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Abstract In reinforcement learning (RL), training a policy from scratch with online experiences can be

inefficient because of the difficulties in exploration. Recently, offline RL provides a promising solution by

giving an initialized offline policy, which can be refined through online interactions. However, existing

approaches primarily perform offline and online learning in the same task, without considering the task

generalization problem in offline-to-online adaptation. In real-world applications, it is common that we only

have an offline dataset from a specific task while aiming for fast online-adaptation for several tasks. To address

this problem, our work builds upon the investigation of successor representations for task generalization

in online RL and extends the framework to incorporate offline-to-online learning. We demonstrate that

the conventional paradigm using successor features cannot effectively utilize offline data and improve the

performance for the new task by online fine-tuning. To mitigate this, we introduce a novel methodology

that leverages offline data to acquire an ensemble of successor representations and subsequently constructs

ensemble Q functions. This approach enables robust representation learning from datasets with different

coverage and facilitates fast adaption of Q functions towards new tasks during the online fine-tuning phase.

Extensive empirical evaluations provide compelling evidence showcasing the superior performance of our

method in generalizing to diverse or even unseen tasks.

Keywords offline reinforcement learning, online fine-tuning, task generalization, successor representations,

ensembles

1 Introduction

Reinforcement learning (RL) has emerged as a powerful approach for tackling complex sequential decision-
making problems in various domains, such as games [1], robotics [2], manipulation [3], and autonomous
driving [4,5]. However, most applications rely on extensive online interactions with the real environment
or high-fidelity simulators, which can be infeasible or cost-expensive in real-world scenarios. Recently,
offline RL [6] provides a promising solution to address this problem by learning an offline policy from a
fixed dataset, without requiring online interactions. After that, the learned offline policy provides a good
initialization for subsequent online fine-tuning. This paradigm allows efficient utilization of pre-collected
data to provide an initialized policy and further improves the policy via limited online interactions [7,8].

Despite the potential of the offline-to-online paradigm to improve the sample efficiency in decision-
making problems, existing approaches [8–11] are limited to the setting where the tasks of offline pre-
training and online fine-tuning remain the same. In real-world applications, it is common to possess
an offline dataset from a specific task while desiring policy generalization across various tasks. In such
scenarios, the main challenge lies in effectively leveraging the information embedded within the offline
datasets to benefit new tasks. For model-free methods, the policies and value functions are typically
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learned for a specific task, thus fine-tuning them may cause poor performance on the new task due to
overfitting on the offline datasets. For model-based methods, while their transition functions are invariant
for different tasks, they necessitate accurate models for planning in downstream tasks and an exploratory
dataset that covers the entire state-action space. Consequently, new approaches are required to facilitate
generalization to new tasks during the fine-tuning stage while making full use of offline data.

Our study focuses on the task-generalization problem in an offline-to-online setting. In our work, we
first explore the successor representation [12,13], which is a reward-agnostic representation that implicitly
captures the underlying dynamics to predict future outcomes. By decoupling the dynamics from the
reward function, successor representations enable rapid adaptation of the value function to novel tasks.
Despite this advantage, we reveal that vanilla methods based on successor representation cannot learn
effective policies during the fine-tuning phase. Moreover, we observe that the coverage of the offline data
significantly impacts performance in offline-to-online generalization. Specifically, representations learned
from the offline data with a narrow distribution is hard to generalize to novel tasks. Therefore, it is
important to design an algorithm capable of conducting policy adaptation in new tasks with limited
online interactions, while being robust to the data distributions of offline datasets.

To this end, we propose a novel approach that combines ensemble networks with successor representa-
tions to perform offline-to-online adaptation (ESR-O2O) in various downstream tasks. ESR-O2O adopts
ensemble architecture to enhance the diversity of successor representations and value functions. This alle-
viates the dependency on data coverage or behavior policies during the offline training stage, allowing for
learning useful and transferable representations even in scenarios where the available offline data exhibit
a narrow distribution. During the online-adaptation stage, we keep the successor representations fixed
and update task-specific parameters to learn value functions and policies for the downstream tasks. The-
oretically, we establish that the optimality gap during online fine-tuning is bounded. Through empirical
evaluations and comparisons, we show that ESR-O2O significantly outperforms existing RL methods for
task generalization in offline-to-online settings.

Overall, our contributions are threefold. (1) To the best of our knowledge, our work is the first to
investigate the task generalization problem in the context of offline-to-online RL, specifically focusing
on pre-trained agents derived from a single offline environment. By addressing the reward gap, our
work provides valuable insights into bridging the gap between offline pre-training and generalization in
RL. (2) We introduce a novel approach that leverages ensembles to learn successor representations from
datasets, thereby enhancing the robustness of the learned representations, especially when confronted
with narrow offline distributions. This ensemble-based framework mitigates the dependence on data
coverage and enhances the adaptability across various RL tasks, leading to improved performance in
online fine-tuning. (3) We provide a substantial body of empirical results and a theoretical analysis
to validate the feasibility and effectiveness of our method. We demonstrate that ESR-O2O effectively
handles reward changes during fine-tuning, surpassing alternative approaches in terms of performance
and sample efficiency.

