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Abstract During short-range air combat involving unmanned aircraft vehicle (UAV) swarms, UAVs must

make accurate maneuver decisions based on information from both enemy and friendly UAVs. This dual

requirement of competition and cooperation presents a significant challenge in the field of unmanned air

combat. In this paper, a method based on multi-agent reinforcement learning (MARL) is proposed to address

this issue. An actor network containing three subnetworks that can handle different types of situational

information is designed. Hence, the results from simpler one-on-one scenarios are leveraged to enhance

the complex swarm air combat training process. Separate state spaces for local and global information are

designed for the actor and critic networks. A detailed reward function is proposed to encourage participation.

To prevent lazy participants in air combat, a reward assignment operation is applied to distribute these

dense rewards. Simulation testing and ablation experiments demonstrate that both the transfer operation

and reward assignment operation can effectively deal with the swarm air combat scenario, and reflect the

effectiveness of the proposed method.

Keywords UAV swarm, short-range air combat, multi-agent reinforcement learning, reward assignment,

transfer

1 Introduction

Owing to advancements in related technologies and their various excellent features, like structural sim-
plicity and minimized human risk, unmanned aerial vehicles (UAVs) have been successfully utilized in
inspection, search, rescue tasks, and air-to-air combat [1, 2]. The demand for transitioning from single
UAV missions to swarm deployments and the inherent challenges of model uncertainty, strong coupling,
and complex disturbances have led to the continuous proposal of highly efficient control strategies [3, 4].
The short-range air combat is a significant application domain for UAVs. However, the capabilities of
a single UAV are often insufficient to handle the increasing complexity of air combat missions [5]. Con-
sequently, multi-UAV cooperative air combat has emerged as a crucial contemporary combat paradigm,
presenting both significant research opportunities and formidable challenges [6]. Recent advancements of
artificial intelligence (AI) technology have expanded the combat capabilities of single UAVs and brought
fresh vigor into UAV swarm short-range air combat [7].

During unmanned air combat, both sides constantly execute maneuvers according to their respective
policies, resulting in rapidly changing dynamic situations. Numerous methods have been used to solve
the problem of unmanned air combat problem, mainly classified into optimization methods, game theory
methods, and AI-based methods [8, 9].

The optimization methods aim to transform the air combat maneuver decision-making problem into
an optimization problem through modeling [10]. Typically, this involves solving a multi-objective opti-
mization problem using a suitable optimization method [11]. Duan et al. [12] framed the dynamic task
allocation problem in swarm air combat as a real-time decision-making problem, considering engagement,
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attrition, and other factors, then an improved particle swarm optimization (PSO) is devised to solve this
intricate problem. Bayesian inference is also employed to estimate the combat situations, with the entire
air combat maneuver decision-making process solved by moving horizon optimization [13]. Although
optimization methods can search for better solutions within a vast solution space, they require significant
computational resources, making real-time decision-making challenging [5]. The game theory methods
establish maneuver decision-making policies based on several types of game theories, such as differential
games and influence diagrams. For highly dynamic swarm pursuit scenarios, the innovative differential
game theory provides a reference for the overall index design [14]. Liu et al. [15] have designed an air
combat embedded training system based on the extended influence diagram framework, improving the
system’s authenticity and practicality. However, the strong dynamism of air combat scenarios leads to in-
creased computational complexity, making it difficult for game theory methods to consider all influencing
factors and deliver real-time performance.

Increasingly, researchers are turning on AI-based methods, especially reinforcement learning (RL),
which enables the agent to evolve through “trial and error” interactions with the environment, facilitating
real-time maneuver decision-making [5,16,17]. Yang et al. [9] have designed a maneuver decision-making
model based on deep Q network (DQN), combined with a one-on-one air combat evaluation model, to
achieve autonomous decision-making in high-dimensional state and action spaces. Motivational curricu-
lum learning has been integrated with a type of RL algorithms to provide special rewards to the agent
when it displays with unsatisfactory behaviors in [18]. To address UAV swarm air combat, multi-agent
reinforcement learning (MARL) algorithms are introduced, which are widely used in multi-individual
cooperation and competition problems [19–21]. An improved communication network, serving as the
UAVs’ communication channel, is introduced to design the actor network, thereby enhancing cooperation
abilities [22]. To eliminate the need for expert knowledge, a multi-agent hierarchical policy gradient
algorithm learns maneuver policies through self-play, achieving excellent performance in both defense
and offense scenarios [7]. Parallel and decoupling strategies are introduced into the unmanned swarm
confrontation game based on MARL algorithms with the simplified UAV motion model [23].

One-on-one air combat, as a special case of swarm air combat, involves the agent interacting with
an opposing player, resulting in a more stable system. However, in swarm air combat, agents must en-
gage with both teammates and opponents, collaboratively making decisions, which significantly increases
system complexity and instability. Moreover, the expanded decision space in swarm combat environ-
ments further complicates decision-making increasing the likelihood of encountering “lazy agent”, thus
challenging cooperative operations.

Simplified scenarios, such as one-on-one air combat, can expedite the training process for complex
scenarios, providing foundational insights into essential aspects of swarm air combat, including maneu-
vering tactics and evasion techniques. These insights offer valuable assistance for swarm air combat and
constitute a viable method to tackle swarm control issues. However, current methods mainly focus on
one-on-one or swarm air combat, rarely considering the interplay between the two.

Informed by the above discussion, this paper proposes an MARL-based method for short-range air
combat maneuver decision-making. The method includes designing a detailed swarm air combat environ-
ment and accelerating the training process by transferring and reward assignment. Compared to previous
studies [5, 17, 22], the main contributions of this paper are as follows.

(1) Tailored UAV swarm air combat environment. A comprehensive representation of the air combat
process, including a strategy to depict the relative relationships between opposing parties. Departing
from previous studies, this paper introduces a blood mechanism that escalates complexity and interaction
intensity between both sides. Additionally, it devises a local state space for distributed execution by RL
agents and a global state space designed to encapsulate an overall situation evaluation.

(2) Network transfer for UAV swarm air combat. The actor network design is modularized, allowing
the transfer of an actor network from one-on-one scenario to handle secondary enemy UAV information.
This establishes connections within more complex UAV swarm air combat scenarios. Simultaneously, a
phased multistep training process is adopted to ensure both feasibility and expediency in training RL
agents.

