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Abstract We consider Shor’s quantum factoring algorithm in the setting of noisy quantum gates. Under

a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor

integers of the form pq when the noise exceeds a vanishingly small level in terms of n—the number of bits

of the integer to be factored, where p and q are from a well-defined set of primes of positive density. We

further prove that with probability 1− o(1) over random prime pairs (p, q), Shor’s factoring algorithm does

not factor numbers of the form pq, with the same level of random noise present.

Keywords random noise, Shor’s algorithm, rotation gates, quantum computing, prime factorization

1 Introduction

One of the most stunning achievements of computer science in the last several decades is Shor’s quantum
algorithm to factor large integers [1,2]. The algorithm can provably factor an n-bit integer in polynomial
time with high probability, assuming certain quantum operations can be performed. These are called

quantum logic gates. In particular, they include the familiar Hadamard gate H = 1√
2
[1 1

1 −1
], the rotation

gates (Phase) S = [1 0

0 i
], (π/8 gate) T = [

1 0

0 e2πi/8], and more generally Rk = [
1 0

0 e2πi/2k ], and their controlled

versions. Note that S = R2 and T = R3.
It has often been pointed out that the availability of these quantum gates at high precision (with

arbitrarily small angles in Rk with k → ∞) is a challenge, both theoretically in terms of the limit
of physical theory and practically on engineering grounds [3–6]1)2). To a large extent, such concerns
motivated another great intellectual achievement that is the development of quantum error correcting
codes [7–11]. There is a substantial body of work on fault tolerant quantum computing, starting with
Shor’s work [12]. Strong threshold theorems are proven which show that in certain error models, if
the error rate is below a certain threshold, quantum computation can achieve, at least theoretically,
arbitrarily high accuracy [10, 13–18]. These are beautiful mathematical theorems. But fundamentally
they assume that the group U(2) (or SU(2) if we factor out an irrelevant phase factor) exactly corresponds
to operations on a qubit in reality, especially in its composition—that group composition, in its infinite
precision defined over C, exactly corresponds to sequential application of realizable physical quantum
operations. Opinions differ, as to whether such arbitrary precision is ever achievable. It is certainly a
possibility. However, this author is skeptical about this, based on the belief that quantum mechanics itself
(just as any other physical theory) is not, and is not meant to be, infinitely accurate when describing
reality (some speculative comments are in Section 5). Meanwhile, enormous efforts have been underway
in the past few decades, with much renewed momentum and enthusiasm more recently, and with the goal
of achieving ever more accurate hardware implementations of quantum circuitry.

In this paper, we consider Shor’s quantum factoring algorithm in the setting where each quantum
controlled rotation gate is subject to a small random noise in the angle. We assume each application of
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the controlled-Rk gate is given an independent random error of angle e2πiǫr/2k . Thus, when the control

bit is 1, the operator Rk is substituted by R̃k = [
1 0

0 e2πi(1+ǫr)/2k ], where r is an independent noise random

variable distributed r ∼ N(0, 1), and ǫ is a global magnitude parameter. So, the controlled-R̃k gate is



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ρkξk



,

where ρk = ρk,ǫ = e2πiǫr/2k and ξk = e2πi/2k . We show that there exist positive constants c, c′ > 0 such
that if ǫ > cn−1/3, then Shor’s algorithm does not factor n-bit integers of the form pq, where p and q are
from a well-defined set of primes of density > c′. This is the first provable statement of such failure of
Shor’s algorithm under any error model.

The noise model is similar to that of [19] (see also [20–22]). The specific random noise model including
the independent normal distribution picked in this paper is not essential, as the proof will clearly show,
but it is chosen to present the essential idea of the proof most transparently. For example, the noise r.v. r
being distributed ∼N(0, 1) (standard normal distribution) can be replaced by any reasonable alternative
distribution such as uniform U [−1, 1] or uniform bits from {−1, 0, 1}. While each individual controlled-Rk

gate is assumed to be accompanied by an independent r.v. r for noise, when an individual controlled-Rk

gate is applied, the same randomly perturbed controlled-Rk gate is applied to each term in a sum of
superpositions of quantum states. Regarding the random noise model, we do not make any claim that
this model accurately reflects “reality”; our purpose is only to show that some vanishing amount of
noise can already provably destroy the algorithm. Unruh [5] argued that quantum calculations require
coherence to be maintained during the course of the calculation (however no explicit theorem is stated).
Landauer [4] had emphasized the need to examine effect of imperfections of realistic quantum devices.

An important modification of Shor’s algorithm by Coppersmith [23] shows that if we just ignore (not
to perform) all (controlled-) Rk-gates for sufficiently large k > b, where b is some global parameter,
then Shor’s algorithm still retains its effectiveness (and uses a reduced number of quantum gates). The
specific suggested change [23] for 500-qubits, which would require rotations of magnitude 2π/2500 in
Shor’s original algorithm, is to ignore all rotations of angle smaller than 2π/220. It is estimated that this
would incur an error on the order of 1% in the probability of each desirable final state. Asymptotically,
Coppersmith improved the precision requirement of exponentially small angles to just slightly less than
π/n. This is of enormous practical implications. This version of Shor’s algorithm is called the “banded”
version with parameter b, which is set to be slightly greater than logn, rather than n in the original
version. Nonetheless, rotation gates (as primitive steps of the algorithm) of asymptotically infinitely
small angles would still be required as n, the number of bits to be factored, tends to infinity.

Our result is consistent with Coppersmith’s improvement. Indeed we will present our proof in the
“banded” version, with perfect controlled-Rk-gates for all k < b, but every controlled-Rk-gate is replaced
by a controlled-R̃k-gate for all k > b; i.e., it is independently perturbed by a random noise. Our negative
result will be stated in terms of b+ log2(1/ǫ). When b+ log2 (1/ǫ) <

1
3 log2 n− c for some constant c > 0,

the noise takes hold so as to destroy the desired peak in the probability of observing a useful state that
leads to factorization. This condition is essentially equivalent to having both b being less than a small
constant multiple of logn and ǫ greater than the reciprocal of a small positive power of n. Note that
the statement for the banded version is a stronger result, in the sense that the unbanded version where
controlled-R̃k-gate is used for all k is an easy consequence. We prove that, if b+ log2 (1/ǫ) <

1
3 log2 n− c,

Shor’s algorithm does not factor n-bit integers of the form pq, where p and q are from a well-defined
set of primes of positive density c′ > 03). The proof will in fact show that the same failure happens
under the same condition, even if the noise gates are applied only at the single level Rb, with all other
controlled-Rk-gates applied perfectly for k 6= b (or alternatively, no controlled-Rk-gates are applied at all
for k > b as in the banded version by Coppersmith).

3) We note that the results from [19–22] are generally stated in the opposite direction. Under plausible, but ultimately heuristic,

assumptions for the behavior of various sums, augmented by numerical simulations, they suggest that if b is not too large compared

to n, Shor’s algorithm can tolerate imprecisions of rotation angles. Some small concrete values of n are on the order of 10 qubits

(n = 10, 14). These values are quite outside the range where our proof applies. Their numerical simulation does seem to suggest

a logarithmic threshold of b. Thus, these positive results are not logically inconsistent with, and in fact, complement our proof.

Please note the notation b in [21] is our b − 2.
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Theorem 1. There exist constants c, c′ > 0, such that if each controlled-Rk-gate in the quantum Fourier
transform circuit is replaced by controlled-R̃k-gate for all k > b, where b+ log2 (1/ǫ) <

1
3 log2 n− c, then

with exponentially small exceptional probability, Shor’s algorithm does not factor n-bit integers of the
form pq, where p and q are from a well-defined set of primes of density > c′.