2 Preliminaries

2.1 Reinforcement learning

We adopt the episodic Markov decision process (MDP) framework to formulate the sequential decision-
making problem [14, 15]. Specifically, we define M = (S,A, R,P , γ, T ), where S and A represent the
state and action spaces, respectively. The transition dynamics of the environment is captured by the
function P , while R denotes the reward function. The discount factor γ represents the agent’s preference
for immediate rewards versus future rewards, and T specifies the length of an episode.

In online RL [16], the agent first observes the current state s ∈ S of the environment and applies an
action a ∈ A to the environment based on its policy π(a|s). The environment then gives the next state
based on P and provides the agent with a scalar reward r. The agent repeats this process over time, with
the goal of maximizing the expected cumulative reward, defined as E[

∑T
t=0 γ

tR(st, at)]. To quantify the
value of a policy π, we define the state-action value function as follows:

Qπ(s, a) = E

[

T
∑

t=0

γtR(st, at)|st+1 ∼ P(·|st, at), at ∼ π(·|st)
]

. (1)
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This function represents the expected cumulative reward starting from state s and taking action a under
policy π. It can be updated by minimizing the temporal difference (TD) error E[(Q − T Q)2], where
T Q = r + γE[maxa′ Q̄(s

′, a′)] is the Bellman operator and Q̄ indicates the target network.

In offline RL, given a batch dataset D consisting of tuples (s, a, r, s′), where r ∼ R(·|s, a) and s′ ∼
P(·|s, a), agents are expected to find a policy π̂ based on D so as to minimize the expected sub-optimality
with respect to the optimal policy π∗, i.e., ED[J(π

∗)−J(π̂)], where the expectation is taken with respect
to the randomness in the dataset. However, the bootstrapping process leads to an overestimation of
the value for out-of-distribution (OOD) actions, because the bootstrapped error cannot be corrected
without online interactions. Due to this, off-policy algorithms fail to learn useful policies from the
static dataset. To overcome the bootstrapped error, several offline RL methods apply policy constraints
[17–19] or conservative regularization to values [20], but may cause over-conservative estimation. There
is another line of studies [21–24] that utilize ensembles for value functions to capture the epistemic
uncertainty and attain favorable performance in many tasks. Specifically, the TD error in these methods
becomes E[(T Q −Qi(s, a))2], where the TD target could be shared for each ensemble network [21], i.e.,
T Q = r + γmin Q̄i(s, a) or independently learned [22], i.e., T Qi = r + Q̄i(s, a).

2.2 Successor representation

As an appealing approach to task transfer, successor representations (SR) [25], especially successor fea-
tures (SF) [12] for continuous state space, have been proposed as a generalization for the value function.
Let M(st, at, s

′) =
∑∞
i=0 γ

ip(st+i = s′|st, at) be the successor representation, defined as the discounted
occupancy of state s′, averaged over trajectories initiated in state s; then the state-action value function
can be expressed as

Q(s, a) =
∑

s′

M(s, a, s′)R(s′). (2)

The SR allows the decoupling of the dynamics of an MDP from its reward functions. The SR can
intuitively be thought of as a predictive map that encodes each state in terms of the other states that
will be visited in the near future. The SR can be learned in a similar way to temporal difference learning:

δt(s
′) = I[st = s′] + γM(st+1, s

′)−M(st, s
′), (3)

where the error is the discrepancy between observed and expected state occupancy. The expected occu-
pancy for states that are visited more frequently than expected should be increased, whereas the expected
occupancy for states that are visited less frequently than expected should be decreased.

The SF extends SR to handle continuous state spaces by assuming that the reward function can be
expressed as a linear combination of features φ and a weight vector w:

r(st, at, st+1) = φ(st, at, st+1)
Tw. (4)

Given the above decomposition, the Q function can be rewritten by

Q(s, a) = E

[

∞
∑

i=0

γir(si, ai)

]

= E

[

∞
∑

i=0

γiφTw

]

= ψ(s, a)Tw. (5)

In practice, the features ψ can be learned in many ways such as regression, using transition models or
auto-encoders. The successor features ψ can also be learned by Bellman backups:

ψ̄(s, a) = φ(s, a) + γψ(st+1, a
′), a′ ∼ π(·|st+1). (6)

The above formulation provides the possibility of quickly evaluating a policy π, thus being a promising
way to handle the reward gap problem. When the reward function changes, we can keep the learned
successor representation and re-learn the weight vector w by regression to obtain a new value function.
However, the linear decomposition of the reward function is limited. Prior work addresses the reward gen-
eralization problem by considering a linear decomposition of the reward function and the value function.
This modeling is restrictive and may fall short in capturing the complexity of the changed environment.
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2.3 Problem setting

In this paper, we focus on the offline-to-online setting, where an agent is first pre-trained with offline
datasets and then fine-tuned by interacting with the environment. Several studies [7, 26] found that
the agent exhibits a huge dip at the initial stage of online fine-tuning, which is not expected in real
applications. More importantly, we put attention to the reward generalization problem that the pre-
trained agents are fine-tuned in a new environment with the same dynamics but different reward functions.

Here, we present a clear formulation for our problem setting. Let Mi = (S,A,P , Ri, γ) be the MDP
in the offline training stage and logged data are collected following the reward function Ri. Then we
introduce a different MDP as Mj = (S,A,P , Rj , γ) for online fine-tuning of the policy after pertaining
in Mi. We remark that Mi and Mj are different tasks with the same dynamics but different reward
functions. In the offline training stage, agents learn representations, value functions, and policies from
offline data. To perform policy generalization in the fine-tuning stage with a different task Mj, a robust
and favorable performance is expected to provide a good initialization and fast adaptation.