(3) Reward function and reward assignment for swarm air combat. A reward function encompassing
situation, events, and end-game specifics is designed to enhance RL agents’ learning efficiency. Inspired by
the credit assignment problem in multi-agent systems, a reward assignment tip redistributes individual
rewards based on their contributions to the swarm. This effectively mitigates the emergence of “lazy
agents” and enhances collaborative capabilities.
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Figure 1 (Color online) Environment of UAV swarm short-range combat.

The rest paper is organized as follows. Section 2 introduces the UAV swarm air combat environment,
mainly including the motion model, designed action and state spaces, and maneuver strategy script for
the enemy. Section 3 presents the maneuver decision method using RL, including the designed networks,
reward function, and training process. Next, the simulation results are discussed in Section 4. Ultimately,
Section 5 concludes the findings of the study.

2 UAV swarm air combat environment

The UAV swarm short-range air combat maneuver decision-making problem is complex, requiring con-
sideration of environmental physical constraints and the states of UAVs from both sides, which are
dynamically changing. This section combines the characteristics of air combat to introduce the UAV
model, the designed action and state space, and the opponent’s maneuver strategy script to complete the
modeling of the air combat environment, as shown in Figure 1.

2.1 UAV motion model

During short-range air combat, the UAV is primarily concerned with the positional and velocity relation-
ships with other UAVs. Consequently, the UAV motion model is simplified to a three-degree-of-freedom
motion model, placing greater emphasis on the decision-making process rather than the underlying flight
control. In this model, the body coordinate system Σb is fixed with the UAV, and the UAV’s velocity
direction is always aligned with the ox axis of Σb. The simplified motion model is established in the
ground coordinate system Σg, which is regarded as an inertial coordinate system. In Σg, the directions
are defined as follows: east (E) along the ox axis, north (N) along the oy axis, and upward direction (U)
along the oz axis. The UAV motion model can be expressed as [9]



















































ẋ = v cos θ cosψ,

ẏ = v cos θ sinψ,

ż = v sin θ,

v̇ = g (nx − sin θ),

θ̇ =
g

v
(nz cos γ − cos θ),

ψ̇ =
gnz sin γ

v cos θ
,

(1)
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Figure 2 (Color online) Scenario of UAV swarm short-range combat in the ground coordinate system.

where p = [x, y, z]
T

and v are the UAV’s position and velocity vectors in Σg, and ẋ, ẏ and ż are the
component values of v in three directions, which means v = [ẋ, ẏ, ż]T. γ is the flight-path bank angle
around v. θ represents the angle between v

′ and v, and ψ is the angle between v
′ and ox axis, where v

′

is the projection of v on the xoy plane. g signifies the acceleration of gravity, nx denotes the overload in
velocity direction, and nz is the normal overload. The control input vector u = [nx, nz, γ]

T
∈ R

3 of the
motion model is utilized to control the UAV state s = [pT,vT]T while the model is working. In addition,
considering constraints, such as the flight performance of the UAV, the UAV model has to fulfill some
conditions, which are represented as







































vmin 6 v 6 vmax,

θmin 6 θ 6 θmax,

− π < γ 6 π,

0 6 ψ < 2π,

nxmin 6 nx 6 nxmax,

nzmin 6 nz 6 nzmax,

(2)

where subscripts min and max denote the minimum and maximum values. Therefore, with s and u at
time step t, s at next time step can be found by (1) and (2) using the Runge-Kutta method.

2.2 Air combat scenario

In an episode of UAV swarm air combat, the mission for UAVs on both sides is to cooperate with their
teammates to destroy all opposing UAVs. The red UAVs, denoted as Ωr with a membership count of nr,
adopt a maneuver decision-making controller based on an RL algorithm. Meanwhile, the UAVs of the
blue side, represented as Ωb with a membership count of nb, follow a maneuver strategy script designed
to direct the blue UAV to tail and destroy the red UAVs. The scenario is illustrated in Figure 2. Ω′

b and
Ω′
r denote the surviving UAVs on two sides and taking UAV i ∈ Ω′

r and UAV j ∈ Ω′
b in the following

text.
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The UAV i can launch an attack against UAV j when the attack conditions are as follows:










Datt,min 6 Dij 6 Datt,max,

ϕatt,ij 6 ϕatt,max,

ϕesp,ij 6 ϕesp,max,

(3)

where Dij = ‖pi−pj‖ is the distance between UAV i and j, and Datt,max and Datt,min are the maximum
and minimum attackable distance, respectively. ϕatt,ij and ϕesp,ij are the attacking angle and escaping
angle between UAV i and j, respectively, and ϕatt,max and ϕesp,max are the thresholds. ϕatt,ij and ϕesp,ij

are defined as [24]

ϕatt,ij = arccos
vi · (pj − pi)

‖vi‖ · ‖pj − pi‖
,

ϕesp,ij = arccos
vj · (pj − pi)

‖vj‖ · ‖pj − pi‖
.

(4)

Furthermore, in the designed short-range air combat environment, the damage inflicted on an enemy
UAV by a single attack is variable and finite. It is assumed that each UAV has a blood value B, and
each attack will reduce the specified blood value ∆B with a probability of patt. A UAV will be destroyed
when its blood value B is less than or equal to 0. The relationship of ∆B and patt is defined as

∆B =



















−B1, 0 6 patt < patt1,

−B2, patt1 6 patt < patt2,

−B3, patt2 6 patt < patt3,

0, patt > patt3,

(5)

where patt1, patt2 and patt3 are the thresholds of patt and satisfy 0 < patt1 < patt2 < patt3 < 1; B1, B2

and B3 are the reduced blood values after an attack. If Bi < 0 or colliding with another UAV or the
ground, the damaged flag of UAV i, dami, will be set as True.

However, the attack conditions are too harsh and difficult to meet in the early stages of air combat,
which is not conducive to training. Therefore, an attack area located in front of its nose and an advantage
area located behind the enemy’s tail is proposed. The judgment conditions for those areas are represented
as

attack area

{

Datt,min 6 Dij 6 Datt,max,

ϕatt,ij 6 ϕatt,area,
(6)

advantage area

{

Dadv,min 6 Dij 6 Dadv,max,

ϕesp,ij 6 ϕesp,area,
(7)

where Dadv,max and Dadv,min are the maximum and minimum lengths of the advantage area. ϕatt,area is
the maximum attacking angle of the attack area, which satisfies ϕatt,area > ϕatt,max, and ϕesp,area is the
maximum escaping angle of the advantage area, which satisfies ϕesp,area > ϕesp,max.