Here “exceptional probability” is over the random choices of Shor’s algorithm as well as probabilistic
outcomes of quantum measurements. More precisely, the expectation over random noise r’s, of the success
probability (over the random choices of the algorithm and quantum measurements) of the algorithm is
exponentially small in n. This will be the meaning of “does not factor” below.

Theorem 2. If b + log2 (1/ǫ) < 1
3 log2 n − c, then the statement in Theorem 1 still holds, if only

each controlled-Rb-gate is replaced by a controlled-R̃b-gate while all other controlled-Rk-gates remain
unchanged. Alternatively, the same statement holds if each controlled-Rk-gate is (1) applied perfectly

for k < b, (2) replaced by a controlled-R̃b-gate for k = b, and (3) deleted for k > b.
Our proof focuses on the essential “period-finding” part of Shor’s algorithm that uses the quantum

Fourier transform (QFT). In our proof, we use a theorem of Fouvry [24]. This theorem states that the set
of all primes p such that the largest prime factor in p− 1 is greater than p2/3 has positive density among
all primes. We use this theorem to produce candidate inputs of the form N = pq to Shor’s algorithm
where p and q are of this type, and argue that a random element x ∈ Z∗

N has (exponentially) large
order ω = ωN (x) as an element of the multiplicative group Z∗

N . This large order ω allows us to give a
lower bound for a lattice counting argument, which leads to a sufficiently large number of independent
perturbations in the complex arguments (in the exponent) in a crucial sum of exponentials, (which would
have been a perfect geometric sum without noise) in the analysis of Shor’s algorithm. This perturbation,
at the appropriate setting of parameters, destroys this geometric sum, and degrades the probability of
observing any useful quantum state to negligible, and thus fails to gain any useful information on the
period ω.

Our proof can be adapted to more general primes beyond those guaranteed by Fouvry’s theorem.

Theorem 3. There exists a constant c > 0, such that for random primes p and q chosen uniformly
from all primes of binary length m, if b+ log2 (1/ǫ) <

1
3 log2 m− c, as m → ∞ with probability 1− o(1),

Shor’s algorithm with noisy rotation gates does not factor N = pq. A version analogous to Theorem 2
also holds for random primes.

We make a few brief remarks. Arguably, factoring integers N = pq for random primes p and q is
more important in cryptography than for primes that satisfy the property in Fouvry’s theorem, and the
statement of failure probability being 1 − o(1) is stronger than that of positive density guaranteed by
Fouvry’s theorem. We first present the proof for the latter, and relegate the proof of Theorem 3 to
Section 4, to demonstrate the main idea of our proof in a simple setting of how random noise degrades
the performance of Shor’s algorithm. The additional work needed for Theorem 3 is mainly of a number
theoretic nature.

One can further prove other versions of Theorem 3. For example, we can restrict the random primes p
and q to be of length m and both ≡ 3 mod 4, so that the numbers N = pq are the so-called Blum integers,
which are favored in cryptography [25]. In this paper we do not present these generalizations. Despite
the strong failure demonstrated by the proof, our theorems do not rule out the possibility that at some
future time, some quantum algorithm may prove superior to the best “classical” factoring algorithms
for factoring integers of a certain size, in practice. But our proof indicates that there is a limit to this
possible superiority when n is large, if arbitrarily small random noise cannot be eliminated.

Section 2 gives some preliminaries. Section 3 presents the proof of Theorems 1 and 2. Section 4
presents the proof of Theorem 3. In Section 5 some speculative comments are presented. The Church-
Turing thesis identifies computability with Turing machine computability. The Strong Church-Turing
thesis identifies feasible computability with (probabilistic) polynomial-time computability, namely P or
BPP. Many people have made strong arguments [11] supporting the viewpoint that Shor’s algorithm
presents a convincing evidence that this Strong Church-Turing thesis should be modified so that P or
BPP is replaced by BQP. This author is personally not convinced of this, and makes some speculative
comments on that. These comments should not be conflated with the theorems proven in the paper.

2 Preliminaries

Fouvry’s theorem. Let N = pq, where p and q are distinct odd primes. By the Chinese remainder
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theorem, the multiplicative group Z∗
N = {m ∈ ZN | gcd(m,N) = 1} (invertible elements in ZN ) is

isomorphic to the direct product Z∗
p×Z∗

q . Moreover, Z∗
p is a cyclic group of order p−1, and is isomorphic

to a direct product of factors according to the prime factorization of p−1; and similarly for Z∗
q . If p−1 =

2epe11 · · · pekk , where p1 < · · · < pk are distinct odd primes, then Z∗
p is isomorphic to Z2e ×Zp

e1
1
×· · ·×Zp

ek
k
.

Let P+(m) denote the largest prime in the prime factorization of m.

Theorem 4 (Fouvry). There exist constants c > 0 and n0 > 0, such that for all x > n0,

|{p | p is a prime, p < x, and P+(p− 1) > p2/3}| > c
x

log x
.

We say a prime p satisfies the Fouvry property if P+(p−1) > p2/3. IfN = pq, where p and q are distinct
odd primes satisfying the Fouvry property, then clearly p′ = P+(p − 1) appears with exponent 1 in the
factorization of p−1, and so does P+(q−1) in the factorization of q−1. If p′ = P+(p−1) > P+(q−1), then
Zp′ appears as an isolated factor in the direct product form of Z∗

N . Thus, with probability > 1− 1/p′ >
1− 1

max{p2/3,q2/3} > 1−N−1/3, a random element x in Z∗
N has order at least p′ > max{p2/3, q2/3} > N1/3.

If it so happens that p′ = P+(p − 1) = P+(q − 1), then Zp′ × Zp′ appears as a factor in the direct
product form of Z∗

N . In this case, a random element x in Z∗
N also has order at least p′ > N1/3 with

probability > 1 − 1/(p′)2 > 1 − N−2/3. Thus, in either case, in terms of the number of bits, such
products N = pq have the property that a random element x in Z∗

N has an exponentially large period,
ω = ωN(x) > max{P+(p − 1), P+(q − 1)} > N1/3, with exponentially small exceptional probability.
Below we assume ω has this property.

Let ord2(x) denote the highest power of 2 that divides x. If e = ord2(p − 1) and e′ = ord2(q − 1),
then we have 2e < (P+(p − 1))1/2 and 2e

′

< (P+(q − 1))1/2, and thus ω = ωN(x) satisfies ord2(ω) 6

max{e, e′} < log2 ω
2 , for any x ∈ Z∗

N . We conclude the following.

Lemma 1. Let p and q be distinct odd primes satisfying the Fouvry property, and let N = pq, then
over a random x ∈ Z∗

N ,

Pr.

(
ωN (x) > N1/3 and ord2(ωN (x)) <

log2 ωN(x)

2

)
> 1− 1

N1/3
.

Sum of random unit vectors. Let ξm = e2πi/m be a primitive root of unity of order m. Let
Xi ∼ N(0, 1), i = 1, 2, . . . , n, be a finite sequence of independent and identically distributed (i.i.d.)
normal random variables. Let {Sk ⊆ [n] | 1 6 k 6 K} be a finite collection of sets such that each
pairwise symmetric difference Sj∆Sk has cardinality > m2t, for all j 6= k. Let Σk =

∑
i∈Sk

Xi be the
sum of Xi for i ∈ Sk. We will give a simple estimate for the expectation of

|ξΣ1
m + ξΣ2

m + · · ·+ ξΣK
m |2. (1)

Expanding the square norm expression we get

K +
∑

16j<k6K

(ξΣj−Σk
m + ξΣk−Σj

m ) = K + 2
∑

16j<k6K

cos

(
(Σj − Σk)

2π

m

)
.