3 Related work

Offline-to-online RL. Our work contributes to offline-to-online RL by fine-tuning pre-trained offline
agents through online interactions. Previous studies have primarily addressed distributional shift, which
refers to the disparity between offline data and online transitions. Various approaches have been pro-
posed to mitigate the performance drop during the initial fine-tuning stage caused by distributional shift.
These approaches include adaptive adjustment of behavior cloning weights [27], reconstruction of the
replay buffer and sampling methods [8], modification of the update target of the critic network [7, 9, 10],
and adaptive policy composition [11]. Recently, E2O [28] and PROTO [29] have achieved significant
performance by integrating offline pessimism and online optimism with ensembles, or using an iteratively
evolving regularization term and performing a trust-region-style update. While both E2O and our ap-
proach utilize ensembles, their goals and solved problems differ. E2O employs Q ensembles to perform
pessimism to prevent over-estimation during offline training and to encourage exploration during online
fine-tuning. However, our approach uses ensembles to model diverse patterns of successor representa-
tions and Q functions, allowing robust representation learning despite offline data limitations. More
importantly, these offline-to-online algorithms mainly address scenarios with consistent offline and online
environments. The issue of distributional shift and generalization across different tasks has received lim-
ited attention. To the best of our knowledge, our work is the first to investigate the problem of reward
generalization in the offline-to-online setting.

Task generalization. Our work aims to deal with the task generalization problem. While recent
studies [30–33] have made progress in addressing generalization and distributional shift challenges, they
focus on specific aspects of the offline-to-online learning process. These studies either consider minor
changes in dynamics [30], emphasize generalization in an online setting [33], or primarily focus on offline
learning [32], which is constrained by dataset quality. On the other hand, successor features are utilized
to handle learning in dissimilar environments [34, 35]. But these approaches consider this problem in an
online setting and assume the availability of an effective exploration policy during the learning process.
In contrast, our work focuses on applying pre-trained agents, including learned representations, value
functions, and policies, to a different online environment. Furthermore, many existing methods that
utilize successor representations also assume the use of a set of training tasks, while our work does not
impose such a limitation. By focusing on the reward generalization problem and the offline-to-online
setting, our work aims to bridge the gap between offline pre-training and online fine-tuning, contributing
to a deeper understanding of generalization in reinforcement learning.

Successor representation. Our method leverages successor representation to capture the environ-
mental dynamics, enabling generalization across different reward functions. Successor representations
serve as predictive representations that summarize the successive features to follow. They also provide
mechanic explanations similar to human understanding [36]. Several previous studies have combined suc-
cessor representation with Generalized Policy Improvement [13] to transfer behaviors across navigation
tasks [34]. Recently, the unsupervised representation learning paradigm combined with the successor mea-
sure is discussed [37,38], avoiding learning basic features for conventional successor features. Nevertheless,
these studies often rely on effective exploration policies or exclusively diverse datasets. In contrast, our
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Figure 1 (Color online) Offline pre-training in a four-room maze navigation task. In the left picture, the blue block indicates

the starting point, and the green one indicates the goal. Two middle pictures describe the values and policies learned by IQL from

offline data, where the arrow represents the action to be taken at each position. The two right pictures show the values and policies

learned by vanilla SR-based methods. After offline training, both IQL and SR-based methods can learn correct values and the

optimal policy.

IQL SR

Env M
j

Learned values Learned policies Learned values Learned policies

Figure 2 (Color online) Online fine-tuning in a navigation task with a different goal. When the goal changes, the reward function

changes accordingly. In this setting, IQL fails to learn correct values and policies in the new environment, while SR-based methods

re-learn the values and lead to effective policies.

work analyzes learning representations from various types of datasets, expanding the applicability and
potential of successor representations.

Ensemble. Our work is also related to ensemble-based methods. In model-free RL, ensemble methods
have gained considerable interest for estimating epistemic uncertainty for action-value estimates. In
online-RL, ensembles are frequently employed to enhance exploration [39, 40] by encouraging agents
to seek out actions with the highest variance in estimated values. This is achieved by constructing
a distribution of action-value estimates using the ensemble and acting optimistically with respect to
the upper bound [41–44]. In offline-RL, ensembles of Q functions or environmental models are used
to obtain conservation estimation from the dataset [21, 22, 24, 45]. Deep ensembles [46] are shown to
effectively capture epistemic uncertainty arising from incomplete information and approximate the true
posterior distribution. By leveraging ensembles, the diversity of networks is enhanced, thereby mitigating
estimation bias for the value function [47]. Inspired by this, our work adopts ensemble networks to improve
the estimation of successor representations and value functions.

4 Motivating examples

In this section, we provide motivating examples to illustrate the challenges in offline-to-online RL, espe-
cially when dealing with reward gaps. We also highlight the limitations of vanilla successor representation-
based methods when learning from offline data. First, we use a tabular case to show that existing offline-
to-online RL approaches struggle with reward generalization. In contrast, successor representations can
enhance adaptive value function learning. Furthermore, we explore the limitation of vanilla SR-based
methods in task generalization after pre-training on a single offline environment. Specifically, we find that
the coverage of the offline data affects both pre-trained performance and online fine-tuning performance.

