y) = \alpha_0 \cdot \langle r \cdot (x y) \rangle_0 + \alpha_1 \cdot \langle r \cdot (x y) \rangle_1 + \alpha_2 \cdot \langle r \cdot (x y) \rangle_2$. (6) obtains $[f]_1$ and $[f]_2$ by $\mathsf{Eval}_{\frac{N}{2},1}^{\leq}$, and FSS has a well-documented proof of security.

(7) computes f = [f]₁ + [f]₂, and obtains ⟨f⟩₁ and ⟨f⟩₂ by Π_{shr}, which has been formally proven to be secure in [1].
(8) computes ⟨z⟩₁ = ⟨f⟩₁ and ⟨z⟩₂ = ⟨f⟩₂.
(9) outputs (⟨x⟩₁, ⟨x⟩₂, ⟨f⟩_{i'}, ⟨z⟩₁, ⟨z⟩₂, i' ∈ {1, 2}).
We represent the view of P₀ and P₁, P₂ as **view**^{comp}_{P₁} and **view**^{comp}_{P₁,P₂} in the actual growth the distribution of P₀'s multiplication in the ideal model is the distribution of P₀'s simulated view in the ideal world is identical to the distribution of its view in the actual execution, that is,

$$\boldsymbol{view}_{P_0}^{comp}(\langle \boldsymbol{x} \rangle_j, \langle \boldsymbol{y} \rangle_j, \langle \boldsymbol{z} \rangle_j, j \in \{0, 1, 2, 3\}) \cong \mathcal{S}_{comp}^{P_0}(\langle \boldsymbol{x} \rangle_0, \langle \boldsymbol{y} \rangle_0, \langle \boldsymbol{x} \rangle_3, \langle \boldsymbol{y} \rangle_3, \langle \boldsymbol{z} \rangle_0, \langle \boldsymbol{z} \rangle_3)$$
(C1)

Besides, the view of P_1 and P_2 in the real world is the same as $\mathcal{S}_{comp}^{P_0,P_1}$'s output. Mathematically,

$$\boldsymbol{view}_{P_1,P_2}^{comp}(\langle \boldsymbol{x} \rangle_j, \langle \boldsymbol{y} \rangle_j, \langle \boldsymbol{z} \rangle_j, j \in \{0, 1, 2, 3\}) \cong \mathcal{S}_{comp}^{P_1,P_2}(\langle \boldsymbol{x} \rangle_1, \langle \boldsymbol{y} \rangle_1, \langle \boldsymbol{x} \rangle_2, \langle \boldsymbol{y} \rangle_2, \langle \boldsymbol{z} \rangle_1, \langle \boldsymbol{z} \rangle_2) \tag{C2}$$

Appendix D Proof of Theorem 5

Theorem 5 (Correctness of Π_{extmul}). For the plaintext x held by P_0 and the shares $\langle y \rangle$ held by online parties, where $x, \langle y \rangle \in \mathbb{Z}_N$, Π_{extmul} can correctly outputs shares of multiplication result $\langle x\cdot y\rangle$ for all parties.

Proof. To prove the correctness of Π_{extmul} , it is necessary to demonstrate that the shares output by Π_{extmul} can be reconstructed using Π_{rec} to obtain the correct value of $x \cdot y$. The reconstruction process will be explained for the following two scenarios: If no assistant party drops out:

$$z = \alpha_0 \cdot \langle z \rangle_0 + \alpha_1 \cdot \langle z \rangle_1 + \alpha_2 \cdot \langle z \rangle_2$$

= $\alpha_0 \cdot \frac{x \cdot f}{\alpha_0} + (\alpha_0 \cdot \langle h \rangle_0 + \alpha_1 \cdot \langle h \rangle_1 + \alpha_2 \cdot \langle h \rangle_2) - e \cdot (\alpha_0 \cdot \langle v \rangle_0 + \alpha_1 \cdot \langle v \rangle_1 + \alpha_2 \cdot \langle v \rangle_2)$
= $x \cdot (y + v) + u \cdot v - v \cdot (x + u)$
= $x \cdot u$
(D1)

If one of the assistant parties $(P_2, \text{ for example})$ drops out:

$$z = \alpha'_{0} \cdot \langle z \rangle_{0} + \alpha'_{1} \cdot \langle z \rangle_{1} + \alpha'_{3} \cdot \langle z \rangle_{3}$$

$$= \alpha'_{0} \cdot \frac{x \cdot f}{\alpha_{0}} + (\alpha'_{0} \cdot \langle h \rangle_{0} + \alpha'_{1} \cdot \langle h \rangle_{1} + \alpha'_{3} \cdot \langle h \rangle_{3}) - e \cdot (\alpha'_{0} \cdot \langle v \rangle_{0} + \alpha'_{1} \cdot \langle v \rangle_{1} + \alpha'_{3} \cdot \langle v \rangle_{3})$$

$$= x \cdot (y + v) + u \cdot v - v \cdot (x + u)$$

$$= x \cdot y$$
(D2)

Since there exist public constants that satisfy the requirement and are equal, i.e., $\alpha_0 = \alpha'_0 = \alpha''_0 = 1$, we can compute $\alpha_0' \cdot \frac{x \cdot f}{\alpha_0} = x \cdot f.$

Appendix E Proof of Theorem 6

Theorem 6 (Security of Π_{extmul}). The extension protocol of secure multiplication Π_{extmul} securely realizes the functionality \mathcal{F}_{extmul} under the passive adversary. *Proof.* The ideal functionality \mathcal{F}_{extmul} for the extention protocol of the multiplication protocol Π_{extmul} is depicted in Table E1.