Let Tjk = (Σj − Σk)
2π
m . Note that Σj − Σk =

∑
i∈Sj∆Sk

(±Xi) is a sum of at least m2t distinct (thus

independent) r.v. ±Xi distributed i.i.d. ∼N(0, 1). Therefore, each Tjk is a random variable normally

distributed ∼ N(0, σ2
jk), with standard deviation σjk =

√
|Sj∆Sk| · 2π

m > 2π
√
t.

Moments of even orders of a normal random variable Y ∼ N(0, σ2) are known as follows [26]:

E[Y 2k] = σ2k(2k − 1)!!,

where E denotes expectation, from which we get (by the dominated convergence theorem, the exchange
of orders of summation and integration is justified)

E[cos(Tjk)] = 1−
σ2
jk

2!
(2− 1)!! +

σ4
jk

4!
(4 − 1)!!−

σ6
jk

6!
(6− 1)!! + · · ·

= e−σ2
jk/2
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6 e−2π2t.

Hence, the expectation of (1) is at most K + 2
(
K
2

)
e−2π2t.

We will need a slight generalization of this. Let σ > 0, and let ϕk ∈ [0, 2π) be any angle, 1 6 k 6 K.
We replace each Σk by ϕk + σ

∑
i∈Sk

Xi. Then, we have the following.

Lemma 2. Let σ > 0 and ξm = e2πi/m. Let Xi ∼ N(0, 1), i.i.d. for i = 1, 2, . . . , n, and let {Sk ⊆ [n] |
1 6 k 6 K} be a finite collection of sets. Assume all except at most δ fraction of pairwise symmetric
differences Sj∆Sk have cardinality > (m/σ)2t for j 6= k. Let Σk = ϕk + σ

∑
i∈Sk

Xi, where ϕk ∈ [0, 2π).
Then,

E[|ξΣ1
m + ξΣ2

m + · · ·+ ξΣK
m |2] 6 K + 2δ

(
K

2

)
+ 2(1− δ)

(
K

2

)
e−2π2t.

Proof. Let Tjk = 2πσ
m (
∑

i∈Sj
Xi −

∑
i∈Sk

Xi). We only need to note in addition to the above that

cos (ϕ+ Tjk) = cosϕ cosTjk − sinϕ sinTjk,

and we have cosϕ 6 1 for any ϕ, and E[sin Tjk] = 0 since sin is an odd function and Tjk is symmetrically
distributed. The lemma follows.

3 Corrupted geometric sums

Suppose N is an integer we wish to factor, and 2n ≈ N2 as in [2]4). For definiteness assume 2n−1 <
N2 6 2n. Assume ω is the period of the function f(k) = xk mod N for a randomly chosen x ∈ Z∗

N , and

by Lemma 1 we assume ω > N1/3 and ord2(ω) <
log2 ω

2 . Also ω < N clearly.
Let us write out a few terms as the controlled-Rk gates are applied successively in the QFT circuit (see

p.219 of [11]), but now with random noise added whenever the controlled rotation gate is Rk-gates with

k > b, i.e., we apply controlled-Rk-gates when k < b but controlled-R̃k-gates for all k > b. As the first
controlled-Rk-gate has k = 2, we may assume b > 1. Suppose we start with the state |u〉 = |un−1 · · ·u1u0〉.
After the first gate H on the qubit |un−1〉, we have the state

1

21/2
(
|0〉+ e2πi 0.un−1 |1〉

)
|un−2 · · ·u0〉.

The next is the controlled-R2-gate on target qubit |un−2〉 controlled by the leftmost qubit (which was
initially |un−1〉). If b > 2 then the unperturbed controlled-R2-gate is applied, after which we have

1

21/2
(
|0〉+ e2πi 0.un−1un−2 |1〉

)
|un−2 · · ·u0〉.

If b = 2 the above statement is vacuous, and the perturbed controlled-R̃2-gate is applied instead. The
random noise starts at the controlled-Rb-gate, after which we get

1

21/2

(
|0〉+ e

2πi
[

0.un−1···un−b+
ǫ

2b
un−br

(0)
0

]

|1〉
)
|un−2 · · ·u0〉,

where r
(0)
0 ∼ N(0, 1).

After all the rotation gates controlled by the leftmost qubit (initially |un−1〉) we have

1

21/2

(
|0〉+ e2πi [0.un−1···u0+

ǫ

2b
(un−br

(0)
0 +

un−b−1r
(0)
1

2 +···+
u0r

(0)
n−b

2n−b )]|1〉
)
|un−2 · · ·u0〉, (2)

where r
(0)
0 , . . . , r

(0)
n−b are i.i.d. ∼ N(0, 1).

Then, similarly, after all the rotation gates controlled by the two leftmost qubits (initially |un−1un−2〉),
we have

1

22/2

(
|0〉+ e2πi [0.un−1···u0+

ǫ

2b
(un−br

(0)
0 +···+

u0r
(0)
n−b

2n−b )]|1〉
)

4) Thus N has ≈ n/2 bits, a slight change in notation from Section 1.
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⊗
(
|0〉+ e2πi [0.un−2···u0+

ǫ

2b
(un−b−1r

(1)
0 +···+

u0r
(1)
n−b−1

2n−b−1 )]|1〉
)
|un−3 · · ·u0〉, (3)

where r
(0)
0 , . . . , r

(0)
n−b, r

(1)
0 , . . . , r

(1)
n−b−1 are i.i.d. ∼ N(0, 1).

The circuit continues to apply controlled rotation gates with random noise starting at the controlled-
Rb-gate, producing a final expression with n tensor factors. When written out the tensor product, this is
a sum indexed by |vn−1 · · · v0〉, such that v0 = 0 or 1 corresponds to selecting respectively the term |0〉 or
e2πi [··· ]|1〉 in (2) (or equivalently, to selecting one of the two terms in the first tensor factor in (3)), and
v1 = 0 or 1 corresponds to selecting respectively the term |0〉 or e2πi [··· ]|1〉 in the second tensor factor in
(3), and similarly for vs = 0 or 1, for all 0 6 s 6 n− 1.

The crucial step in Shor’s algorithm, after the quantum Fourier transform, is to take a quantum
measurement, with the property that the probability of observing a state that is close to an integral
multiple of 2n

ω is high. Such a state has an n-bit integer expression v ∈ {0, 1}n that has value close to the

rational number 2n

ω j, for some 0 6 j 6 ω. States |v〉 such that the number v is not close to an integral

multiple of 2n

ω have a negligible probability of being observed, while states in a small vicinity of each of

the integral multiples of 2n

ω get observed with probability on the order of 1/ω (per each multiple), and
these add up to give a good probability that some such state is observed, whereby the period is deduced
with good probability. (This paper omits steps of the continued fraction algorithm in the post quantum
processing steps.)

For each v, the probability of |v〉 being observed has an expression as a square norm of a sum over a
set of the form u ∈ {u∗ + kω : k > 0, and u∗ + kω < 2n} (for some initial 0 6 u∗ < ω), with cardinality

K, which is approximately 2n/ω. For u(k) = u∗ + kω, we write the n-bit integers u(k) =
∑n−1

s=0 u
(k)
s 2s

and v =
∑n−1

s=0 vs2
s. When there is no noise in the controlled-Rk-gates used in the QFT, this probability

expression for observing |v〉 = |vn−1 . . . v1v0〉 can be written as

1

2nK

∣∣∣∣∣

K−1∑

k=0

exp

{
2πi

n∑

t=1

∑n−t
s=0 u

(k)
n−t−svs

2t

}∣∣∣∣∣

2

.