Grid world example. Consider a navigation task in a four-room environment, with each room
divided into a 4 × 4 grid of cells, as depicted in Figures 1 and 2. In this scenario, the blue block marks
the starting point, and the green block indicates the goal. Our paper focuses on a specific setting where
the agent has access to a dataset from the environmentMi. The objective is to apply pre-trained policies
from the offline dataset to a new environmentMj . In the grid world example,Mi andMj possess different
reward functions, achieved by altering the goal’s location while keeping the transition dynamics constant.
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Figure 3 (Color online) Pre-training and fine-tuning performance of vanilla SR-based methods under different data distributions.

The black dashed line indicates the transition from offline pre-training to online fine-tuning when the task changes. The shaded

area represents the variance of performance across multiple experiments conducted with 5 random seeds. Representations learned

from more diverse datasets, such as ‘medium-replay’ and ‘replay’ data, exhibit superior performance compared to representations

learned from narrower datasets (‘medium’, ‘expert’).

To illustrate the challenge of task generalization in offline-to-online RL, we evaluate two methods:
the state-of-the-art algorithm IQL and a vanilla successor representation-based method. In Figure 2,
IQL successfully learns the optimal values in the original environment Mi during the pre-training phase.
However, when attempting to fine-tune the learned values in the new environment Mj, IQL fails to
generate accurate value estimations. This limitation arises from the agent’s specialization in training
for specific reward functions, hindering its ability to generalize effectively to novel reward functions. In
contrast, values learned by the vanilla SR-based method show adaptability to new environments with
just a few fine-tuning steps. This comparison highlights the limitations of current offline-to-online RL
methods and the potential of SR-based methods in addressing the task generalization problem.

The impact of offline data. Despite the advantage of adapting to new tasks, challenges persist in
learning from offline data using vanilla SR-based methods (as presented in Subsection 2.2). Here, we
consider a more complex scenario with continuous state and action space, where representations and
values are expressed by neural networks. Specifically, we test a quadruped robot’s ability to fine-tune its
performance from a rolling task to a walking task after training on an offline dataset. This transition
introduces a reward gap, presenting an offline-to-online RL challenge. To investigate this, we use four
types of offline datasets with varying coverage: ‘medium’ data from a medium-level agent, ‘medium-
replay’ data encompassing all experiences in training a medium-level agent, ‘expert’ data generated by
an expert-level agent, and ‘replay’ data including all experiences in training an expert-level agent. Our
approach involves the initial extraction of successor representations from the offline data, followed by
policy and value function fine-tuning based on online interactions.

Address value overestimation during offline pre-training due to distributional shift is crucial. In vanilla
SR-based methods, both representations and values are updated via bootstrapping. The bootstrapping
process can result in overestimation [17], since the bootstrapped error cannot be corrected during offline
learning. To mitigate this, we make two key modifications. We set the minimum of two critic estimates
as the temporal difference (TD) target [48] and employ layer normalization to prevent catastrophic
overestimation [23]. As shown in Figure 3, these improvements help the vanilla SR-based method to learn
policies from offline data. During the pre-training stage, we observe that the performance is affected by
the coverage and quality of offline dataset. For example, agents trained on ‘replay’ data tend to exhibit
better performance compared to those trained on ‘expert’ data.

In addition to the overestimation problem, another challenge is the reward gap, which exacerbates the
discrepancy between offline datasets and online transitions. During fine-tuning, we find that agents pre-
trained on ‘replay’ or ‘medium-replay’ data outperform those trained on ‘expert’ or ‘medium’ data. This
highlights the significant influence of data coverage on successor representation learning and subsequent
fine-tuning performance. In other words, greater diversity in offline data leads to more effective learned
representations and improved performance. However, practical concerns arise as there are no guarantees



Wang C H, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172203:7

regarding the diversity and quality of offline datasets. Hence, the challenge remains in learning valuable
successor representations from datasets with different coverage and quality.

5 Methodology

In this section, we present our approaches to address task generalization challenges in offline-to-online
RL. First, we analyze the sub-optimality gap during the fine-tuning phase when a reward gap exists.
Based on this analysis, we propose a simple yet effective method to improve the ability to generalize to
unseen tasks by incorporating ensembles. This method diversifies successor representations and critic
networks, reducing the bias in representations and value functions. We then outline the pre-training and
fine-tuning process that leverages ensemble successor representations to tackle the task generalization
problem.

5.1 Theoretical analysis

To figure out how to handle the task generalization problem, we delve into the theoretical foundations to
characterize the sub-optimality gap in the fine-tuning phase. First of all, let us introduce some notations
for clarity. Consider the offline environment Mi with reward function ri and the online environment
Mj with rj . Let π∗

i and π∗
j denote the optimal policies in Mi and Mj , respectively. We introduce an

optimal successor feature ψπ
∗

by considering Qπ
∗

= ψπ
∗

w. This optimal successor feature represents
the future state occupancy by following policy π∗. In Mi and Mj , the optimal successor features can be

expressed as ψπ
∗

i and ψπ
∗

j . Their corresponding optimal value functions are defined as Q
π∗

i

i = ψπ
∗

i wi and

Q
π∗

j

j = ψπ
∗

jwj , where wi and wj indicate the weight vectors as shown in (4).

In our work, we pre-train agents from the offline dataset and then fine-tune them in the online phase.
We define the pre-trained successor feature as ψ̂ and pre-trained policies as π̂. Then, we can get the
following performance bound during the fine-tuning stage.