In summary, the process of UAV swarm air combat in an episode is as follows. Firstly, the positions
and velocities of the UAVs on both sides are initialized. Then, the UAVs engage in air combat based on
their respective maneuver decision-making strategies, provided the maximum allowable air combat time
Tmax has not been reached. The UAV will execute an attack if the attack conditions are realized. It is
worth noting that if the UAV’s height is less than 0 or larger than the maximum allowable height, it will
be directly deemed damaged. Finally, the episode ends when one side has destroyed all the opponent’s
UAVs or when Tmax is reached. The side with more surviving UAVs wins, while the result is a tied if
both have the same number of surviving UAVs.

2.3 Action space

The UAV maneuver decision-making controller generates u according to the current situation to control
the UAV to participate in the swarm air combat. Tactical maneuvers in air combat, such as Immelmann
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Table 1 Basic action library

No. Action Values for [nx, nz, γ]
T No. Action Values for [nx, nz, γ]

T

1 Forward, maintain 0; 1; 0 2 Forward, accelerate 2; 1; 0

3 Forward, decelerate −1; 1; 0 4 Upward, maintain 0; 3.5; 0

5 Upward, accelerate 2; 3.5; 0 6 Upward, decelerate −1; 3.5; 0

7 Downward, maintain 0; −3.5; 0 8 Downward, accelerate 2; −3.5; 0

9 Downward, decelerate −1; −3.5; 0 10 Left turn, maintain 0; 3.5; arccos(2/7)

11 Left turn, accelerate 2; 3.5; arccos(2/7) 12 Left turn, decelerate −1; 3.5; arccos(2/7)

13 Right turn, maintain 0; 3.5; − arccos(2/7) 14 Right turn, accelerate 2; 3.5; − arccos(2/7)

15 Right turn, decelerate −1; 3.5; − arccos(2/7)

and Cobra maneuvers, are complex, ambiguous, and flexible, lacking specific control command values.
This complexity presents significant challenges in modeling. To facilitate analysis and simulation testing,
the complex maneuvers are often broken down into a serial of basic maneuvers. For example, NASA
scholars have devised seven basic maneuvers [22, 25].

The series of basic maneuvers is usually referred to as the action library, or action space A in this
paper. A more complex action space allows for greater flexibility in UAV maneuvers during air combat,
but it also increases the complexity of air combat problem. Therefore, the action space utilized here,
shown in Table 1, consists of fifteen basic maneuvers. These can be disassembled into five movements,
namely forward, upward, downward, left turn and right turn, and three speed changes, namely maintain,
accelerate and decelerate. Through executing maneuver sequences composed of these basic actions,
various tactical maneuvering actions are fitted. This encourages the UAVs to explore various tactical
maneuvers driven by the RL algorithm.

2.4 State space

For the UAV swarm air combat problem, each red UAV must consider its relationships with other UAVs
on both the red and blue sides. To describe the positional relationship between UAV h and any other
UAV k, the relative pitch angle θD,hk and relative yaw angle ψD,hk are defined as

θD,hk = arcsin
zk − zh

‖pk − ph‖
,

ψD,hk = arctan
yk − yh
xk − xh

,

∀h, k ∈ Ωr ∪ Ωb, h 6= k. (8)

The designed state space S for any red UAV i is divided into two parts, namely Sred and Sblue, which
are composed by

Sred = ∪
k∈Ωr ,i6=k

{Dik, θD,ik, ψD,ik, ẋi − ẋk, ẏi − ẏk, żi − żk},

Sblue = ∪
k∈Ωb

Sblue,k,

Sblue,k = {xi − xk, yi − yk, zi, Dik, θD,ik, ψD,ik, ẋi − ẋk, ẏi − ẏk, żi − żk, ϕatt,ik, ϕesp,ik} ,

∀i ∈ Ωr. (9)

Furthermore, S is normalized in order to avoid the impact of these components’ values. For each compo-
nent λ ∈ S, it is normalized by a · λ

λ0
− b, where a and b are adjustment factors, and λ0 is the reference

value.
Obviously, S cannot completely and objectively display the global state of the UAV swarm air combat;

for example, the action and damage flag of each UAV are not included. Therefore, the global state Sg is
defined as

Sg = {dami|i ∈ Ωr} ∪ Sg,state ∪ {ai|i ∈ Ωr} ,

Sg,state = ∪
i∈Ωr ,j∈Ωb

{

Dij , θD,ij , ψD,ij , ẋi − ẋj , ẏi − ẏj, żi − żj , arccos
vi · vj

‖vi‖ · ‖vj‖
, ϕatt,ij , ϕesp,ij

}

,
(10)

where ai is the index of the action of UAV i in A, and it is not normalized. For the boolean variable
dam, it is normalized as ε · (−1)dam, where ε is a constant. The left components of Sg are normalized in
the same way as those in S.



Zheng Z Q, et al. Sci China Inf Sci August 2024, Vol. 67, Iss. 8, 180204:7

Algorithm 1 Maneuver strategy script

Require: Decision period fm, attack target index i and its state si, own state s, the maximum allowable air combat time Tmax,

time step tstep, the set of alive enemy UAVs Ialive, the set for alive enemy UAVs that are not being pursued Ifree ;

Ensure: Action a;

1: Set decision counter f = fm, time t = 0, Ialive = Ifree = ∅, a = 0;

2: for t < Tmax do

3: if f < fm then

4: f = f + 1;

5: else

6: f = 0;

7: if i is damage then

8: Choose the target: select the indexes of alive enemy UAVs and store them in Ialive. Select the indexes of enemy UAVs

that are not being pursued and store them in Ifree . If Ialive = ∅, set i = None; If Ifree = ∅, select index of the nearest

UAV from Ialive as i. If Ifree 6= ∅, select index of the nearest UAV from Ifree as i;

9: Set Ialive = Ifree = ∅;
10: end if

11: Predict target action: for each action in Table 1, predict i’s state sp,i by si and the action. Calculate i’s threat using s,

sp,i and (11), then select the action that poses the greatest threat as the predicted action ap,i;