With independent random noise present starting with controlled-Rb-gates, this becomes

1

2nK

∣∣∣∣∣

K−1∑

k=0

exp

{
2πi

[
n∑

t=1

∑n−t
s=0 u

(k)
n−t−svs

2t
+

ǫ

2b

{(
u
(k)
n−br

(0)
0 + · · ·+

u
(k)
0 r

(0)
n−b

2n−b

)
v0

+

(
u
(k)
n−b−1r

(1)
0 + · · ·+

u
(k)
0 r

(1)
n−b−1

2n−b−1

)
v1 + · · ·+ u

(k)
0 r

(n−b)
0 vn−b

}]}∣∣∣∣∣

2

, (4)

where
r
(0)
0 , . . . , r

(0)
n−b, r

(1)
0 , . . . , r

(1)
n−b−1, . . . , r

(n−b−1)
0 , r

(n−b−1)
1 , r

(n−b)
0

are random variables i.i.d. ∼ N(0, 1).
Our first goal is to show that among states |v〉 such that the binary number v is close to an integral

multiple 2n

ω j (for some 0 6 j 6 ω), it is the case that for most j, a linear number of bits in the binary
expansion of v are one: vs = 1. This will leave us with a linear number of terms of the form in the
exponent

2πiǫ

2b

(
u
(k)
n−b−sr

(s)
0 +

u
(k)
n−b−s−1r

(s)
1

2
+ · · ·+

u
(k)
0 r

(s)
n−b−s

2n−b−s

)
vs.

Eventually we will show that, fixing any such v, among those s where vs = 1, for most k, there are a

linear number of terms with u
(k)
n−b−s = 1, which will give us the perturbation as a sum of 2πiǫ

2b · r(s)0 .

Let us consider integers v = ⌊ 2n

ω j⌋, for 0 6 j < ω; it will be clear from the proof below that what is
proven is also true for any v in the vicinity of a polynomial range of such a number.

For 0 6 j < ω, the integer v = ⌊ 2n

ω j⌋ has the i-th leading bit vn−i = 1 iff the i-th most significant bit,

among the first n bits, in the binary expansion of j
ω is 1. This is true iff for some 1 6 k 6 2i−1,

2k − 1

2i
6

j

ω
<

2k

2i
,
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which is equivalent to

(2k − 1)
ω

2i
6 j < 2k

ω

2i
. (5)

So, j needs to be placed in the alternate (“odd” indexed) segments of length ω
2i . This is a lattice counting

problem.
Recall that ω > N1/3 ≈ 2n/6. We take i0 = ⌊ 3

4 log2 ω⌋ > ⌊ 1
4 log2 N⌋ = Ω(n). Then ω

2i0
> ω1/4 >

N1/12 = 2Ω(n). We will only count those i-th (significant) bits vn−i that are one, within 1 6 i 6 i0, and
first show that for most j, even just among the first i0 bits vn−1, . . . , vn−i0 , there are a linear number of
ones. (Any additional bits that are 1 can only add more noise to the perturbation. But our proof does
not depend on this fact.)

Now we divide the range [0, ω) of real numbers into 2i0 segments of equal length ω
2i0

Iα =
{
x ∈ R | ω

2i0
(α)2 6 x <

ω

2i0
((α)2 + 1)

}
,

where α ∈ {0, 1}i0 is a binary string, and (α)2 is the binary number it represents5).
Note that any real interval of the form [A,A+B) has either ⌊B⌋ or ⌊B⌋+1 many integers. Thus, each

Iα contains either ⌊ ω
2i0

⌋ or ⌊ ω
2i0

⌋+ 1 many integers, which is ω
2i0

+ η for some −1 6 η 6 1. We consider
two distributions on the integers 0 6 j < ω. Let Pr. denote the uniform distribution and let Prα denote
the distribution induced by first picking α ∈ {0, 1}i0 uniformly, and then picking j ∈ Iα uniformly. They
are exponentially close: for any 0 6 j < ω, Pr.(j) = 1/ω, and

Prα(j) =
1

2i0
1

ω
2i0

+ η
=

1

ω + η2i0
=

1

ω
· 1

1 + η 2i0
ω

=
(
1± 2−Ω(n)

)
· Pr.(j). (6)

Let α = α1α2 · · ·αi0 . Consider any j ∈ Iα. If αi0 = 1 (i.e., (α)2 is odd), then j satisfies (5) for i = i0.
Now suppose αi0−1 = 1, then

ω

2i0
(α1 · · ·αi0−1αi0)2 >

ω

2i0
(α1 · · ·αi0−10)2 =

ω

2i0−1
(α1 · · ·αi0−1)2

and
ω

2i0
((α1 · · ·αi0−1αi0)2 + 1) 6

ω

2i0−1

(α1 · · ·αi0−10)2 + 2

2
=

ω

2i0−1
((α1 · · ·αi0−1)2 + 1).

And so clearly j satisfies (5) for i = i0 − 1.
Similarly, we can see that every j ∈ Iα satisfies (5) for every i ∈ {1, . . . , i0} such that the corresponding

bit in α is 1. For any constant 0 < δ < 1/2, the proportion of 0-1 sequences of length i0 that have δi0
ones is asymptotically 2−(1−H(δ))i0 , where H(·) is the entropy function. For any fixed constant c > 0,
consider any J = {i : i′0 6 i 6 i0} with length i0 − i′0 + 1 > cn indexing bit positions αi′0

, . . . , αi0 . Then,

for a random α ∈ {0, 1}i0, with exponentially small exceptional probability 2−Ω(n), there are Ω(n) bits
αi = 1 in those bit positions i ∈ J . Then any j ∈ Iα gives the corresponding bit vn−i = 1. By (6)
this is true under the uniform distribution Pr. for j as well. It follows that with exponentially small
exceptional probability 2−Ω(n), a uniformly chosen j defines a number v = ⌊ 2n

ω j⌋ with a linear number
of bits satisfying vn−i = 1, for i ∈ J .

Lemma 3. For any fixed constant c > 0 and any J = {i : i′0 6 i 6 i0} with length i0 − i′0 + 1 > cn,
there exist constants c′, c′′ > 0 such that, picking a random 0 6 j < ω uniformly, we have v = ⌊ 2n

ω j⌋,

Pr. (|{i ∈ J : vn−i = 1}| > c′n) > 1− 2−c′′n.