Proposition 1 (Sub-optimality gap). For all s ∈ S, a ∈ A, let the learned value function after the

fine-tuning stage be Qπj = ψ̂wπ ; then the fine-tuning performance bound can be expressed as

|Qπ
∗

j

j −Qπj | 6 ‖wj‖∞‖ψπ
∗

j − ψ̂‖1 + ‖ψ̂‖∞‖wj − wπ‖1. (7)

Proof. The sub-optimality gap can be decomposed according to the triangle inequality and Holder’s
inequality:

|Qπ
∗

j

j −Qπj | = |Q
π∗

j

j −Qπ̂j +Qπ̂j −Qπj | 6 |Q
π∗

j

j −Qπ̂j |+ |Qπ̂j −Qπj | (8)

6 ‖wj‖∞‖ψπ
∗

j − ψ̂‖1 + ‖ψ̂‖∞‖wj − wπ‖1. (9)

This proposition indicates that the sub-optimality gap in the fine-tuning stage is influenced by the
optimality of successor features and the weight vector. The term ‖ψπ∗

j − ψ̂‖1 represents the difference
between the optimal successor feature in Mj and the pre-trained successor feature. Since the successor
feature captures the dynamics information, this difference could be interpreted as the disparity between
the dynamics captured by the offline dataset and the dynamics in Mj . The term ‖wj − wπ‖1 quantifies
the approximation error for the true reward function in Mj. If we retain the pre-trained value function
from the offline dataset and assume that wπ approximates wi well, then wj − wπ contains a transition
from wi to wj . When the reward gap ‖wi − wj‖1 is large, this transition can be challenging due to the
gradient propagation mechanism in neural networks. Consequently, the performance of the fine-tuning
process can be compromised.

We further bound the two terms in (7) under several assumptions. Assuming that the norm of the basic
features and the rewards are bounded, i.e., ‖φ‖2 6 1 and |r| 6 rmax, we can establish a similar inference
process as in linear MDP. The following lemma demonstrates that the gaps in fine-tuning performance
are bounded. Specifically, the reward approximation error depends on the quality and size of the data
buffer collected during fine-tuning, while the representation gap is bounded by the estimated error of the
dynamics.
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Lemma 1 ([49, 50]). Let Z =
√
λ + rmax ·

√

2 log 1
δ
+ d log(1 + N

λd
), Λ = λI +

∑N
i=1 φ(si, ai)φ(si, ai)

T;

then the following inequality holds with probability 1− δ:

‖wj − wπ‖1 6
√
d‖wj − wπ‖Λ 6

√
dZ, (10)

where wj , w
π ∈ R

d, ‖w‖Λ =
√
wTΛw, λ is the regularization parameter, and N denotes the size of the

data buffer. For successor representations, we have

‖ψπ∗

j − ψ̂‖1 6
γ

(1− γ)2 ‖P
∗ − P‖1, (11)

where P∗ and P denote the true and estimated dynamics, respectively.
Proof. For (10), we simplify the equation by setting w̄ = wj − wπ ; then we have

‖w̄‖1 6
√
d‖w̄‖2 6

√
d

√

‖w̄‖22 + ‖φTw̄‖22 =
√
d

√

w̄T(I + φTφ)w̄ =
√
d‖w̄‖Λ 6

√
dZ. (12)

Please refer to Theorem 16 in [49] and Theorem 2 in [50] for more detailed proof.
Based on this lemma, the estimation error of the successor representation and the weight vector is

bounded. Since ‖ψ̂‖∞ = ‖
∑∞
i=0 γ

iφT‖∞ = ‖ 1
1−γφ

T‖∞ 6
1

1−γ , the sub-optimality gap in Proposition 1
is upper bounded.

5.2 Randomized ensembles of successor representations and critic networks

In Section 4 and Subsection 5.1, we provide empirical and theoretical insights about learning succes-
sor representations from offline data and use them to deal with task generalization in the fine-tuning
stage. Specifically, we observe that the fine-tuning performance is influenced by the learning process of
value functions, represented by weight vectors, and the pre-trained representations. The quality of pre-
trained representations depends on the quality and coverage of the offline data, as well as the handling
of catastrophic overestimation. To this end, we expect agents to acquire well-performed representations
regardless of the offline data distribution and demonstrate robust task generalization capabilities.

In this paper, we propose a novel approach utilizing randomized ensembles of successor representations
and critic networks, named by ESR-O2O, to address the challenges discussed earlier. Our design is
motivated by several reasons. First, multiple estimates enable characterization for epistemic uncertainty
and the lower confidence bound of estimations for representations and values, facilitating efficient and
pessimistic learning in the offline stage [51,52]. Second, ensemble helps to mitigate the estimation bias [47],
thus reducing the gaps in the sub-optimality bound described in (7). Third, ensembles are beneficial to
enhancing the sample efficiency [23, 41]. Finally, ensembles impose diversity on the estimation, thereby
mitigating the limitation of the coverage of offline datasets.

