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Artificial intelligence (AI) has undergone substantial ad-

vancements in recent years, prompting an era of innova-

tion in various domains. Among the groundbreaking con-

tributions, neural networks stand at the forefront, power-

ing applications ranging from computer vision and natu-

ral language processing to intelligent control systems [1, 2].

Within the realm of neural networks, a growing subset has

drawn considerable attention, namely, spiking neural net-

works (SNNs). Unlike other types of neural networks that

process information continuously, SNNs incorporate the con-

cept of time directly into their functioning, using discrete

events called spikes to communicate and process informa-

tion [3]. These spikes are binary events that occur at spe-

cific points, analogous to the electrical impulses used by

neurons in the brain. SNNs are designed to simulate the

dynamic processes of learning and information processing

as observed in biological systems, making them particularly

suitable for tasks that involve temporal patterns and sensory

data derived from the real world. As computing power has

increased, so has interest in SNNs, owing to their potential

for greater computational efficiency and their capacity to

model complex, time-dependent problems. These computa-

tionally potent models are known to closely mimic the func-

tioning of the human brain; elements such as the neuron’s

membrane potential, resistance, and reset potential, and fac-

tors such as neuron communication through spikes, are all

simulated within SNNs (see Figures 1(a) and (b)), attracting

the curiosity of researchers and engineers alike [4]. Intelli-

gent control systems have begun employing this technology

for its potential to provide real-time decisions, reduced en-

ergy consumption, and enhanced adaptability compared to

conventional artificial neural networks (ANNs) [5].

Advantages of SNNs compared to conventional artifi-

cial neural networks. (1) Biologically-inspired architecture:

SNNs closely emulate the operation of biological neurons

through their use of spikes as a means of communication

and signal processing, whereas traditional neural network

models rely on continuous value-based activations [6]. This

remarkable similarity allows for the seamless translation of

neuroscience insights to the computational domain, fostering

rapid advancements in replicating complex cognitive tasks.

(2) Energy efficiency: SNNs reduce energy consumption sig-

nificantly through their event-driven and spike-based infor-

mation processing, making them particularly well-suited for

those applications requiring low-power consumption [7]. (3)

Temporal dynamics: SNNs natural propensity for handling

spatiotemporal data allows them to process time-based sig-

nals efficiently [8]. This inherent support for temporal in-

formation processing gives SNNs the edge over conventional

networks and deep learning methods in dynamic applica-

tions, such as that in unmanned aerial vehicle control [9].

(4) Robustness and fault tolerance: The distributed and

localized nature of information processing in SNNs makes

them more resistant to failure and noise than traditional

neural network models [10].

Role of SNNs in intelligent control systems. SNN incor-

poration into control systems has led to significant advance-

ments in areas such as real-time control, natural sensor data

processing, fault tolerance, and learning from the environ-

ment. The application process can be seen in Figure 1(c).

Each of these areas confirms the superiority of SNNs over

traditional methods, which we will explore indepth.

(1) Real-time control: The biological plausibility of SNNs

can be traced back to their time-critical, event-triggered

communication style, mirroring that of neurons in the brain.

Events are processed as individual spikes, enabling swift

responses. Real-time applications, such as controlling au-

tonomous vehicles and industrial automation systems, ben-

efit greatly from these quick response times [11]. An explo-

ration into the usage of SNNs in real-time control systems,

for example, confirmed the suitability of SNNs for providing

decisions in real-time [12].

(2) Natural sensor data processing: Unlike other types of

neural networks, SNNs can naturally process sensor data as

“spikes”. These spikes can encode different sensor modal-

ities such as visual, infrared, ultrasonic, tactile, and even

auditory data. Neuromorphic sensors, when coupled with

SNNs, can boost power efficiency and processing speed [13].

(3) Fault tolerance: SNNs have high fault tolerance due

to their fundamentally distributed computative approach. If

part of the system suffers damage, this does not affect the

functioning of the entire system. This feature is of immense

value in industries where system failure can have disastrous

consequences, such as nuclear control systems [14].