12: Predict target state: predict i’s state sp,i by ap,i and (1);

13: Make decision: for each action in Table 1, predict its state sp after performing the action. Calculate the threat using sp,

sp,i and (11), and then select the action that poses the least threat as the decision action a;

14: end if

15: Output the action a;

16: Update s and si;

17: t = t+ tstep;

18: end for

2.5 Maneuver strategy script

The smarter and more flexible the opponent’s maneuver strategy is, the more challenging the training
becomes, and, consequently, the more significant the training results. The maneuver strategy script
employed, shown in Algorithm 1, is divided into three main steps: target selection, prediction, and
decision-making. The thread value T is defined as

T = 0.41 · Tϕ + 0.26 · Tv + 0.19 · Td + 0.14 · Th, (11)

where Tϕ, Tv, Th, and Td represent the angle thread value, speed thread value, height thread value and
distance thread value, respectively, while the definitions of the four thread values can be found at [26].

3 Maneuver decision method by RL

In this section, the proposed network framework is described in detail for the MARL algorithm. The
reward function and training process are also presented. It is worth noting that the red UAVs are the
agents guided by the MARL algorithm.

3.1 Multi-agent proximal policy optimization algorithm

The multi-agent proximal policy optimization (MAPPO) algorithm, which extends the capabilities of
the proximal policy optimization (PPO) algorithm into the realm of multi-agent systems, is employed to
train the red UAVs. This algorithm plays a significant role in the swarm cooperation problem [27, 28].
The PPO algorithm enhances its stability and convergence speed through several strategies, notably
including important sampling, generalized advantage estimation (GAE), and clipping [29]. These strate-
gies are integrated into the MAPPO, ensuring reliable and efficient policy optimization in a multi-agent
environment.

The adopted MAPPO is trained based on centralized training and decentralized execution (CTDE)
learning mechanism. Every UAV on the red side is an RL agent for MAPPO. Each agent makes decisions
based on its own observation by S and its actor network, while the critic network evaluates based on the
global state by Sg. The agents are isomorphic, meaning they have the same physical properties and play
the same role in the swarm. Therefore, the sharing strategy is adopted, where the agents share the actor
and critic networks, but the input values they provide to the networks are obtained according to their
respective perspectives.
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Figure 3 (Color online) Networks for the MARL algorithm.

3.2 Designed networks

UAV swarm air combat is not a simple summation of one-on-one air combat encounters, and it requires
consideration of the effects of other UAVs on both friendly and enemy sides. However, insights from one-
on-one air combat can, to a certain extent, guide the maneuver decisions of UAVs in swarm air combat.
Thus, A framework for UAV swarm air combat based on transfer RL is devised, which transfers the
results from one-on-one training to swarm air combat scenarios. This paper focuses on the three-on-two
UAV swarm air combat.

The details of the proposed networks are shown in Figure 3. The actor network is the core component
of the decision-making architecture and is devised to produce real-time decisions. The actor network,
expressed as πθ with parameter θ, comprises three dedicated subnetworks to accommodate and process
the information from different UAVs. The input of πθ is S which consists of Sred and Sblue. The
subnetwork A handles the information related to friendly UAVs, denoted as Sred. At the same time,
Sblue is divided into two parts: the state space with nearer blue UAV Sblue,near and the state space with
other blue UAVs Sblue,other. Note that Sblue,near and Sblue,other have the same composition as Sblue,k. It is
obvious that more attention should be paid to the nearer UAV, and the subnetwork B should be trained
carefully. Then, the subnetwork C is designed to deal with other blue UAV, which are not as important
as the nearer one. To simplify πθ and accelerate training, the parameters of subnetwork C are loaded
from a trained actor network used in one-on-one air combat. Note that S1v1 has the same composition
as Sblue,k. Finally, the output of πθ is the action’s index a in Table 1. As for the critic network Vφ with
parameter φ, it is utilized to evaluate the current situation based on Sg. The critic network is trained to
evaluate the global state, and its value function is used to calculate the advantage function and the loss
function during the training process.

3.3 Reward function design

When training the neural networks, the RL algorithm updates the networks based on the rewards ob-
tained [30]. Therefore, to guide the RL algorithm in training the networks in the desired direction, a
suitable reward function is necessary. In this paper, the reward function Ri for i ∈ Ωr consists of three
components as follows.

3.3.1 Situation reward

In each decision step, after all the UAVs have performed their actions, UAV i will receive its own situation
reward rs,i from the air combat environment. rs,i provides real-time feedback to UAV i on the value of the
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performed action in the air combat process, thus improving the UAV’s search efficiency and accelerating
the training process.

For UAV j, the devised situation reward rs,ij consists of the angle reward rϕ, distance reward rd, speed
reward rv and height reward rh, and rs,ij is defined as

rs,ij = wϕ · rϕ + wd · rd + wv · rv + wh · rh, (12)

where wϕ, wd, wv and wh are the weights falling in [0, 1], and their summation is 1. Notice that some
subscripts ij in (12) have been omitted for the sake of brevity of expression and this will also be denoted
as such later on. rϕ represents the azimuth relationship between the two UAVs, which can be specified
as

rϕ =
π− ϕatt,ij

π

·
π− ϕesp,ij

π

. (13)

The distance reward rd indicates the environment’s evaluation of current distance, which can be divided
into two parts, rd1 and rd2, and specified as

rd = rd1 + rd2, (14)

rd1 =

{

0.25, ∆Dij < 0 and Dij > Dmid,

0, other,
(15)

rd2 =



























0.25 ·
(

a1 (D −Dadv,max)
2
+ 1

)

, Dadv,max < Dij 6 Ds,

0.25 + 0.25 ·
(

a2 (D −Datt,max)
2
+ 1

)

, Datt,max < Dij 6 Dadv,max,

0.50 + 0.25 · a3 (D −Datt,min) (D −Datt,max) , Datt,min < Dij 6 Datt,max,

0, other,

(16)

where Dmid = (Datt,min +Datt,max) /2, a1 = − (Ds −Dadv,max)
−2

, a2 = − (Ds −Dadv,max)
−2

and a3 =

(Dmid −Datt,min)
−1 (Dmid −Datt,max)

−1 are the coefficients. Ds is the desired maximum distance. ∆Dij

denotes the distance difference from the previous moment. It is evident that rd1 guides UAV i to approach
UAV j, while rd2 adopts a segmented function form to encourage UAV i to keep its distance from UAV
j in the attack range.