We compare our method ESR-O2O with vanilla SR-based methods and show the differences in the
framework in Figure 4. Vanilla SR-base methods often assume access to multiple source environments
to learn representations. In such cases, the generalization to target environments can be considered the
interpolation [34] or modeling the Gaussian process [35]. However, our method faces the more challenging
task of task generalization with access to only an offline dataset generated from a single environment. On
the other hand, vanilla methods typically assume a linear relationship between the value function and the
successor representation, which restricts the applicability of successor representations. In contrast, our
method directly models the value function as a function of successor representations, utilizing multiple
layers rather than a single linear layer. This broader modeling capability enhances the feasibility and
applications of our method in more complex scenarios.

Formally, we introduce the ensemble successor representations and ensemble Q functions as follows. As
depicted in Figure 4(b), ψi : i ∈ [1, n], |S| × |A| → |S| represents the ensemble successor representations,
where each member is initialized randomly. Similarly, Qk : k ∈ [1, n], |S| × |A| → 1 represents the
ensemble Q functions. Both the ensemble SR and ensemble Q functions are updated using TD learning:

ψk(st, at)← ψk(st, at) + α[φ(st, at) + γ · ψk(st+1, at+1)− ψk(st, at)], (13)

Qk(ψk(st, at))← Qk(ψk(st, at)) + α[r(st, at) + γ ·Qk(ψk(st+1, at+1))−Qk(ψk(st, at))], (14)

where α and γ represent the learning rate and discount factor, respectively. The basic feature ψ(·) is
assumed to be available in this work. When the input is finite and vectorized, this mapping can be
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Figure 4 (Color online) Frameworks of (a) vanilla SR-based methods and (b) ESR-O2O for offline-to-online learning. Red dashed

boxes indicate the different parts of ESR-O2O from vanilla SR. While vanilla SR trains multiple representations from source

environments, ESR-O2O extracts ensemble representations using offline datasets from a single environment. Another difference

lies in the construction of the Q function, where vanilla SR considers linear composition, and ESR-O2O incorporates ensemble Q

functions. Other parts are the same, including fine-tuning the value function with online interactions with Mj , which follows a

greedy policy π(·|s) = argmaxQ(s, a).

Algorithm 1 Learning representation, policy, and value function from offline data

Require: Offline dataset D generated from Mi, policy network π, Q-networks {Qk}k∈[n], and target Q-networks {Q̄k}k∈[n],

representation networks {ψk}k∈[n], and target representation networks {ψ̄k}k∈[n].

1: Initialize the parameters of π, {Qk}k∈[n], {Q̄k}k∈[n], {ψk}k∈[n], and {ψ̄k}k∈[n];

2: while Not coverage do

3: Sample transitions {(s, a, r, s′)} from D;

4: Update successor representations with (13);

5: Update critic networks using (14);

6: Update target networks using (15);

7: Update the policy network greedily according to (16);

8: end while

simplified as the identity function. The input of the Q functions is the successor representation, which
differs from linear composition (i.e., Q = ψTw). It is noted that we utilize independent targets instead
of shared targets, which may introduce optimism in certain cases [22].

5.3 Offline pre-training and fine-tuning process

In this subsection, we present the offline pre-training process and online fine-tuning process. Algorithm
1 outlines our approach. During the offline training stage, the representations and the critic network are
trained based on the Bellman equation. In each mini-batch, all networks in the ensemble are updated
using (13) and (14). Target networks are used to stabilize the learning process. If we define the respective
parameters of the original network and the target network as θ and θ̄, then target networks can be updated
using Polyak averaging:

θ̄ ← ρθ̄ + (1 − ρ)θ. (15)
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Algorithm 2 Online fine-tuning process given pre-trained ESR

Require: Online environment Mj , fine-tuning steps T ;

1: Load pre-trained policy network π, pre-trained critic networks Qπ
i , target networks Q̄π

i , and learned SR ψπ;

2: Fix the parameters of representation networks ψπ;

3: repeat

4: Interact with the environment Mj with action a ∼ π(·|s);

5: Receive new state s′ and reward r from the environment;

6: Store transitions {s, a, r, s′} into replay buffer;

7: Update critic networks and policies according to (14) and (16);

8: Update target networks;

9: until online steps = T .

(a) (b) (c)

(d) (e)

Figure 5 (Color online) Experimental environments, including (a) Reach from UTDS [53], (b) Quadruped, (c) Walker,

(d) MetaWorld [54], and (e) Antmaze from D4RL [55]. These environments can be categorized into three classes based on the

magnitude of the reward gap: small gap (Quadruped, Walker), big gap (Reach, MetaWorld), and no gap (Antmaze).

The policy network is trained to maximize the minimum value among the ensemble of critics, which can
be formulated as follows:

π(·|s)← argmax
a

min
k
Qk(s, a) = argmax

a
min
k
Qk(ψk(s, a)). (16)

This can be thought of as forming a lower confidence bound (LCB) for the value function of a policy
using the batch data and then seeking to find a policy that maximizes the LCB.

When it comes to online fine-tuning, ESR-O2O loads all pre-trained networks, including the policy
network, pre-trained critic networks, target networks, and the representation network. We do not set
many fine-tuning steps, since a large number of online interactions are not available. To prevent the
representation from being compromised or even destroyed [11], we fix the parameters of representation
networks during the fine-tuning process. Algorithm 2 outlines our online fine-tuning procedure.

6 Experiments

In this section, we present experimental evaluations to assess the effectiveness and feasibility of our pro-
posed method. Specifically, we aim to address the following research questions: (1) Does the utilization
of ensembles for successor representations and Q functions lead to improved performance in both the
offline learning and fine-tuning stages? (2) In scenarios without reward gaps, does ensemble SR outper-
form existing offline-to-online learning approaches? (3) What is the significance of ensembles in achieving
superior performance with our method?