We will write it as
Pr. (|{i ∈ J : vn−i = 1}| > Ω(n)) = 1− 2−Ω(n),

where the hidden constants in Ω(n) are uniform for all j in the non-exceptional subset.
Now back to (4) for the probability of observing |v〉 when noise is present. Regardless what values

n∑

t=1

∑n−t
s=0 u

(k)
n−t−svs

2t
, and r

(0)
1 , . . . , r

(0)
n−b, r

(1)
1 , . . . , r

(1)
n−b−1, . . . , r

(n−b−1)
1

5) The reason we cut off at i0 is to avoid having to deal with intervals that are too small and such odd indexed segments may

just miss most integers. We can afford to cut off at i0, and still get a linear number Ω(n) of 1’s in the first i0 bits of the n bit

binary expansion. This is where we use the fact that ω is large.
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are, let us consider only those terms

2πǫ

2b

(
u
(k)
n−bv0r

(0)
0 + u

(k)
n−b−1v1r

(1)
0 + . . .+ u

(k)
0 vn−br

(n−b)
0

)
=

2πǫ

2b

n∑

i=b

u
(k)
i−bvn−ir

(n−i)
0 . (7)

We will further throw away some noise terms in (7). Let d = ord2(ω). Recall that d < log2 ω
2 and

i0 = ⌊ 3
4 log2 ω⌋. Thus, assume b is O(log n), i0 − b − d = Ω(n), and we will only consider the subsum in

(7) for i ∈ {d+ b, . . . , i0}, which has Ω(n) terms.
By Lemma 3, except for an exponentially small fraction 2−Ω(n) of j indexing v = ⌊ 2n

ω j⌋ (1 6 j < ω),
each j defines a linear sized Tj = {d + b 6 i 6 i0 : vn−i = 1} (of cardinality > Ω(n), where the hidden

constant in Ω(n) is uniform for the non-exceptional j’s) such that vn−i = 1 and so ui−bvn−ir
(n−i)
0 =

ui−br
(n−i)
0 , for i ∈ Tj . Thus we will further ignore a large portion of the above sum (7), and consider only

2πǫ

2b

∑

i∈Tj

u
(k)
i−br

(n−i)
0 . (8)

Intuitively, any term that was omitted but which in fact survives (i.e., with u
(k)
i−bvn−i = 1) can only

increase the noise. (Formally, when we eventually apply Lemma 2, these will all be part of the term ϕk.)
Our next goal is to show that, among i ∈ Tj , most pairs of u(k) = u∗ + kω and u(k′) = u∗ + k′ω, for

k 6= k′, have a linear number of different bit values u
(k)
i−b 6= u

(k′)
i−b , for i ∈ Tj .

To investigate the (least i0 − b+ 1 significant) bits u
(k)
0 , u

(k)
1 , . . . , u

(k)
i0−b of u(k) = u∗ + kω, we consider

u(k) mod 2i0−b+1. If ω is odd, then (kω mod 2i0−b+1) will enumerate all values in {0, 1, . . . , 2i0−b+1 − 1}
exactly once, when k = 0, 1, . . . , 2i0−b+1 − 1. Our range of k is actually from 0 to just below 2n−u∗

ω ≈
2n/ω ≫ 2i0 . Thus, for any u∗, (u∗ + kω mod 2i0−b+1) enumerates every value in {0, 1, . . . , 2i0−b+1 − 1}
almost uniformly.

In general, let d = ord2(ω). Recall from the beginning of Section 3 we may assume 0 6 d < log2 ω
2

(which is true with high probability by Lemma 1). Thus i0 − b − d = Ω(n) for b = O(log n). The least
significant d bits of kω are all 0. Therefore, for any u∗, the least significant d bits of u(k) = u∗ + kω are
the same as those of u∗, for all k. Taking away all powers of 2 in ω, we have an odd ω′ = ω/2d, and
thus invertible in the multiplicative group Z∗

2i0−b+1−d . The most significant i0 − b+ 1− d = Ω(n) bits in

(u(k) mod 2i0−b+1) are the same as the bits of (⌊u∗

2d ⌋+ kω′) mod 2i0−b+1−d. And so these i0 − b + 1 − d

bits run through every bit sequence of length i0 − b + 1 − d exactly once if k runs through 2i0−b+1−d

consecutive integers. These are the most significant i0 − b + 1 − d of the i0 − b + 1 least significant bits
of u(k).

Consider u(k) = u∗ + kω and u(k′) = u∗ + k′ω = u(k) + (k′ − k)ω. For any k, let k′ run through
{0, . . . , ⌊ 2n−u∗

ω ⌋}, then k′ − k runs through {−k, . . . , ⌊ 2n−u∗

ω ⌋ − k}, a set of consecutive integers of size

> ⌊ 2n

ω ⌋ > 2i0−b+1−d( 2n

2i0ω
). As 2i0ω 6 27n/8 we have 2n

2i0ω
> 2n/8. Hence, (k′ − k)ω′ mod 2i0−b+1−d picks

every value in {0, . . . , 2i0−b+1−d − 1} with probability 1
2i0−b+1−d · (1 ± 2−Ω(n)) over k′ taking a uniform

value in {0, . . . , ⌊ 2n−u∗

ω ⌋}. Thus, the most significant i0−b+1−d = Ω(n) of the i0−b+1 least significant

bits of u(k′) − u(k) = (k′ − k)ω are almost uniform, as k′ runs through {0, . . . , ⌊ 2n−u∗

ω ⌋}. Then using the

same argument with the entropy function H(·), for all except a fraction of 2−Ω(n) of the pairs (k, k′), we

have u
(k)
i−b 6= u

(k′)
i−b , for all i belonging to a subset of Tj of cardinality > c0n, where the constant c0 > 0 is

uniform for (k, k′).

Lemma 4. Assume |Tj | = Ω(n), where the hidden constant in Ω(n) does not depend on j. There exists
c0 > 0, such that for random pairs (k, k′),

Pr.
(∣∣∣{i ∈ Tj : u

(k)
i−b 6= u

(k′)
i−b}

∣∣∣ > c0n
)
= 1− 2−Ω(n),

where the hidden constant in Ω(n) does not depend on j.
It follows that, except for a 2−Ω(n) fraction of pairs (k, k′), the sum

n∑

i=b

(u
(k)
i−b − u

(k′)
i−b )vn−ir

(n−i)
0
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contains a linear number n′ > c0n of uncancelled terms r
(n−i)
0 where vn−i = 1 and u

(k)
i−b 6= u

(k′)
i−b . To apply

Lemma 2, we require ( ǫ
2b
)−1 < (n′)1/3, or equivalently b + log 1/ǫ < 1

3 logn
′. This gives us n′ > (2

b

ǫ )
3.

Note that the scaling quantity 2πǫ
2b

in (8) corresponds to 2πσ
m in Lemma 2. We will take the parameter

t = n′/(2
b

ǫ )
2 in Lemma 2. Then Lemma 2 applies, and t > (n′)1/3.

To summarize the error estimates: (i) except with probability 2−Ω(n), we have ω > N1/3 and ord2(ω) <
log2 ω

2 by Lemma 1; (ii) except for a fraction of 2−Ω(n) of j’s, all v = ⌊ 2n

ω j⌋ have |Tj| = Ω(n) by Lemma 3;

(iii) except for a fraction of 2−Ω(n) of all pairs (k, k′)’s, the index sets of the sums (8) (of random

variables r
(n−i)
0 ) defined as k and k′ all have a symmetric difference with cardinality > n′ = (2b/ǫ)2t,

with t = Ω(n1/3), by Lemma 4.

Our goal is to estimate the expectation, over the random choice x ∈ Z∗
N (that defines the period

ω = ω(x) of the function f(k) = xk mod N) and all random noise variables r
(·)
· , of the probability of

observing some |v〉 that has the form v = ⌊ 2n

ω j⌋ for some 0 6 j < ω. This probability for any v is the
square norm expression in (4).

Finally, by linearity of expectation, we estimate the sum of the expectations of the square norm sum
(4) indexed by all v = ⌊ 2n

ω j⌋. Note that the sum
∑K−1

k=0 is over K complex numbers of the unit norm,

and thus has a norm at most K. With probability 6 2−Ω(n), (i) may be violated and the sum over all
v = ⌊ 2n

ω j⌋ of (4) can be at most ω
2nKK2 = O(1). Assuming (i) holds, then the sum of the terms (4) indexed

by the 6 2−Ω(n) fraction of exceptional v’s regarding (ii) has value at most (2−Ω(n)ω) 1
2nKK2 = 2−Ω(n).