The height reward rh is defined as

rh =































0.1, Hmax < zi − zj 6 Datt,max,

h1 (zi − zj −Hadv)
2
+ 1, Hadv < zi − zj 6 Hmax,

1, Hatt < zi − zj 6 Hadv,

h2 (zi − zj −Hatt)
2 + 1, Hmin < zi − zj 6 Hatt,

0, other,

(17)

where Hmax, Hadv, Hatt and Hmin are four height thresholds during the combat. The coefficients are
defined as h1 = −0.9 (Hmax −Hadv)

−2 and h2 = − (Hmin −Hatt)
−2. rh leads the UAV i to occupy a

favorable height advantage against the enemy.
The speed reward rv is used to evaluate the speed relationship between UAVs i and j. Upon defining

kv = vi/vj , rv can be expressed as

rv =



















0.1, kv > 1.5,

1, 1.0 6 kv 6 1.5,

5kv − 4, 0.8 6 kv < 1.0,

0, other.

(18)

It is clear that rϕ, rd, rv, rh and rs,ij fall within the range of [0, 1]. Finally, the situational reward rs,i
achieved by UAV i at decision step is defined as

rs,i = max
j∈Ω′

b

rs,ij i ∈ Ω′
r. (19)
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Table 2 Involved event rewards in the view of red UAV i

No. Name Description Condition Reward value Score

1 Occupy advantage area UAV i is in advantage area behind blue UAV j See (7) radv by (20) 1

2 Be occupied advantage area Blue UAV j is in advantage area behind UAV i Similar to (7) −1 0

3 Strike the ground UAV i strikes the ground and is damaged zi < 0 −0.5 0

4 Exceed the ceiling UAV i exceeds the maximum allowable height zi > zmax −0.5 0

5 Collide with others UAV i too close to one of other UAVs Dik < Dmin
a) −0.5 0

6 Occupy attack area UAV i makes blue UAV j in its attack area See (6) 0.3 0

7 Be occupied attack area Blue UAV j makes UAV i in its attack area Similar to (6) −0.3 0

8 Hit the opponent UAV i hits blue UAV j successfully See (3) 0.8 2

9 Destroy the opponent UAV i destroys blue UAV j Bj < 0 after i’s attack 1.5 5

10 Be attacked UAV i is hit by blue UAV j Similar to (3) −0.9 0

11 Be destroyed UAV i is destroyed by blue UAV j Bi < 0 after j’s attack −1.6 0

a) The k satisfies ∀k ∈ Ω′

r ∪ Ω′

b and k 6= i, and Dmin denotes the minimum safe distance.

3.3.2 Event reward

During close air combat, UAV i needs to trigger a series of characteristic events to beat UAV j, such as
successfully attacking j, getting j into the advantage area, and destroying j [18]. The involved events,
their corresponding trigger conditions and reward values are shown in Table 2. When UAV i occupies
the advantage area relative to UAV j, it will receive the advantage area reward radv, which is defined as

radv = 0.6 ·
Dadv,max −D

Dadv,max −Dadv,min
+ 0.4 ·

π− ϕesp,ij

π

. (20)

At each decision step, the event reward re,i for UAV i is calculated using the following steps. First,
re,i is reset to zero. Then, based on the relative position and velocity relationships between the UAVs,
when an event is triggered, the corresponding reward value will be accumulated on re,i. Finally, after
traversing the event types shown in Table 2, re,i obtained by UAV i at this decision step is obtained.

3.3.3 Reward assignment for dense reward

Credit assignment, an important issue in the field of MARL, refers to how to allocate contributions
towards results among all the agents. Similarly, in multi-UAV air combat, evaluating the impact of
different red UAVs’ maneuver decisions on the outcome of the air combat is of great significance to
encourage red UAVs to actively cooperate and jointly attack the blue side’s UAVs. In this paper, a
reward assignment method is adopted to solve the credit assignment problem. rs,i and re,i are calculated
at each decision step. Therefore, the dense reward rden,i is defined as rden,i = rs,i + re,i. The reward
shaping is applied to rden,i. The process of reward assignment is outlined in Algorithm 2. Note that rden0
is the basic dense reward value for each red UAV.

The rden,i is utilized to show the contribution of UAV i. If rden,i > 0, indicating a positive contribution,
r′den,i is assigned based on the number of UAVs that make positive contributions |Iu| and the summation
of positive contributions α. Therefore, if UAV i makes more positive contributions and α is larger, it will
receive a larger r′den,i. Conversely, if UAV i makes a negative contribution or even causes damage, it will
be punished accordingly, meaning r′den,i < 0. In this way, the red UAVs are encouraged to survive and
collectively beat the blue UAVs.

3.3.4 End-game reward

The last type of reward is the end-game reward, denoted as rend,i, which is allocated to UAV i of the red
side at the end of an episode based on its individual contributions towards the results of the confrontation.
In other words, through the distribution of the end-game reward, red UAVs are encouraged to improve
their decision-making capabilities in a targeted manner and actively participate in the air combat process.
The winning condition during the training phase is to destroy all the opponent’s UAVs. It is also
recommended to complete the combat as soon as possible with less blood loss.

(1) The end-game reward for wining. First, the whole wining reward rwin,all for the red side is obtained
by

rwin,all = rwin0 · nr ·

(

0.75 + 0.25 ·
Nstep − nstep

Nstep

)

, (21)
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Algorithm 2 Reward assignment on dense reward

Require: Dense reward set Φr,den = {rden,i|i ∈ Ω′

r}, the number of red side’s UAVs nr, damage flag dami i ∈ Ω′

r ;

Ensure: Assigned dense reward set Φ′

r,den = {r′den,i|i ∈ Ω′

r};

1: Set alive red UAV set Iu = ∅;
2: for i ∈ Ω′

r do

3: if dami is True then

4: r′den,i = −rden0 · nr − minΦr,den;

5: else

6: if rden,i > 0.01 then

7: Add i into Iu;

8: else

9: if rden,i > −0.01 then

10: r′den,i = 0;

11: end if

12: end if

13: end if

14: end for

15: if Iu 6= ∅ then

16: Set α =
∑

i∈Iu
rden,i;

17: for iu ∈ Iu do

18: r′den,iu
= (rden0 · nr + 0.003 · |Iu|/nr + 0.007 · α/nr) · rden,iu/α;

19: end for

20: end if

where rwin0 is the basic wining reward for every red UAV, Nstep is the maximum number of decision
steps, and nstep denotes the number of decision steps at the end.

