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Root cause diagnosis, a key component of self-healing, plays

a vital role in fault management. The spatially imbal-

anced network key performance indicators (KPIs) reported

by users increase the difficulty of identifying root causes.

In [1,2], the image inpainting technique is inspired to address

issues caused by sparse reports across the coverage area.

However, the assumption that reports are sparse through-

out entire coverage areas is impractical, as it is rare for re-

ports to be uniformly unavailable. Moreover, existing data

quality improvement technologies, such as image inpainting,

introduce significant time consumption in data generation

and processing. Additionally, cost-sensitive learning meth-

ods are seldom used. In [3], a cost-sensitive learning method

calculates the rescale ratio to address the imbalance of pos-

itive and negative samples. The algorithm in [4] includes

severity level information but does not improve root cause

diagnosis performance. Furthermore, labeling feature vec-

tors with root causes is labor-intensive, and labeling severity

levels is particularly challenging, as discussed in [5]. Moti-

vated by these challenges, we propose a novel feature extrac-

tion method based on data similarity to address problems

caused by imbalanced user data distribution. To further im-

prove performance, we employ a cost-sensitive support vec-

tor machine (SVM) that allocates different misclassification

costs to different severity levels of faults and a severity level

evaluation algorithm to assist its implementation.

System model. Several base stations and user equipment

(UE) are considered in this analysis. To simplify the analy-

sis, UE includes a single antenna, while each base station is

equipped with three uniform rectangular arrays. Pieces of

UE are distributed unevenly in the horizontal plane. Each

UE is serviced by its nearest base station, with other cells

causing interference. Pieces of UE conduct minimization of

drive test (MDT) reports. As discussed in [4], three root

causes are considered: small antenna tilt resulting in ex-

cessive uptilt (EU), large antenna tilt leading to excessive

downtilt (ED), and a significant drop in the transmit power

of base stations causing excessive reduced power (ERP).

Network cause classification is assessed using network KPIs,

including signal-to-interference-plus-noise ratios (SINR) and

reference signal received power (RSRP).

Evaluation of severity level based on Mahalanobis dis-

tance. Three severity levels are taken into account: se-

rious, medium, and slight. Assume that the training set

is partly labeled with severity levels, and KPIs in normal

networks are available. The proposed algorithm aims to

label the remaining training samples. The Mahalanobis

distance between sample KPIs and KPIs in normal net-

works serves as the indicator for severity level labeling. For

p = (p1, p2, . . . , pl)
T and q = (q1, q2, . . . , ql)

T, this dis-

tance is defined as d(p, q) =
√

(p− q)T · cov(p, q) · (p− q),

where cov(p,q) = E(pTq) −E(p) ·E(q), where E(·) repre-

sents the mean. Define M as the number of samples in the

training set, and the mth sequence of network KPIs is xm =

[RSRP1, SINR1, . . . , RSRPi, SINRi, . . . , RSRPI , SINRI ],

where RSRPi and SINRi are the RSRP and SINR of the

ith user in the coverage area, respectively, I is the number

of users, m = 1, 2, . . . ,M , and i = 1, 2, . . . , I. M n network

KPIs under normal conditions are collected, and the m nth

network KPIs under normal conditions are x n = [RSRP1 n,

SINR1 n, . . . , RSRPi n, SINRi n, . . . , RSRPI n, SINRI n],

where RSRPi n and SINRi n are the RSRP and SINR of

the ith user, and m n = 1, 2, . . . ,M n. Mk samples are la-

beled with known severity level information, forming the set

Ik = [i1
k
, . . . , i

Mk

k
]. The set of those KPIs with correspond-

ing labels is X label = {(xi1
k

, ys i1
k

), . . . , (x
i
M

k

k

, y
s i

M
k

k

)},

where ys i1
k

, . . . , y
s i

M
k

k

∈ {1, 2, 3}. If the corresponding

severity level is serious, y
s i

m
k

k

= 1. When a fault is la-

beled with a medium severity level, y
s i

m
k

k

= 2. Similarly,

y
s i

m
k

k

= 3 is set for a fault with a slight severity level.

mk = 1, . . . ,Mk. To deal with the challenge caused by the

imbalanced distribution of user data, the whole coverage

area containing Nc cells is separated into Ns = 2Nc regions.

In each region, only a small amount of user data are avail-

able with Is users in the sth region, s ∈ {1, . . . , Ns}. The

KPIs of those users in sample networks and normal networks

are separately described as xs
m and xs

m n. The indicator of

the severity level prediction algorithm based on distance is

defined as follows:

dism = max
s

m n=M n
∑

m n=1

d(xs
m,xs

m n). (1)

N11, N12, and N13 are the sets of samples with serious,
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medium, and slight labels. th1 = 1

2
(minm∈N11

dism +

maxm∈N12
dism) aims to distinguish serious and medium

severity levels while th2 = 1

2
(minm∈N12

dism +

maxm∈N13
dism) differentiates between medium and slight

severity levels. For the sample KPIs, calculate the indicator

disn using (1). If disn > th1, identify it as a serious fault.