6.1 Setups

All experimental environments are illustrated in Figure 5 [53–55]. The Quadruped environment involves
tasks such as walking, running, jumping, and rolling, while the Walker environment focuses on walking,
running, and flipping tasks. In the Reach environment, a manipulator is required to place blocks in
different positions, including bottom left, bottom right, top left, and top right. Each goal corresponds
to a distinct reward function. To investigate task generalization during fine-tuning from a single offline
environment, we randomly select two tasks, denoted by Mi and Mj , from the aforementioned environ-
ments. Agents pre-trained on the offline dataset generated in Mi are then fine-tuned and evaluated in
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Table 1 Average return on MetaWorld tasksa)

Environment PEX PROTO ESR-O2O

Mi: drawer-close-v2 3409.04 ± 1702.83 3646.20 ± 885.18 3249.58 ± 1874.60

Mj : drawer-open-v2 812.49 ± 789.24 395.71 ± 29.85 2278.42 ± 275.47

Mi: window-open-v2 394.35 ± 255.25 977.18 ± 870.05 280.81 ± 15.8604

Mj : window-close-v2 571.73 ± 369.45 174.69 ± 164.64 2910.27 ± 1446.12

a) The best results in online fine-tuning are in bold.

the new environmentMj, which shares the same dynamics but possesses a different reward function. We
refer to Appendix A for more details.

6.2 Performance when reward functions change

Due to the absence of available baselines specific to our setting, we incorporate several offline-to-online
learning methods like AWAC [7], Off2On [8], PEX [11], and PROTO [29] as baselines for comparison.
We also compare our method with offline RL methods such as CQL [20], IQL [9], and TD3BC [19], and
present their fine-tuning results in Appendix B due to page limitations. To assess the performance, we
categorize the environments based on the magnitude of the reward gap between Mi and Mj, as shown in
Figure 5. When the reward gap is small, previously learned policies and value functions may be effectively
utilized, implying easier generalization. In contrast, harder generalization scenarios involve a large reward
gap, making it challenging for the learned policies to perform well in the new task.

Offline performance. We begin by comparing the performance of pre-trained agents using various
algorithms. As illustrated in Figure 6, our method outperforms the start-of-the-art offline RL algo-
rithms with ‘medium’ and ‘medium-replay’ data, and exhibits competitive performance given ‘expert’
and ‘replay’ data. Furthermore, our method achieves reduced variances in episodic returns compared
to baseline algorithms, showing enhanced stability. We also observe that the performance gaps across
different datasets, such as the disparity between ‘replay’ data and ‘medium-replay’ data, are more pro-
nounced in baseline methods, whereas our proposed method displays narrower performance gaps among
these datasets. This implies that ESR-O2O is more robust to the data coverage and quality of offline
datasets.

Fine-tuning performance with a big reward gap. In scenarios with a significant reward gap,
previously learned policies or value functions become ineffective. As presented in Figure 7, conventional
methods fail to acquire useful policies in the fine-tuning stage. However, ESR-O2O demonstrates the
ability to effectively handle such reward gaps and achieve robust task generalization. The performance
of ESR-O2O on ‘medium-replay’ data closely approaches that of ‘replay’ data, indicating its capacity to
learn effectively even from datasets lacking expert policies. When ‘expert’ data is provided, ESR-O2O
exhibits favorable performance during offline training, albeit the fine-tuning performance is inferior to
those on other types of offline data. This suggests that in the presence of a highly narrow dataset,
the ability of ESR-O2O to diversify representations and Q functions and improve performance through
limited interactions may be constrained. PEX also demonstrates adaptability in several tasks due to
its adaptive policy composition, but still falls short of our method’s performance. We also present the
comparisons in the MetaWorld benchmark in Table 1. These results also validate the superiority of our
method when fine-tuning in a new environment, with more detailed results available in Appendix B.

Fine-tuning performance with a small reward gap. In scenarios with small reward gaps, it is
possible to leverage pre-trained policies or value functions for the new task. PEX and AWAC demonstrate
a degree of robustness in task switching. Conversely, Off2On, which is built on top of CQL and extracts
policies by maximizing Q functions, appears to be more sensitive to the distributional shift, resulting
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Figure 7 (Color online) Fine-tuning performance in scenarios with large reward gaps. While baseline methods struggle to

perform well during the fine-tuning stage, ESR-O2O demonstrates significant improvements in the fine-tuned policies, regardless

of the quality of the offline datasets.
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Figure 8 (Color online) Fine-tuning performance comparisons in scenarios with small reward gaps. The shaded areas indicate

variances across 5 random seeds.

in instability. Figure 8 illustrates that ESR-O2O significantly outperforms other methods. While PEX
and PROTO swiftly acquire useful policies during pre-training, we observe performance degradation and
inferiority during fine-tuning in a new environment. We speculate this is due to the lack of consideration
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Table 2 Performance on Antmaze tasksa)

