SCIENCE CHINA

Information Sciences

* Supplementary File ¢

Multi-Party Privacy-Preserving Decision Tree
Training with a Privileged Party

Yiwen TONG!, Qi FENG*, Min LUO" ? & Debiao HE! 3"

'Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China;
2Shanghai Technology Innovation Centre of Distributed Privacy-Preserving Artificial Intelligence,
Matrixz Elements Technologies, Shanghai 200232, China;
3Key Laboratory of Computing Power Network and Information Security, Ministry of Education,
Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

Appendix A Proof of Theorem 1
Theorem 1 (Correctness of Il4;,). For shares (z) and (y) held by online parties, where (z) , (y) € Zn, I1g;, can correctly outputs
shares of division result <j for all parties.
Proof. To prove the correctness of I14;,, it is necessary to demonstrate that the shares output by Il4;, can be reconstructed using
II,.cc to obtain the correct value of % The reconstruction process will be explained for the following two scenarios:
If no assistant party drops out:
z=aqQq- <Z>o +ar-(2); +az-(2),

ag - (r-x)g+ar-(r-x); +az-(r-x),

- Ty (A1)
_r-z =z
Ty Y
If one of the assistant parties (Ps, for example) drops out:
z= O‘é) . <Z>0 +O‘,1 . <z>1 +O‘Z§ . <Z>3
o {roa)g o - (roz), o (roa)
Ty (A2)
rTx
Ty Y

Appendix B Proof of Theorem 2

Theorem 2 (Security of II4;,). The divison protocol Il4;, securely realizes the funtionality Fg4;, under the passive adversary.
Proof. The ideal funtionality Fg;, for the division protocol Il4;, is depicted in Table B1.

Table B1 Ideal Funtionality Fg;.

Funtionality Fg;.

Input: Output:

- Py inputs (z),, ()5 and (y),, (¥)5; - Po outputs (z), and (z)4;

- Py inputs (x), and (y),; - Py outputs (2);

- P, inputs (z), and (y),. - P> outputs (z),, where z = 5

For the case of corrupting Py, the simulator S(i.ov works as follows:

(1) receives (x),, (x)5, (¥)y and (y)5 from Po.

(2) receives (r), and (r), from Pp.

(3) obtains (r - y), and (7 - y); by Ilny, which has been formally proven to be secure in [1].
(4) selects random values (7 - y), and (r - y),.

(5) computes 7y = a0 - {1+ o+ a1+ (r-y)y +az - (r-y),.

(6) obtains (r - x), and (r - z); by Inu.
(7) computes (z), = % and (z), = %
(8) outputs ((z)g, ()5, (-)ir» (2o (a1’ € {1,2}).

For the case of corrupting P; and P», the simulator S;lv’PZ works as follows:
(1) receives (x),, (x),, (y); and (y), from P; and Ps.

* Corresponding author (email: fenggi.whu@whu.edu.cn, hedebiao@163.com)

Yiwen TONG, et al. Sci China Inf Sci 2

(2) receives (r), and (r), from P; and Ps.

(3) obtains (r-y), and (7 - y), by I u-

(4) selects random values (7 - y),.

(5) computes -y = ao - (- Y)o + a1+ (1 4)y + a2 (1Y),
(6) obtains (r - x); and (r-z), by Iynu.

(7) computes (z), = % and (z), = %

(8) outputs ((z),,(r - y)g, (), 4" € {1,2}). _)
We represent the view of Py and P1, P2 as view}i—f” and view}i—f” respectively. It is clear that the distribution of Py’s

simulated view in the ideal world is identical to the distribution of its \lflgev in the actual execution, that is,
viewt! (@), (y);, (2),,7 € {0,1,2,3}) 2 8.0, ((2)g, (W) os (@55 ()55 ()0 (2)5) (B1)
Besides, the view of P; and P> in the real world is the same as S;%’Pl ’s output. Mathematically,
viewd p) ((z);, (U);: (2555 € {0,1,2,3}) = S;L T2 ((2) 1, (W), ()55 ()5 ()15 (2)5) (B2)

Appendix C Proof of Theorem 4

Theorem 4 (Security of Ilcomp). The comparison protocol Ilcomp securely realizes the functionality Feomp under the passive
adversary.
Proof. The ideal funtionality Fcomp for the comparison protocol Ilcomyp is depicted in Table C1.

Table C1 Ideal Funtionality Feomp

Funtionality Feomp

Input: Output:

- Py inputs (x),, ()5, (¥)y and (y)5; - Po outputs (z), and (z)4;

- Py inputs (z), and (y),; - P outputs (z);

- P, inputs (z), and (y),. - P> outputs (z),, where z = 1{z > y}.

Po

cmp works as follows:

For the case of corrupting Py, the simulator S
(1) receives (z),, (x)3, (¥), and (y)5 from Pp.
(2) receives k1 and ko from Py.
(3) receives r from Py.
(4) computes (z —y), = (x); — (y),, where i € {0, 3}.
(5) obtains (r - (z —¥y)), and (r - (z — y))3 by Heztmul, which has been formally proven to be secure in Appendix E.
(6) obtains (f), and (f); by IIsn,, which has been formally proven to be secure in [1].
(7) select random values (f), and (f),.
(8) computes (z), = (f)q ® MSB(r) and (z); = (f)5-
(9) outputs ((z), (@) 5, (f)irs (2)g, (2)5,1 € {0,3}).
For the case of corrupting P; and P>, the simulator 55}7;1};2 works as follows:
(1) receives (z),, (x),, (y); and (y), from P; and P;.
(2) receives kq and ko from P; and Ps.
(3) computes (z —y), = (x); — (y),, where i € {1,2}.
(4) obtains (r- (z —y)); and (r- (¢ — y))5 by Ieztmur, which has been formally proven to be secure in Appendix E.
(5) obtains r - (x —y) by computing r- (z —y) = ao - (r-(x —y))g+ a1 - (r-(x—y)); +az-(r-(x—1y)),.
(6) obtains [f]1 and [f]2 by Eval<ﬂ,17 and FSS has a well-documented proof of security.
(7) computes f = [f]1 + [f]2, amd2 obtains (f); and (f), by Ils,, which has been formally proven to be secure in [1].
(8) computes (z); = (f); and (z), = (f),.
(9) outputs ((z), @)y, ()i (2)1, (2)5, 1" € {1,2}).
We represent the view of Py and P1, P2 as viewp " ;i’r}fz respectively. It is clear that the distribution of Py’s
simulated view in the ideal world is identical to the distribution of its view in the actual execution, that is,