If th2 6 disn<th1, classify it as a medium fault. Otherwise,

it is a slight fault.

Feature extraction. Feature extraction transfers the orig-

inal features to a new feature space through mapping, with

the purpose of filtering out useful information and reducing

redundancy. There is no doubt that the greater the indicator

in the severity level prediction in (1), the less the similarity

between the sample KPIs and the normal-condition KPIs.

This results in more representative fault characteristics and

a greater impact on the root cause diagnosis results. In the

proposed feature extraction algorithm, three sections corre-

sponding to the three greatest similarity indicators are con-

sidered. The section corresponding to the maximum value

of similarity indicators is defined as s 1, while the sections

corresponding to the second and third maximum values are

defined as s 2 and s 3. Randomly select N1, N2, and N3

users in s 1, s 2, and s 3, respectively, where N1 > N2 > N3.

For xm, the KPIs of those selected users make up the ex-

tracted feature vector defined as xm 1. The training set is

XMD = {(x1 1, y1), . . . , (xM 1, yM )}, where ym ∈ {1, 2, 3}.

If xm is the KPIs vector of an EU fault, ym = 1. If xm

is the KPIs vector of an ED fault, ym = 2. Otherwise,

ym = 3. Moreover, principal component analysis (PCA) is

applied as another feature extraction method, mapping the

mth feature vector xm to xm 2. Thus, the training set is

built as XPCA = {(x1 2, y1), . . . , (xM 2, yM )}.

Cost-sensitive SVM-based root cause diagnosis. After

feature extraction, XMD and XPCA are obtained as inputs

to train classifiers independently. Owing to the similarity

in the training phase, XMD is utilized as an example to il-

lustrate the details and we only need to replace XMD with

XPCA to realize the training phase of classifiers based on

XPCA. Cost learning is used in the prediction phase of

SVM. Define the cost matrix Cost = [Cost(k, j)] as shown

in Table 1, where Cost(k, j) indicates the cost of class k

being classified as class j, where i, j ∈ {1, . . . , 9}. i, j = 1

indicates serious EU class, i, j = 2 medium EU class, i, j = 3

slight EU class, i, j = 4 serious ED class, i, j = 5 medium

ED class, i, j = 6 slight ED class, i, j = 7 serious ERP

class, i, j = 8 medium ERP class, and i, j = 9 slight ERP

class. The EU class with serious severity is defined as EU1,

the EU class with medium severity is defined as EU2, the

ED class with medium severity is defined as EU3, and the

same representations are defined for ED and ERP classes.

c1 denotes the misclassification costs for faults with a serious

severity level while the misclassification costs for faults with

a medium severity level and slight severity level are defined

as c2 and c3, where c1 > c2 > c3.

Ensemble learning. During the creation of XMD , there is

strong randomness in the selection of users and XMD treats

the challenge caused by the imbalanced user data distribu-

tion. Thus, the output of the trained cost-sensitive SVM

performs well with imbalanced data but can sometimes be

unstable. XPCA is a deterministic training set that does not

involve special treatment for imbalanced user data distribu-

tion. As a result, the diagnosis results of the cost-sensitive

SVM trained with XPCA are stable but ordinary. Moreover,

the inspiration for generating XMD is to handle the chal-

lenge of imbalanced user data distribution, which is reflected

in favorable simulation results. In this regard, ensemble

Table 1 Cost matrix

EU1 EU2 EU3 ED1 ED2 ED3 ERP1 ERP2 ERP3

EU1 0 0 0 c1 c1 c1 c1 c1 c1

EU2 0 0 0 c2 c2 c2 c2 c2 c2

EU3 0 0 0 c3 c3 c3 c3 c3 c3

ED1 c1 c1 c1 0 0 0 c1 c1 c1

ED2 c2 c2 c2 0 0 0 c2 c2 c2

ED3 c3 c3 c3 0 0 0 c3 c3 c3

ERP1 c1 c1 c1 c1 c1 c1 0 0 0

ERP2 c2 c2 c2 c2 c2 c2 0 0 0

ERP3 c3 c3 c3 c3 c3 c3 0 0 0

learning plays a major role in upgrading performance. The

classifier based on ensemble learning will identify sample

network KPIs xn as yp n if and only if

yp n = argmin
k

9
∑

j=1

[P (predicted class=j|xn 1) ·Cost(k, j)

+ a · P (predicted class=j|xn 2) ·Cost(k, j)],
(2)

where P (predicted class=j|xn 1), P (predicted class=j|xn 2)

denote the probability that the classification output is j for

xn 1, xn 2; xn 1, xn 2 are the outputs of xn via two feature

extraction methods; and a is a weighting parameter.

Experiments and results. The proposed algorithm out-

performs the other five algorithms. The detailed results are

presented in Appendix A.

Conclusion. A novel feature extraction method that can

tolerate imbalanced user data is proposed. A cost-sensitive

SVM assigns different misclassification costs to faults with

different severity levels to optimize the cause diagnosis pro-

cess. The simulation results demonstrate the effectiveness

and superiority of the proposed algorithm.
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