(4) Learning from the environment: One of the crucial

aspects highlighting the importance of SNNs in control sys-

*Corresponding author (email: ydsong@cqu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-4000-x&domain=pdf&date_stamp=2024-6-24
https://doi.org/10.1007/s11432-023-4000-x
info.scichina.com
link.springer.com


Zhang A G, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 176201:2

∑

0 111

0 111

Synapse

Soma

Spikes

SNN creation

• Design the SNN structure

• Determine the spiking neuron model

SNN initialization

• Design the SNN training algorithm

• Initialize the synaptic parameters (e.g., weights)

SNN training

• Iterate SNN model through the training epochs

• Monitor the training/validation performance

SNN deployment

• Deploy the trained SNNmodel on hardware/chip

• Optimize the performance in pre-defined and

unknown scenarios

Controller

Actuator

Observer

Encoding

Decoding

Intelligent 

control system

SNN

Input
layer

Output
layer

(a)

(b) (c)

Dendrite
Nucleus

Soma
Axon

Axon 

terminal

Node of 

Ranvier

V

V
th

w
1

w
2

w 3

Den
drit

e

Figure 1 (Color online) Spiking neurons are modeled mathematically, drawing inspiration from the structure and operating

principles of biological neurons, and are consequently constructed into SNNs for use in intelligent control systems. (a) Structural

composition and connections of biological neurons; (b) spiking neuron model; (c) the application process of SNN in intelligent

control systems.

tems is their ability to adapt by learning from the envi-

ronment. Synaptic plasticity mechanisms, such as spike-

timing-dependent plasticity (STDP) [15], intrinsic plastic-

ity [16], and threshold plasticity [17], that alter the con-

nection strength between neurons based on the timing of

spikes or alter the neuronal intrinsic state have showcased

the adaptation capabilities of SNNs.

Applications. As studies continue, more extensive appli-

cations of SNNs in control systems are bound to emerge,

bringing us closer to creating real-time and self-adaptive in-

telligent control systems. Here, we list some typical appli-

cations to show SNNs’ potential in this field.

(1) Robotics: In robotics, SNNs can mimic neurobiolog-

ical processes to improve the interaction between robotic

systems and their environments. For example, robotic arms

in manufacturing can use SNNs to process sensory informa-

tion (such as touch, pressure, and vision) to perform tasks

with greater precision and adaptability. In humanoid robots,

SNNs could be used to manage bipedal locomotion, allow-

ing smoother and more natural movements by mimicking

the way animals control their muscles.

(2) Autonomous vehicles: Autonomous vehicles rely

heavily on sensor fusion and decision-making algorithms.

SNNs can provide a framework where information from LI-

DAR, radar, cameras, and ultrasonic sensors is processed in

an energy-efficient manner, thereby enabling the vehicle to

react to driving conditions in real time. The event-driven

nature of SNNs would be particularly valuable in emergency

scenarios requiring quick reflexes and decisions, such as in

avoiding sudden obstacles.

(3) Prosthetics control: Advanced prosthetic limbs aim

to restore the functionality of the missing limb. SNNs could

improve the interface between amputees’ neural signals and

their prosthetic devices, enhancing real-time interpretation

of neural activity for seamless prosthetic control. The tem-

poral resolution of SNNs makes them ideal for decoding the

spike trains that represent neural commands from the user

to the prosthesis.

(4) Drones and aerial vehicles: SNNs have the potential

to process data from inertial measurement units, GPS, and

onboard cameras to control the flight of drones precisely.

Their efficiency in processing temporal data could help in

managing the real-time dynamics of flight patterns, enabling

drones to navigate complex environments autonomously and

react promptly to changes.

(5) Biomedical engineering: SNNs hold promise for en-

hancing brain-machine interfaces. This could empower indi-

viduals with motor impairments to control external devices

directly with their neural activity. Precise decoding of spik-

ing activity from the brain could allow for the smooth op-

eration of wheelchairs, computers, and other assistive tech-

nologies.

Benefits of SNNs in control systems. Intelligent control

systems stand to reap numerous benefits from incorporating

SNNs, including the following.