Table E1Ideal Functionality \mathcal{F}_{extmul}

$\textbf{Funtionality} \ \mathcal{F}_{extmul}$	
Input:	Output:
- P_0 inputs x , $\langle y \rangle_0$ and $\langle y \rangle_3$;	- P_0 outputs $\langle z \rangle_0$ and $\langle z \rangle_3$;
- P_1 inputs $\langle y \rangle_1$;	- P_1 outputs $\langle z \rangle_1$;
- P_2 inputs $\langle y \rangle_2$.	- P_2 outputs $\langle z \rangle_2$, where $z = x \cdot y$.

For the case of corrupting P_0 , the simulator $S_{extmul}^{P_0}$ works as follows:

- (1) receives x, $\langle y \rangle_0$ and $\langle y \rangle_3$ from P_0 .
- (2) receives $\langle u \rangle_0$, $\langle v \rangle_0$, $\langle h \rangle_0$, $\langle u \rangle_3$, $\langle v \rangle_3$ and $\langle h \rangle_3$ from P_0 .
- (3) selects random values $\langle u \rangle_1$, $\langle u \rangle_2$, $\langle d \rangle_1$ and $\langle d \rangle_2$.
- (4) computes $\langle d \rangle_i = \langle y \rangle_i + \langle v \rangle_i$, where $i \in \{0, 3\}$. (5) computes $u = \alpha_0 \cdot \langle u \rangle_0 + \alpha_1 \cdot \langle u \rangle_1 + \alpha_2 \cdot \langle u \rangle_2$ and $d = \alpha_0 \cdot \langle d \rangle_0 + \alpha_1 \cdot \langle d \rangle_1 + \alpha_2 \cdot \langle d \rangle_2$.

- (6) computes $u = u_0$ $\langle u/_0 + u_1 \rangle \langle u/_1 + u_2 \rangle \langle u/_2$ and $u = u_0$ $\langle u/_0 + u_2 \rangle \langle u/_2$ (7) computes e = u + x. (7) computes $\langle z \rangle_0 = \frac{x \cdot d}{\alpha_0} + \langle h \rangle_0 \langle v \rangle_0 \cdot e$. (8) outputs $\langle x, \langle y \rangle_0, \langle y \rangle_3, \langle u \rangle_{i'}, \langle d \rangle_{i'}, \langle z \rangle_0, \langle z \rangle_3$, where $i' \in \{1, 2\}$).
- For the case of corrupting P_1 and P_2 , the simulator $S_{extmul}^{P_1,P_2}$ works as follows:
- (1) receives $\langle y \rangle_1$ and $\langle y \rangle_2$ from P_1 and P_2 . (2) receives $\langle u \rangle_1$, $\langle v \rangle_1$, $\langle h \rangle_1$, $\langle u \rangle_2$, $\langle v \rangle_2$ and $\langle h \rangle_2$ from P_1 and P_2 .
- (3) selects random values $\langle d \rangle_0$.

- (4) computes $\langle d \rangle_i = \langle y \rangle_i + \langle v \rangle_i$, where $i \in \{1, 2\}$. (5) computes $d = \alpha_0 \cdot \langle d \rangle_0 + \alpha_1 \cdot \langle d \rangle_1 + \alpha_2 \cdot \langle d \rangle_2$. (6) computes $\langle z \rangle_1 = \langle h \rangle_1 e \cdot \langle v \rangle_1$ and $\langle z \rangle_2 = \langle h \rangle_2 e \cdot \langle v \rangle_2$.
- (7) outputs $(\langle y \rangle_j, \langle d \rangle_0, \langle z \rangle_{i'}, i' \in \{1, 2\}).$

We present the view of P_0 and P_1, P_2 as $view_{P_0}^{extmul}$ and $view_{P_1,P_2}^{extmul}$ respectively. It is clear that the distribution of P_0 's simulated view in the ideal world is identical to the distribution of its view in the real execution, i.e.,

$$\boldsymbol{view}_{P_0}^{extmul}(x, \langle y \rangle_j, \langle z \rangle_j, j \in \{0, 1, 2, 3\}) \cong \mathcal{S}_{extmul}^{P_0}(x, \langle y \rangle_0, \langle y \rangle_3, \langle z \rangle_0, \langle z \rangle_3) \tag{E1}$$

In addition, the view of P1, P_2 in the real world is the same as $S_{extmul}^{P_1,P_2}$'s output. Mathematically,

$$view_{P_1,P_2}^{extmul}(\langle y \rangle_j, \langle z \rangle_j, j \in \{0, 1, 2, 3\}) \cong \mathcal{S}_{extmul}^{P_1,P_2}(\langle y \rangle_1, \langle z \rangle_1, \langle y \rangle_2, \langle z \rangle_2)$$
(E2)

References

1 L. Song, J. Wang, Z. Wang, X. Tu, G. Lin, W. Ruan, H. Wu, and W. Han, "pmpl: A robust multi-party learning framework with a privileged party," in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 2689-2703, 2022.