viewiy ™ ((x);, (¥);: (2);,4 € {0,1,2,3}) = 8.5, (@) g, (¥)0s (@)3, (W) 3, ()0 (2)3) (C1)

and view

Besides, the view of P; and P> in the real world is the same as 8530&1;1 ’s output. Mathematically,

view(" H ()5, (v}, (2) ;55 € {0,1,2,3}) 2 SILI2 (@), ()1, ()5, ()ss (2)15 (2)5) (C2)

Appendix D Proof of Theorem 5

Theorem 5 (Correctness of Ilez¢mui). For the plaintext = held by Py and the shares (y) held by online parties, where z, (y) € Zx,
IMeqtmul can correctly outputs shares of multiplication result (z - y) for all parties.
Proof. To prove the correctness of Ilcg¢mul, it is necessary to demonstrate that the shares output by Ilc,¢mq1 can be reconstructed
using Il,... to obtain the correct value of x - y. The reconstruction process will be explained for the following two scenarios:

If no assistant party drops out:

z=og(z)g+a1-(z); +az-(z),
ao.%-&-(ao»(h}(]-l-al'<h>1+a2'<h>2)_e'(a0'<v>o+0‘1'<U>1 + a2 - (v),) (D1)
z-(y+v)+u-v—v-(zr+u)

=x-y

Yiwen TONG, et al. Sci China Inf Sci 3

If one of the assistant parties (Ps, for example) drops out:

z=o¢6 . (z>0+a/1~(z)1+04é “(2)q

; x-f

=g —=+(ag - (h)o +ai - (h)y + g (h)g) — e (ag - (v)g +af - (v); +af - (v);)
[e7] (D2)

=z (y+v)+u-v—v-(zr+u)
=zy

Since there exist public constants that satisfy the requirement and are equal, i.e., &g = o = f = 1, we can compute

roozfo
oy T =x- f.
)

Appendix E Proof of Theorem 6

Theorem 6 (Security of Ilegimui). The extension protocol of secure multiplication Ilegztimw securely realizes the funtionality
Fewtmul under the passive adversary.
Proof. The ideal funtionality Feztmui for the extention protocol of the multiplication protocol Ileztmar is depicted in Table E1.

Table E1 Ideal Funtionality Featmul

Funtionality Ferimul

Input: Output:

- Py inputs z, (y), and (y);; - Po outputs (z), and (z)g;

- Py inputs (y),; - P; outputs (2);

- Py inputs (y),. - P, outputs (z),, where z =z - y.

For the case of corrupting Py, the simulator S:D:cotmul works as follows:
(1) receives x, (y), and (y)5 from Pp.
(2) receives (u),, (v)y, (h)g, (u)s, (v)5 and (h), from Py.
(3) selects random values (u),, (u),, (d); and (d),.
(4) computes (d), = (y), + (v),, where 7 € {0, 3}.
(5) computes u = ag - (u)y + a1 - (u); + a2 - (u), and d = ag - (d)y + a1 - {(d); + az - (d),.
(6) computes e = u + x.
(7) computes (z), = % +(h)y — (V) - e
(8) outputs (z, (¥)g, (¥)3, (u),r, (d);r, (2)g, (z)5, where i’ € {1,2}).
For the case of corrupting P; and P», the simulator Si};iil works as follows:
(1) receives (y), and (y), from P; and Ps.
(2) receives (u)q, (v)y, (h)y, (u)y, (v), and (h), from P; and Ps.
(3) selects random values (d),.
(4) computes (d), = (y), + (v),, where 7 € {1,2}.
(5) computes d = ag - (d)y + a1 - (d); + az - (d),.
(6) computes (z); = (h); —e- (v); and (2), = (h), —e- (v),.
(7) outputs ((y), (d), (2),,i" € {1,2}).
We present the view of Py and Py,P> as viewf;”m“’l and viewi;ifg;" respectively. It is clear that the distribution of Py’s
simulated view in the ideal world is identical to the distribution of its view in the real execution, i.e.,

. extmul . ~ cP
v"'ewPOt (w»<y>ja <Z>J‘a] € {0,1,2,3}) = Seg?tmul(w’<y>07 <y>3»<z>oa <Z>3) (El)
In addition, the view of P1, P> in the real world is the same as S:jt’f:ﬁ”’s output. Mathematically,
. emtmul . ~ <P1,P
vzewPlt,Pz ((y}]-,(z}]-,_y € {0717273}) :Semltmil((y>17<z>1a<y>27<z)2) (EQ)

References
1 L. Song, J. Wang, Z. Wang, X. Tu, G. Lin, W. Ruan, H. Wu, and W. Han, “pmpl: A robust multi-party learning framework
with a privileged party,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2689-2703, 2022.

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