Assuming (i) and (ii) are both not violated, we apply Lemma 2. By (iii), we get an upper bound

ω

2nK

(
K + 2−Ω(n)K2 +K22−Ω(n1/3)

)
= 2−Ω(n1/3)

for the sum of the expectations of (4), where the sum is over the 1− 2−Ω(n) fraction of non-exceptional
v = ⌊ 2n

ω j⌋ (0 6 j < ω) regarding (ii).

We conclude that the expectation (over the random choice x ∈ Z∗
N and the random noise variables

r
(·)
· ) of the probability of observing a member in {|v〉 : v = ⌊ 2n

ω j⌋, 0 6 j < ω} is exponentially small.

The proof carries over easily to those |v〉 that are in the vicinity of a polynomial range of ⌊ 2n

ω j⌋, for
some 0 6 j < ω. And since the estimate is exponentially small, the proof shows that the probability of
observing any member of the set of those |v〉 that are polynomially close to any integral multiple of 2n

ω
is still exponentially small in expectation.

4 Pairs of random primes

The proof in Section 3 exhibits a particular set of primes of positive density, and shows that if the input
N to Shor’s algorithm is of the form N = pq for any primes p and q from that set, then the algorithm
does not factor with exponentially small exceptional probability, if the rotational gates are accompanied
by a suitable level of noise.

In cryptography, an interesting question concerns the performance on N = pq for random primes p
and q of length m. In this section, we prove Theorem 3, dealing with random pairs of primes p and q
chosen uniformly from all primes of the same length.

To prove Theorem 3, we will appeal to some number theoretic estimates for the following.

• The period ωN (x) of a random element x ∈ Z∗
N , where N = pq, and p and q are primes uniformly

randomly chosen from all primes of length m. (The period ωN (x) is the order of x as a group element in
Z∗
N .)

• The exact order of the prime 2 of the integer ωN (x), i.e., ord2(ωN (x)), for a random element x ∈ Z∗
N ,

where N = pq, and p and q are primes uniformly randomly chosen from all primes of length m.

For primes p and q of binary length m, N = pq has binary length ≈ 2m, and the QFT circuit uses
about 4m qubits with 24m ≈ N2. The statement b+ log 1/ǫ < 1

3 logm− c for some c > 0 is equivalent to
b+ log 1/ǫ < 1

3 log(4m)− c′ for some c′ > 0. We note that to carry through the same proof of Theorem 1
for a pair of chosen primes and x ∈ Z∗

pq, we only need to have the property:

(1) ωN (x) is large, say ωN (x) = 2Ω(m), and

(2) ord2(ωN (x)) is not too large, say ord2(ωN (x)) = o(m).
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H̊astad, Schrift, and Shamir (acknowledging Alon) [27] proved a version of the following theorem
(Theorem 5, see Proposition 1 in p.378 in [27]). Their theorem is sufficient to address property (1) for
our purpose. But we will give a minor improvement using the Brun-Titchmarsh theorem, which will be
used to derive a bound for property (2) as well. The proof will follow essentially the same reasoning as
in [27]; the minor improvement comes from using the Brun-Titchmarsh theorem and an estimate due to
Rosser and Schoenfeld (Theorem 15 in [28]):

d

φ(d)
6 eγ · log log d ·

(
1 +

2.5

eγ(log log d)2

)
,

where φ(·) is the Euler totient function, γ = 0.577 · · · is Euler’s constant, and log denotes natural
logarithm (as it will be for the rest of this section). The estimate is valid for every d > 3, except one case
d = 2×3×· · ·×23 when the constant 2.5 should be replaced by 2.50637. We will just use d

φ(d) 6 C log log d

for some universal constant C, and all d > 3.
Let X = 2m − 1 and Y = ⌈X

2 ⌉ = 2m−1.

Theorem 5. There exists a constant C, such that for any m and any randomly chosen distinct primes
p and q of binary length m, N = p · q, and let g be a randomly chosen element in Z∗

N , then for all
m2 6 A < X ,

Pr.

(
ωN (g) <

1

A
φ(N)

)
6 C

m2/5

A1/5
,

where the probability is over primes p 6= q such that Y 6 p, q 6 X , and g ∈ Z∗
N .

Note that φ(N) = (p − 1)(q − 1) ≈ 22m. If we take A = 22ǫm then a random ωN (g) > 22(1−ǫ)m with
probability 1−O(m2−ǫm/5). This is more than sufficient for our required property (1) above.

The Brun-Titchmarsh theorem is a reasonably sharp estimate for the number of primes up to any upper
bound x, in an arithmetic progression. The bound is applicable even when the modulus of the arithmetic
progression is large. The following version is an improvement of the original Brun-Titchmarsh theorem
proved by Montgomery and Vaughan [29,30]. Suppose a and d are relatively prime. Let π(x; d, a) denote
the number of primes p ≡ a mod d, with p 6 x.

Theorem 6 (Montgomery-Vaughan (Theorem 2 in p.121 of [30])). Let d and a be relatively prime
positive integers, and let x > d be any positive integer. Then

π(x; d, a) 6
2x

φ(d) log(x/d)
,

where φ(·) is the Euler totient function, and log denotes natural logarithm.
Following [27], the proof of Theorem 5 is based on two lemmas. Let ON = max{ωN (x) : x ∈ Z∗

N} be
the exponent of the finite Abelian group Z∗

N
∼= Z∗

p ×Z∗
q , then ON = lcm(p− 1, q− 1), and ωN (x)|ON for

all x ∈ Z∗
N .

Lemma 5. There exists a constant C1 > 0, such that for randomly chosen distinct primes p and q of
binary length m, N = p · q, and for any 1 6 A1 6 X1/4 < 2m/4,

Pr.

(
ON <

1

A1
φ(N)

)
6 C1

1

A1
.

Proof. It is trivial if m 6 2. We will assume m > 2. Clearly ON = φ(N)/gcd(p− 1, q − 1). So,

ON <
1

A1
φ(N) ⇐⇒ gcd(p− 1, q − 1) > A1.

By the Prime Number Theorem, the number of primes of length m is π(X)−π(Y ) ≈ X
2 logX . And so the

number of ordered pairs of distinct primes of length m is approximately ( X
2 logX )2. Now we bound the

cardinality of

S = {(p, q) : Y 6 p 6= q 6 X, p, q are primes, and gcd(p− 1, q − 1) > A1}.

For p 6= q in that range, we claim that p− 1 ∤ q − 1. For otherwise (q − 1)/2 > p− 1, which implies that
q > 1 + 2(Y − 1) = X and hence q = X . Then p − 1 6 (q − 1)/2 = Y − 1 6 p − 1, and so equality
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holds, and p = Y = 2m−1, a contradiction. It follows that gcd(p − 1, q − 1) 6 (p − 1)/2 < X/2. So,
gcd(p− 1, q − 1) 6 2m−1 − 1.