Then, the contributions are considered. During an air combat episode, the red UAVs trigger various
events. More contributions at the end of the confrontation come from UAVs that have triggered events
highly conducive to winning, such as destroying an opponent. Therefore, for every episode, the score of
each red UAV is accumulated according to Tabel 2. The score of UAV i at the end of the episode is
denoted by βi. A higher βi deserves to be allocated more winning rewards. Note that β =

∑

i∈Ωr
βi, and

if β = 0, β will be set as 1 to make sense of (22).
Finally, the whole wining reward is given to UAV i as rend,i, which is calculated by

rend,i = rwin,all ·

(

wwin1

nr
+ 0.03 · |Ω′

r|+ wwin2 ·
βi
β

+ wwin3 ·
Br,i
Br,sum

·
Br,i
B0

)

, (22)

where wwin1, wwin2 and wwin3 denote weights, where summation is 1, Br,i is the remaining blood value
of UAV i, Br,sum =

∑

i∈Ω′
r
Br,i, and B0 is the initial blood value.

(2) The end-game reward for losing. Similarly, when losing, each red UAV receives a negative end-game
reward. The whole losing reward rlose,all is obtained by

rlose,all = rlose0 · nr ·

(

0.80 + 0.20 ·
Nstep − nstep

Nstep

)

, (23)

where rlose0 < 0 is the basic losing reward. Then, Br,i and βi are reshaped by

B′
r,i = B0 −Br,i + 10,

β′
i = max

i∈Ωr

βi − βi + 1.
(24)

Finally, the adopted rend,i for UAV i is presented as

rend,i = rlose,all ·

(

wlose1

nr
− 0.02 · |Ω′

r|+ wlose2 ·
β′
i

maxi∈Ωr
β′
i

+ wlose3 ·
B′
r,i

B0

)

, (25)

where wlose1, wlose2 and wwin3 are weights which summation is 1.

3.4 Training process

In this paper, the MAPPO algorithm and transfer method are adopted to train the actor network to
obtain the red side’s strategy. The training process can be simply divided into two stages: experience
collection over a number of decision steps and sampling to update the network, as shown in Figure 4.
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Figure 4 (Color online) Training process based on MAPPO in the UAV swarm air combat environment.

Table 3 Designed tips for training

Symbol Description

C1 Random initialization under the same initial conditions: x ∈ [1000, 3000], y ∈ [1500, 3500], z ∈ [1400, 3400],

v ∈ [60, 180], ψ ∈ [0, 2π], θ = 0

C2 Random initialization in the initial point set

C3 The blue UAV only performs the action with index 1

C4 The blue UAV uses the maneuver strategy script to make decision

C5 Transfer network parameters from the result of one-on-one air combat

C6 Apply the reward assignment

During the collection stage, the MAPPO agent is shared by red UAVs, while the maneuver strategy
script is used to dictate the behaviors of the blue UAVs. Next, the actions of UAVs generalized by the
MAPPO agent and script are executed, and the UAVs’ states and blood values are updated according to
the air combat scenario at each decision step. Then, S, Sg, actions, and the rewards given by the reward
function are recorded and stored as experience in the experience buffer [28]. Once the experience buffer is
full, the training process begins. Multiple experience batches, each with batch size B, are sampled from
the buffer, and are then utilized to compute values, such as GAE advantage A and discounted return R̂.
Subsequently, the network parameter θ is updated by maximizing the objective [28]

L(θ) =
1

Bnr

B
∑

i=1

nr
∑

k=1

min (ri,k, clip(ri,k, 1− ǫ, 1 + ǫ))Ai,k + σ
1

Bnr

B
∑

i=1

nr
∑

k=1

S [πθ(Si,k)] , (26)

where ri,k =
πθ(ai,k|Si,k)

πθold
(ai,k|Si,k)

is the important sampling ratio for batch i and red UAV k. clip() is the

clipping function, ǫ denotes the clipping parameter, S represents the policy entropy, and σ indicates the
entropy coefficient hyperparameter. The network parameter φ is updated by minimizing the objective [28]

L(φ) =
1

Bnr

B
∑

i=1

nr
∑

k=1

max







(

Vφ(Sg,i,k)− R̂i

)2

,
(

clip(Vφ(Sg,i,k), Vφold
(Sg,i,k)− ǫ, Vφold

(Sg,i,k) + ǫ)− R̂i

)2






. (27)

The sheer complexity and stochastic nature of interactions among numerous autonomous agents in
such swarm air combat environments amplify the computational demands, making direct training a
potentially arduous and resource-intensive endeavor. Therefore, some training tips are proposed in this
paper, as shown in Table 3, where C1 and C2 are the initialization schemes, C3 and C4 are the opponent’s
action selection schemes, and C5 and C6 are the strategies proposed in this paper. By combining these
tips, one can generate training scenarios with various levels of complexity. The complex scenarios can
be progressively derived by gradually relaxing conditions from simpler ones. The network parameters
obtained from training in less complicated environments serve as initial parameters for subsequent training
in more convoluted scenarios, thereby expediting the overall training process. For example, further
training under C1 after training under C can lead to a faster training pace compared to starting the
training directly under C1.
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4 Experiment

In this section, we analyze the training results and conduct simulation tests of the proposed decision-
making method within the designed air combat environment. Furthermore, ablation experiments are
used to illustrate the contributions of the method’s individual compositions.