(1) Real-time decision-making: SNNs’ low-latency and

rapid information processing capabilities can help generate

real-time control decisions in dynamic environments, found

to be essential in applications such as autonomous vehicles

and robotics [18].

(2) Adaptability and learning: SNNs can learn from and

adapt to evolving scenarios, enabling the salient control sys-

tems to be resilient and self-tuning [8]. This adaptabil-

ity also aids in addressing unforeseen circumstances and

changes in the control environment.

(3) Efficient use of resources: The energy-efficient nature

of SNNs reduces power consumption, making them viable for

power-critical control systems like remote monitoring sta-

tions or energy-harvesting driven systems [7].

(4) Enhanced handling of sensory data: Due to their

advantageous temporal dynamics, SNNs can process multi-

modal sensory data effectively in real-time, providing im-

proved decision-making capabilities in control systems with

sensor fusion requirements [8].

SNNs offer several compelling advantages over conven-

tional neural networks and other deep learning methods,

particularly in the context of intelligent control systems.

These advanced computational models have the potential

to revolutionize the way we approach the design and imple-

mentation of intelligent control systems, shaping the future

of AI-driven applications.

Challenges and perspective. For each of the control ap-
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plications, the specific architecture and learning rules of the

SNN are tailored to the temporal and spatial aspects of the

control task at hand. While SNNs offer compelling advan-

tages, such as high temporal resolution and potential energy

efficiency, there are significant challenges to be overcome,

particularly in terms of training complexity and hardware

compatibility. The integration and optimization of SNNs

into intelligent control systems present an interesting blend

of challenges and future opportunities.

(1) Training and adaptation: SNNs face a steep curve in

training complexity due to their temporal spike-based na-

ture. However, there is an opportunity for the development

of novel learning algorithms and training methods tailored

specifically to their unique dynamics. Progress in this area

could enable SNNs to learn and adapt with higher efficiency

compared to conventional neural networks, particularly in

time-sensitive control tasks.

(2) Standardization and benchmarks: The current land-

scape lacks standard models and practices for SNNs, which

presents a challenge for establishing reproducibility and

comparison. Nevertheless, this also presents an opportu-

nity for the research community to set benchmarks and best

practices, which could ultimately facilitate wider adoption

and better performance evaluation in control systems.

(3) Computational demands and hardware synergy: Sim-

ulating SNNs is computation-intensive due to the need to

track discrete events over time. Pioneering work in neuro-

morphic engineering, which aims to develop hardware that

imitates neural architectures, holds great promise to miti-

gate this challenge by providing a more natural and efficient

substrate for running SNNs.

(4) Real-time processing: The necessity for real-time

decision-making in control systems calls for fast, reliable

SNN operation. This represents an opportunity to explore

the design of spiking neural architectures that can excel

in real-time environments, exploiting the intrinsic temporal

processing capabilities of SNNs.

(5) Energy-efficient control: One of the most notable as-

pects of SNNs is their potential for low-power operation.

This aligns perfectly with the growing demand for energy

efficiency in control systems, especially when it comes to

autonomous systems that must routinely operate on limited

power budgets.

(6) Interfacing and integration: The assimilation of SNNs

into existing control frameworks is not straightforward and

brings integration challenges. However, this integration is

also a stepping stone toward more sophisticated control sys-

tems that leverage the benefits of bio-inspired computation

for enhanced adaptability and resilience.

(7) Edge and distributed computing: Spiking neural net-

works are well-suited for edge computing given their effi-

ciency, which can greatly benefit those distributed control

systems that require decentralized decision-making. Ad-

vancements here could translate into more responsive and

adaptive control networks in sectors such as transportation,

energy management, and manufacturing.

Overall, SNNs in the context of control systems represent

a frontier where the attendant challenges pave the way for

technological innovations. Tackling issues related to learn-

ing complexity, standardization, and real-time operation re-

quires a concerted effort from multiple disciplines. However,

as neuromorphic technology evolves, it becomes the founda-

tion on which SNNs fulfill their potential, leading to intel-

ligent control systems that are not only power-efficient but

also immensely capable of dealing with the dynamism and

unpredictability of real-world environments.
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