We have

|S| =
2m−1−1∑

d=⌊A1⌋+1

∑

(p,q)

1[gcd(p−1,q−1)=d]

6

2m−1−1∑

d=⌊A1⌋+1

(π(X ; d, 1)− π(X/2; d, 1))2,

where
∑

(p,q) denotes the sum over primes (p, q) in the range Y 6 p 6= q 6 X , and 1[gcd(p−1,q−1)=d] is the

0-1 indicator function that is 1 iff gcd(p− 1, q − 1) = d.
Now we separate the sum into two parts, depending on whether d > ⌊A2

1X
1/3⌋. One part is

H =
2m−1−1∑

d=⌊A2
1X

1/3⌋+1

(π(X ; d, 1)− π(X/2; d, 1))2,

where we use the trivial bound π(X ; d, 1)− π(X/2; d, 1) 6 X
2d + 1. In the range d < 2m−1, it is 6 X

d . It
follows that

H < X2
∞∑

d=⌊A2
1X

1/3⌋+1

1

d2
<

X2

A2
1X

1/3
=

X5/3

A2
1

by a comparison to the integral
∫∞
K

1
x2dx = 1

K .
The other part is

L =

⌊A2
1X

1/3⌋∑

d=⌊A1⌋+1

(π(X ; d, 1)− π(X/2; d, 1))2,

where we use Theorem 6, to get

L 6

⌊A2
1X

1/3⌋∑

d=⌊A1⌋+1

(
2X

φ(d) log X
d

)2

.

As d 6 A2
1X

1/3 6 X5/6, we have X
d > X1/6, and log X

d > (logX)/6. So

L 6 144

(
X

logX

)2 ⌊A2
1X

1/3⌋∑

d=⌊A1⌋+1

1

φ(d)2
.

Next we claim the following.
Claim.

∑
d>D

1
φ(d)2 = O( 1

D ), for any D > 1.

To prove this Claim we need a result from Eq. (2.32) in p.61 of [31]:

∑

n6x

(
n

φ(n)

)2

= O(x),

for all x > 0. Let an = 1
n2 , bn = ( n

φ(n) )
2, and Bn =

∑n
k=D+1 bk, with n > D. Then BD = 0 and

bn = Bn −Bn−1, for all n > D. We have for all Z > D,

Z∑

n=D+1

1

φ(n)2
=

Z∑

n=D+1

anbn = aZBZ +

Z−1∑

n=D+1

(an − an+1)Bn.

Now aZBZ = O(1/Z), an − an+1 < 2/n3, and thus (an − an+1)Bn = O(1/n2). It follows that

Z∑

n=D+1

1

φ(n)2
= O(1/Z) +O(1/D).
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Letting Z → ∞ proves the Claim.
It follows that

L = O

((
X

logX

)2

· 1

A1

)
.

And

|S| 6 L+H = O

((
X

logX

)2

· 1

A1

)
+

X5/3

A2
1

.

Hence,

Pr.

(
ON <

1

A1
φ(N)

)
= O

(
1

A1

)
.

Lemma 5 is proven.

Lemma 6. There exists a constant C2 > 0, such that for any B > 1,

Pr.

(
ωp(g) <

1

B
φ(p)

)
6 C2

(
m

B logB

)1/2

,

where the probability is over a random prime Y 6 p 6 X and a random g ∈ Z∗
p, and ωp(g) is the order

of g as a group element in Z∗
p.

Proof. For any prime p, the order of any g ∈ Z∗
p divides the order of the group φ(p) = p− 1,

∣∣∣∣
{
g ∈ Z∗

p : ωp(g) <
1

B
φ(p)

}∣∣∣∣ =
∑

d|p−1, d<φ(p)/B

φ(d).

Letting F (p) =
∑

d|p−1, d<φ(p)/B φ(d) for any prime p, we have

∑

Y6p6X

F (p) =
∑

d<X/B

φ(d)
∑

Y 6p6X

1[d|p−1] 6
∑

d<X/B

φ(d)π(X ; d, 1),

where 1[d|p−1] is the 0-1 indicator function. Now we apply Theorem 6 and obtain

∑

Y 6p6X

F (p) 6
∑

d<X/B

2X

log(X/d)
6

2X2

B logB
.

It follows that for any B′ > 0,

|{p : Y 6 p 6 X, p is a prime, and F (p) > X/B′}| 6 2X2

B logB
· B

′

X
=

2XB′

B logB
.

Then, by the Prime Number Theorem,

Pr. (F (p) > X/B′) 6 O

(
B′ logX

B logB

)
.

Conditional on any p such that Y 6 p 6 X and F (p) < X/B′, the probability over g ∈ Z∗
p of the

event ωp(g) < 1
Bφ(p), is F (p)

p−1 < 3
B′

. Thus, the conditional probability over both p and g ∈ Z∗
p given

F (p) < X/B′ is

Pr.

[
ωp(g) <

1

B
φ(p)

∣∣∣∣F (p) <
X

B′

]
= O

(
1

B′

)
.

It follows easily that

Pr.

(
ωp(g) <

1

B
φ(p)

)
= O

(
B′ logX

B logB

)
+O

(
1

B′

)
.

Setting B′ = (B logB/ logX)1/2, gives the bound of Lemma 6.
Now the proof of Theorem 5 can be completed.
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Proof. (of Theorem 5) We will pick A1 and A2 such that A = A1A2, then

Pr.

(
ωN(g) <

1

A
φ(N)

)
= Pr.

(
ON <

1

A1
φ(N)

)
+ Pr.

(
ωN(g) <

1

A2
ON

)
,

where the first expression is over primes Y 6 p 6= q 6 X and the second expression is over p, q, and
g ∈ Z∗

N . This is seen by the contrapositive: if φ(N) 6 A1ON and ON 6 A2ωN (g) then φ(N) 6 AωN (g).
By Lemma 5, the first term is O( 1

A1
).

For the second term, we know that ωN (g) = lcm(ωp(g), ωq(g)), as Z
∗
N

∼= Z∗
p × Z∗

q . ωp(g) is a divisor of
p− 1, and similarly for ωq(g). We write ωp(g) = (p− 1)/a, and ωq(g) = (q − 1)/b, then

ωN(g) >
lcm(p− 1, q − 1)

ab
.

To see this, we take any prime r | lcm(p− 1, q − 1),

ordr(ωN (g)) = max{ordr(p− 1)− ordr(a), ordr(q − 1)− ordr(b)}
> max{ordr(p− 1), ordr(q − 1)} −max{ordr(a), ordr(b)}
> max{ordr(p− 1), ordr(q − 1)} − ordr(ab)

= ordr(lcm(p− 1, q − 1))− ordr(ab).

It follows that, after taking B =
√
A2,

Pr.

(
ωN (g) <

1

A2
ON

)
6 Pr.

(
ωp(g) <

p− 1

B

)
+ Pr.

(
ωq(g) <

q − 1

B

)
= O

(
m

B logB

)1/2

,

by Lemma 6. Equalizing the two error bounds we set

1

A1
≈
(

m

B logB

)1/2

,

subject to 1 6 A1 6 X1/4, A1B
2 = A, B > 1, where A is given as m2 6 A < X .

We can set B = (A2m)1/5

logA to achieve the bound in Theorem 5.

We remark that, for polynomial bounded A = mk, we can choose B slightly better, B = (m
2k+1

logm )1/5,
and achieve the following.

Theorem 7. With the same setting as in Theorem 5, for any k > 2,

Pr.

(
ωN(g) <

1

mk
φ(N)

)
6 O

(
1

m(k−2)/5(logm)2/5

)
,

where the probability is over all random Y 6 p 6= q 6 X and g ∈ Z∗
N . The constant in O depends on k.

Finally, to finish the proof of Theorem 3, we address the required property (2), again using the Brun-
Titchmarsh theorem.

For any prime p, we have the prime factorization p− 1 = 2e0pe11 · · · pekk . We have

Pr.
(
∃g ∈ Z∗

p : ord2(ωp(g)) > e
)
6

1

π(X)− π(Y )

2X

φ(2e) log(X/2e)
,

where the probability is over a random Y 6 p 6 X .
We have φ(2e) = 2e−1 for e > 1, and π(X)− π(Y ) = Θ(X/ logX). Then

Pr.
(
∃g ∈ Z∗

p : ord2(ωp(g)) > e
)
6 O

(
logX

2e log(X/2e)

)
.