4.1 Parameters setting

The combat environment’s parameters are set as follows [31]. In (2), the parameters for constraints are set
as vmin = 30 m/s, vmax = 180 m/s, θmin = −π/4, θmax = π/4, nxmin = −1, nxmax = 2.5, nzmin = −4 and
nzmax = 4. The normalized reference value λ0 is set as 5000 m for length-type components, π for angle-
type components, and vmax − vmin for velocity-type components. The parameters for attackable distance
are set as Datt,min = 40 m and Datt,max = 900 m. The maximum attacking angle is ϕatt,max = π/6 and
the maximum escaping angle is ϕesp,max = π/3. For the blood parameters, they are set as patt1 = 0.1,
patt2 = 0.4 and patt = 0.8. The blood thresholds are set as B0 = 300, B1 = 51, B2 = 21 and B3 = 11. For
the advantage area, the settings are Dadv,min = 40 m, Dadv,max = 1300 m and ϕesp,area = π/3. Similarly,
ϕatt,area = π/4. The desired maximum distance Ds is set as 5000 m. The parameters related to time are
set as Tmax = 200 s, tstep = 0.1 s. The decision step is set as 0.5 s. For the reward function, the threshold
values are set as Hmax = 500 m, Hadv = 300 m, Hatt = 100 m and Hmin = −300 m. The weights in
(12) are set as wϕ = 0.15, wd = 0.6, wv = 0.1 and wh = 0.15. The basic rewards are set as rden0 = 0.01,
rwin0 = 50, and rlose0 = −50. The main hyperparameters in MAPPO are set as learning rate 0.0003,
GAE parameter 0.95, discount 0.99, number of batches 8, buffer size B = 8192, epoch 5, clip parameter
ǫ = 0.15 and the total number of training episode Neps = 30000.

When C4 is adopted, the training difficulty will rise sharply, making it mostly impossible to produce
satisfactory results within Neps = 30000. Therefore, an incremental strategy is designed for the initial
blood value Bblue0 of the blue side while training. Specifically, when Neps < 8000, Bblue0 = 50; when
8000 6 Neps < 12000, Bblue0 = 80; when 12000 6 Neps < 20000, Bblue0 = 100; and when Neps > 20000,
Bblue0 = 300.

4.2 Training results

4.2.1 Training results of one-on-one air combat

To facilitate the transfer of the network, training for one-on-one air combat is conducted first, involving
only one UAV for each side, red and blue. The architectures of actor and critic networks are shown in Fig-
ure 3. The training process is structured into three stages: stage 1 (C2+C3+C6), stage 2 (C2+C4+C6),
and stage 3 (C1+C4+C6), with every stage building upon the training results of the previous stage.

The training curves of the total rewards per episode are shown in Figure 5. It can be seen from the
training progression that the agent’s maneuver policy quickly converges and maintains stability in the
simplest stage 1. Then, the agent acquires an effective winning policy during training in the slightly
more complex stage 2 and gradually improves the learned policy in the most complex stage 3 while
maintaining basic stability. Ultimately, through phased training, the agent acquires a winning policy
against opponents initialized under identical conditions, consistently securing higher rewards and thereby
maintaining a high win rate. This observation indicates that the proposed decision-making method for
one-on-one air combat is rational and adaptive. Then, the training results are loaded for testing and one
of the test examples is shown in Figure 6. It is evident that the blue UAV enjoys a significant altitude
advantage at the outset, posing a threat to the red UAV. Both UAVs approach each other, endeavoring
to create favorable attacking conditions to beat the other. The red UAV, however, utilizes a smaller
turning radius and strategic climbs to reduce the horizontal distance to the blue UAV while maintaining
similar attitudes, thereby avoiding entering the enemy’s attacking area and mitigating the risk of being
targeted. Subsequently, through more agile maneuvers, the red UAV manages to position itself behind
the blue UAV and establishes a tactical advantage. The blue UAV attempts to quickly break away from
the attack lock by lowering its altitude, while the red UAV takes corresponding actions to maintain its
attack advantage. Finally, capitalizing on this advantageous positioning, the red UAV executes a chase
and ultimately destroys its opponent. Therefore, in simple air combat scenarios, the proposed method
can achieve the requirements effectively.
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Figure 5 (Color online) Episode rewards for one-on-one air combat. (a) Stage 1: C2+C3+C6; (b) stage 2: C2+C4+C6; (c) stage

3: C1+C4+C6.

Figure 6 (Color online) Test result for one-on-one air combat. (a) Side view; (b) top view.

4.2.2 Training results of swarm air combat

Part of the actor network trained in one-on-one scenarios is transferred to help train the networks in
swarm air combat according to Figure 3. During the training, the parameters of subnetwork C are
frozen, meaning these parameters remain unchanged throughout the network updates. The training
process is structured into three stages: stage A (C2+C3+C5+C6), stage B (C2+C4+C5+C6), and stage
C (C1+C4+C5+C6). The training curves of these stages are shown in Figure 7. According to the
training curves, it is evident that after the red UAVs complete their learning in the simple scenario,
they can quickly identify the effective policy in the transitional scenario, showing steady improvement in
performance. Subsequently, they can effectively maintain effective maneuvering policy in more complex
scenario, despite experiencing a marginal dip in total rewards. The training results are loaded for testing
and the confrontation outcomes are shown in Figure 8. Figure 8(a) illustrates a cooperative pursuit
policy leading to the sequential destruction of blue UAVs; Figure 8(b) demonstrates how rapid turning
maneuvers are employed to reverse disadvantageous situations and continue the pursuit; Figure 8(c)
portrays the transition wherein, upon completion of an attack mission on a current target, the agent
immediately engages in further attacks against the remaining blue UAVs. By analyzing the confrontation
flight trajectories, it is clear that the red UAV swarm adeptly handles the blue UAV swarm’s versatile
offense, with all members actively participating in the confrontation. Notably, the red UAVs have also
learned to secure victory by tactically forcing the blue UAVs to crash into the ground. This demonstrates
that the proposed tips effectively prevent the emergence of “lazy agents” within the swarm.

4.3 Ablation experiments

4.3.1 Training results for ablation experiments

To validate the effectiveness of the design tips within the proposed maneuver decision-making method,
ablation experiments are conducted to assess the effect of each tip on the training process. According to
Table 3, three different combinations of designed tips are used in the experiments. Case I (C5+C6): this
combination adopts the main designed tips for swarm air combat, and its training results are displayed in
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Figure 7 (Color online) Episode rewards for three-on-two air combat. (a) Stage A: C2+C3+C5+C6; (b) stage B: C2+C4+C5+C6;

(c) stage C: C1+C4+C5+C6.

Figure 8 (Color online) Test results for three-on-two air combat. (a) Cooperative pursuit; (b) rapid turning and pursuit;

(c) attacking remaining opponent.