Environment AWAC CQL IQL

antmaze-umaze-v2 52.75 ±8.67 → 98.75 ±1.09 94.00 ±1.58 → 99.50 ±0.87 77.00 ±0.71 → 96.50 ±1.12

antmaze-umaze-diverse-v2 56.00 ±2.74 → 0.00 ±0.00 9.50 ±9.91 → 99.00 ± 1.22 59.50 ±9.55 → 63.75 ±25.02

antmaze-medium-play-v2 0.00 ±0.00 → 0.00 ±0.00 59.00 ±11.18 → 97.75 ±1.30 71.75 ±2.95 → 89.75 ±1.09

antmaze-medium-diverse-v2 0.00 ±0.00 → 0.00 ±0.00 63.50 ±6.84 → 97.25 ±1.92 64.25 ± 1.92 → 92.25 ±2.86

antmaze-large-play-v2 0.00 ±0.00 → 0.00 ±0.00 28.75 ±7.76 → 88.25 ±2.28 38.50 ±8.73 → 64.50 ±17.04

antmaze-large-diverse-v2 0.00 ±0.00 → 0.00 ±0.00 35.50 ±3.64 → 91.75 ±3.96 26.75 ±3.77 → 64.25 ±4.15

Average 18.12 → 16.46 48.38 → 95.58 56.29 → 78.50

Environment Cal-QL ESR-O2O

antmaze-umaze-v2 76.75 ± 7.53 → 99.75 ± 0.43 98.00 ± 1.87 → 99.2 ± 1.79

antmaze-umaze-diverse-v2 32.00 ± 27.79 → 98.50 ± 1.12 93.75 ± 2.63 → 98.75 ± 0.96

antmaze-medium-play-v2 71.75 ± 3.27 → 98.75 ± 1.64 76.00 ± 1.41 → 97.00 ± 2.83

antmaze-medium-diverse-v2 62.00 ± 4.30 → 98.25 ± 1.48 59.40 ± 17.83 → 98.6 ± 1.67

antmaze-large-play-v2 31.75 ± 8.87 → 97.25 ± 1.79 71.6 ± 5.32 → 97.8 ± 1.30

antmaze-large-diverse-v2 44.00 ± 8.69 → 91.50 ± 1.79 73.4 ± 6.35 → 97.8 ± 1.48

Average 53.04 → 97.33 78.69 → 98.19

a) The best scores in offline pre-training and online fine-tuning are in bold.

for reward gaps and unsuitable data sampling methods.

6.3 Performance when rewards do not change

We also conduct experiments to compare ESR-O2O with other offline-to-online methods that focus on
the fine-tuning process within a single task. For this purpose, we choose the challenging navigation task
Antmaze from D4RL, which is a widely-used benchmark that does not contain reward changes. The
difficulty of this task lies in the sparse rewards and the need of exploration. Baselines including CQL,
IQL, AWAC, and Cal-QL [10] are adopted. The results of the comparisons are presented in Table 2.
Among the baselines, IQL shows the best offline performance, while Cal-QL achieves the best fine-tuning
performance on most tasks. However, ESR-O2O outperforms all these methods by a significant margin,
especially in the case of ‘antmaze-large’ tasks with the most complex environments.

6.4 Ablation study

To demonstrate the feasibility of our proposed design, we examine the impact of ensembles applied on
SR and Q networks on the performance. First, we compare our method with two variants by eliminating
ensembles of SR (indicated by ‘W/o ensemble SR’) and all ensembles (indicated by ‘W/o ensemble SR
& Q’). In the variant without ensemble SR and Q, ESR-O2O essentially becomes the original version of
the successor representation as described in Section 4. This variant only incorporates layer normalization
to mitigate overestimation during offline pre-training. Second, we evaluate the effect of the number of
ensemble networks when n ranges from 2 to 10. We present the ablation results in Figures 9 and 10.
These results illustrate that the ensemble of SR is critical for fine-tuning, especially for large reward gaps.
The ensemble of Q networks also plays a significant role when dealing with scenarios with a small reward
gap or when the offline data is abundant. As for the quantity of ensemble networks, we observe that our
method exhibits strong performance when n is 6 or greater. We refer to Appendix C for more details.

7 Conclusion

In this paper, we have proposed a novel method incorporating ensemble networks and successor represen-
tations to handle the task generalization problem in the offline-to-online RL setting. The integration of
ensemble networks allows our model to capture diverse representations and reward functions of the envi-
ronment. Through extensive experiments on various benchmark tasks, we have demonstrated significant
improvements in the agent’s ability to transfer knowledge from offline data to online environments. Our
method outperforms state-of-the-art techniques and provides superior generalization performance. Our
work contributes to the broader field of RL by addressing a fundamental limitation of offline-to-online
learning. The proposed method opens up new avenues for real-world applications where collecting online
data is expensive or time-consuming, with the potential to handle task generalization.
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Figure 9 (Color online) Ablation on ensemble SR and ensemble Q. The shaded area indicates the variance across 5 random
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Figure 10 (Color online) Ablation on the quantity of ensemble networks n. The shaded area indicates the variance across 3

random seeds.

In the fine-tuning phase, we have chosen to fix the representation networks to prevent deviation caused
by distributional shifts. However, it is worth exploring the possibility of fine-tuning the representation
networks using new experiences. Techniques like model expansion [11] could also be employed to further
stabilize the representations in the face of distributional shifts. Additionally, investigating more effective
measurements for reward gaps is important. Kullback-Leibler or Jensen-Shannon divergences can be
used to characterize the gap between reward distributions, and diffusion models can serve as an efficient
distribution estimator [56].
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