If we set mc = 2e, then we get an upper bound of O
(

1
mc

)
, where the constant in O depends on c.

Thus, for any c > 0,

Pr.
(
∃g ∈ Z∗

p : ord2(ωp(g)) > c log2 m
)
6 O

(
1

mc

)
.
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As ωN(g) = lcm(ωp(g), ωq(g)), it follows

Pr. (∃g ∈ Z∗
N : ord2(ωN (g)) > c log2 m) 6 O

(
1

mc

)
.

Since both required properties (1) and (2) are separately true with a probability approaching 1, they
are jointly true with a probability approaching 1.

5 Some comments

This section contains some comments and personal opinions. They are speculative, and are not to be
conflated with the provable part.

Quantum mechanics is unquestionably an accurate model of microscopic physical reality. However, I
believe every physical theory is an approximate description of the real world, and quantum mechanics is
no exception. In particular, I believe the SU(2) description of possible operations of a qubit to be only
approximately true. Specifically, I do not believe arbitrarily small angles have physical meaning.

The real numbers R, the continuum, is a human logical construct in terms of Dedekind cut or Cauchy
sequence in the language of ǫ-δ definition. SU(2) (or equivalently SO(3)) as a group, is built on top of
the continuum. That these mathematical objects provide remarkable fit in some mathematical theory for
physical reality, is an extraordinary fact. But this extraordinary fit is always within a certain range; its
unlimited extrapolation is mathematical idealization. For example, the agreement within 10−8 between
experiments and what the theory quantum electrodynamics (QED) predicts for the electromagnetic fine-
structure constant α makes QED one of the most accurate physical theories. The Schrödinger equation
i~ d

dt |Ψ(t)〉 = Ĥ |Ψ(t)〉 suggests that small angles are related to small time periods. But physicists have
suggested that time ultimately also comes in discrete and indivisible “units”. The concept “chronon” has
been proposed as a quantum of time [32]. It has even been proposed that one chronon corresponds to about
6.27× 10−24 s for an electron, much longer than the Planck time, which is only about 5.39× 10−44 [33]
(see also [34, 35]). (Of course the literal form of the mathematical meaning of Schrödinger equation, as
a differential equation, suggests time is infinitely divisible. But my personal view is that this is just
mathematical abstraction.)

Thus, I view arbitrarily small angles permitted under SU(2) as mere mathematical abstraction. It
is true that using a fixed finite set of rotations of reasonable angles such as π/8 along various axes
can compose rotations of arbitrarily small angles. Quantum error-correction code and the threshold
theorems [10,13–18] ultimately assume that SU(2) and its group composition rule are infinitely accurate,
and represent it in a high dimensional tensor product space. The higher the accuracy required, the higher
the dimension of the representing tensor product space. Since I doubt the mathematical abstraction
of SU(2) is infinitely accurate, I also doubt the composition of a sequence of group elements in SU(2)
corresponds infinitely accurately to physical reality. There is a further concern that, when a large number
of particles are present, whether the tensor product space representation is infinitely accurate. In fact, it
is conceivable that the great effort in quantum computing will one day lead to modifications of the theory
needed for huge multi-particle systems. Based on these considerations, it seems to me that permitting
some noise in the model is reasonable. The random noise model in this paper is just a model, is not
meant as reality.

Finally, in the near to intermediate term, there is the reality that one cannot yet achieve meaningful
error correction in actual quantum computers. Noisy intermediate scale quantum (NISQ) [36] technology
has received a lot of attention. The proof in this paper places a hard limit where failure provably occurs
without quantum error correction.

Of course, in addition to its intrinsic interest, factoring integers of the form pq is at the heart of the
Rivest-Shamir-Adleman (RSA) public-key cryptosystem [37]. However several results and conjectures in
number theory suggest that the failure reported in this paper of Shor’s factoring algorithm in the presence
of noise can be more severe in the asymptotic sense. We used a theorem of Fouvry [24] to produce a set
of primes of positive density that have the desired properties of the period of a random element. The
most important property is that this period is sufficiently large. In Theorem 3 we proved a version of the
theorem for primes of density one. There are deep results and many conjectures about the distribution
of prime factorizations of p − 1. In the extreme there are the so-called Sophie Germain primes p′ such
that p = 2p′+1 is also a prime. It is conjectured that there are 2C x

(loge x)2 many Sophie Germain primes
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up to x, where C =
∏

p>2
p(p−2)
(p−1)2 ≈ 0.660161 is the Hardy-Littlewood twin prime constant. This is just

slightly less than positive density. (However, it has not been proven that there are infinitely many Sophie
Germain primes.) Sophie Germain primes were studied in (the first case of) Fermat’s Last Theorem.
Indeed, Adleman and Heath-Brown [38], and Fouvry [24] proved that the first case of Fermat’s Last
Theorem holds for infinitely many primes p (see also [39]). Another property we use of primes of the
property of Theorem 4 is that the period of a random element in Z∗

N does not have high ord2. Erdös and
Odlyzko [40] proved that the set of odd divisors of p− 1 has a positive density.

The core of the analysis of Theorem 1 is to deal with a convolutional sum of bits, in the form of∑
i u

(k)
i vn−ir

(n−i) (see (7)), where the bits of u(k) come from an arithmetic progression. We essentially

have to show that they behave quite “generic”, and that distinct terms u(k) and u(k′) of the arithmetic
progression behave somewhat independently (all with suitable various exceptions). This accords with our
intuition. However, such intuition can be faulty sometimes. For example, Newman [41] showed that for
the binary bits of the numbers in multiples of three: 3, 6, 9, . . . , 3k, . . ., there is a definite preponderance
of those containing an even number of ones over those containing an odd number of ones. Therefore, for
these problems intuitive plausibility is not sufficient; a proof as presented in this paper is needed.

Lastly, we give a few comments on the Strong Church-Turing thesis. It is conceivable that some
other quantum algorithms in the BQP model can factor integers (or some other seemingly difficult
problems) in polynomial time, and withstand the random noise discussed in this paper. Separately, it is
definitely conceivable that at some future time, a quantum algorithm is superior to the best “classical”
factoring algorithms for integers of a certain range. However I am not convinced that quantum computing
as formulated by BQP requires that we modify the Strong Church-Turing thesis, even if factoring is
eventually known to be outside P or BPP. In Turing’s careful definition of computability, he made a
deliberate choice that the “primitive” steps of such a computing device must be discrete. Thus, the set of
states of a Turing machine (TM) is finite; the symbols are placed in discrete cells; the alphabet set is finite.
At its most fundamental level, it is not permitted to ask the computing machine to scan and differentiate
with infinite precision a continuously deformed symbol, say from ξ to ζ, while a mathematical homotopy
can easily be envisioned. I believe the model BQP, in its use of the full SU(2) as primitive steps (or what
amounts to, equivalently, the assumption that the exact rule of composition of SU(2) corresponds exactly
to realizable computational steps), is a departure from the Turing model.
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19 Nam Y S, Blümel R. Robustness of the quantum Fourier transform with respect to static gate defects. Phys Rev A, 2014, 89:

042337

20 Fowler A G, Hollenberg L C L. Scalability of Shor’s algorithm with a limited set of rotation gates. Phys Rev A, 2004, 70:

032329. Erratum: scalability of Shor’s algorithm with a limited set of rotation gates [Phys. Rev. A 70, 032329 (2004)]. Phys

Rev A, 2007, 75: 029905
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