Figure 9 (Color online) Episode rewards for three-on-two air combat in case II. (a) C2+C3+C5; (b) C2+C4+C5; (c) C1+C4+C5.

Figure 7. Case II (C5 only): In this scenario, only C5 is used, meaning no reward assignment operation is
performed. Case III (C6 only): Here, C5 is used, and subnetwork C shown in Figure 3 is not transferred
but instead participates in network training and updating, with parameters changing iteratively. The
training results of Cases II and III are shown in Figures 9 and 10, respectively. Since the reward assignment
changes the reward values at each decision step, it is less meaningful to compare the reward values.
However, it can still be discerned that the total rewards can be more stable when both transferring and
reward assessment are employed, especially in complex scenarios.

Furthermore, the maneuver decision-making strategies trained for the three cases are implemented
in three-on-two air combat confrontation, with multiple episodes of air combat conducted separately.
The recorded winning rates are shown in Table 4, and the five types of results are defined as (28).
Comparing Figures 7 and 10, it is evident that although Case I initially experiences an inhibitory effect
when employing C2 resulting by transferring results from the one-on-one scenario, its rewards gradually
increase, ultimately leading to the acquisition of a more robust policy. Additionally, when employing C1,
the mean rewards of Case I show a trajectory of stability and manifest a clear convergence trend compared
to those of Case III. Thus, despite the initial setbacks caused by transferring, which may temporarily
hinder progress owing to other untrained parts of the actor network, it is eventually demonstrated that
the transfer process proves beneficial. This is because the transfer simplifies the network layers to be
trained, thereby yielding better overall training results. Comparing Figures 7 and 9, it becomes apparent
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Figure 10 (Color online) Episode rewards for three-on-two air combat in case III. (a) C2+C3+C6; (b) C2+C4+C6;

(c) C1+C4+C6.

Table 4 Results of confrontation with maneuver strategy script in three cases

Confrontation type Winning rate (%) Losing rate (%) Drawing rate (%) Loose winning rate (%) Loose losing rate (%)

Case I 87.00 6.00 7.00 89.00 9.00

Case II 81.00 3.00 3.00 79.00 18.00

Case III 79.00 4.00 5.00 79.00 18.00

that the reward assignment tip leads to a slow increase and ultimate convergence of the reward curve
for Case I in less intricate conditions. Conversely, for Case II, without this tip, the rewards initially
reach a high level but subsequently witness a downward trend over the training period, failing to achieve
convergence. Additionally, when employing C1, Case I demonstrates notably less fluctuation and a more
poised progression relative to Case II. This demonstrates that the reward assignment tip can help to
accelerate the learning process.

From Table 4, it is obvious that Case I achieves the largest winning rate and loose winning rate.
This indicates that after the same training process, the proposed method with transferring and reward
assignment can develop a more intelligent and effective maneuver decision-making policy. Thus, the
designed tips are effective in promoting the active participation of each agent in air combat, thereby
enhancing the overall winning rate of the swarm.

Confrontation result:































winning, |Ω′
r| > 0 and |Ω′

b| = 0,

losing, |Ω′
r| = 0 and |Ω′

r| > 0,

drawing, |Ω′
r| > 0 and |Ω′

b| > 0,

loose winning, |Ω′
r| − |Ω′

b| > 2 or (|Ω′
r| > 0 and |Ω′

b| = 0),

loose losing, |Ω′
b| − |Ω′

r| > 0 or (|Ω′
r| = 0 and |Ω′

b| > 0).

(28)

4.3.2 Confrontation test

To further illustrate the effectiveness of the proposed maneuver decision-making method, the training
results of Case I are tested against the results of Case II and Case III in a three-on-three UAV swarm
air combat environment. The original Cases were conducted in a three-on-two scenario; therefore, some
restrictions are imposed: when the number of surviving UAVs on the opponent’s side is greater than 2,
the two closest UAVs will be selected as observation objects for maneuver decision-making. The recorded
results for 50 episodes are shown in Table 5. Note that the initial blood value of UAV is set to 100 to
shorten the time of each episode and the loose wining’s condition is defined as |Ω′

r| − |Ω′
b| > 0 or (|Ω′

r| >
0 and |Ω′

b| = 0).

The results indicate that in Case I, the maneuver decision-making ability is stronger, even when trained
under the same conditions. Through the network transferring tip, the learned policy becomes better
equipped to handle enemy attacks, adopting a more conservative approach that can potentially reduce
both winning and losing rates. Conversely, relying solely on reward assignment tip leads to a relatively
aggressive learning strategy with a high winning rate but also a higher losing rate. Therefore, by using
the designed tips in conjunction, a more balanced offensive and defensive strategy can be achieved.
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Table 5 Results of confrontation between three cases

Confrontation type Winning rate (%) Losing rate (%) Drawing rate (%) Loose winning rate (%) Loose losing rate (%)

Case I vs. Case II 14.00 7.00 29.00 22.00 19.00

Case I vs. Case III 25.00 19.00 6.00 25.00 19.00

Case II vs. Case III 17.00 24.00 9.00 19.00 24.00

5 Conclusion

In this paper, a maneuver decision-making method for UAV swarm short-range air combat based on the
MARL algorithm is proposed. Key tips, the neural network transferring and the reward assignment, are
adopted to accelerate the training process for swarm air combat maneuver decision-making using the
MAPPO algorithm. Specifically, separate state spaces for local and global observation are designed for
actor and critic networks. The actor network strategically incorporates the pre-trained network from a
one-on-one air combat scenario. Additionally, the proposed reward function for MAPPO is divided into
three parts, and a reward assessment tip is implemented to prevent individual UAVs in the swarm from
becoming “lazy” and contributing minimally to the swarm air combat effort while still reaping similar
or even greater rewards. Ultimately, the proposed method is validated through simulations and ablation
experiments. The results indicate the reward assessment tip effectively guides the individuals to actively
participate in air combat, ensuring their contribution. Concurrently, the network transferring operation
leverages knowledge acquired in simpler scenarios to accelerate the training efficiency in more complex
ones.

Our future work will focus on two key aspects. First, it will explore more realistic scenario designs,
incorporating factors like wind disturbances and model uncertainties. Second, it will explore larger-scale
UAV swarm air combat to overcome the effect of the number of participants on the network model and
to develop a more flexible and intelligent air combat decision-making method.
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