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Abstract Binary neural networks have become a promising research topic due to their advantages of fast

inference speed and low energy consumption. However, most existing studies focus on binary convolutional

neural networks, while less attention has been paid to binary graph neural networks. A common drawback

of existing studies on binary graph neural networks is that they still include lots of inefficient full-precision

operations in multiplying three matrices and are therefore not efficient enough. In this paper, we propose

a novel method, called re-quantization-based binary graph neural networks (RQBGN), for binarizing graph

neural networks. Specifically, re-quantization, a necessary procedure contributing to the further reduction

of superfluous inefficient full-precision operations, quantizes the results of multiplication between any two

matrices during the process of multiplying three matrices. To address the challenges introduced by re-

quantization, in RQBGN we first study the impact of different computation orders to find an effective one and

then introduce a mixture of experts to increase the model capacity. Experiments on five benchmark datasets

show that performing re-quantization in different computation orders significantly impacts the performance of

binary graph neural network models, and RQBGN can outperform other baselines to achieve state-of-the-art

performance.

Keywords graph neural networks, binary neural networks, mixture of experts, computation-efficient algo-

rithms

1 Introduction

Graphs widely exist in real applications, such as traffic flow forecasting, social network analysis, brain
network analysis, knowledge graph completion, and molecular graph modeling. Complex relationships
between objects are usually described by edges in graphs. With rich information contained in edges,
effectively modeling and mining graph data can boost the performance of existing machine learning
algorithms. Recently, graph neural networks (GNNs) [1–5] have emerged as one of the most successful
and popular graph learning algorithms because of their powerful ability in modeling graph data.

Although GNNs have been successfully applied in various domains [6–10], they typically adopt full-
precision models to achieve good performance. Full-precision models do not fulfill the specific purposes
in some application scenarios. For example, in the interactive setting of recommender systems, intelli-
gent customer service may demand fast inference speed for decisions. Algorithms integrated into APPs
may require low energy consumption on mobile phones. International corporations may have a goal of
carbon-neutral to achieve. Since binary operations can enjoy hardware support (e.g., xnor and pop-
count operations), binary neural networks (BNNs) [11–13] provide a feasible approach for efficiency by
converting multiplication between full-precision matrices into the multiplication between binary matrices.

Unfortunately, most existing studies of BNNs focus on binary convolutional neural networks (CNNs) [14,
15], while only a few studies [13, 16, 17] paid attention to binary GNNs. One significant difference be-
tween GNNs and CNNs is that each layer of GNNs involves multiplying three matrices. In contrast,
each layer of CNNs only involves the multiplication between two matrices. Such a difference poses new
challenges for the research of binary GNNs. For example, representative binary GNNs like Bi-GCN [16]
and Bi-GNN [17] adopt XNOR-Net and its variants [18,19] to binarize the multiplication between feature
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matrix and weight matrix at each layer. In the absence of quantization of the normalized adjacency ma-
trix A ∈ R

N×N where N is the number of nodes, Bi-GCN and Bi-GNN still perform the multiplication
with A in full-precision mode. BGN [13] first binarizes the multiplication between the feature matrix and
weight matrix at each layer and then converts the multiplication between A and a full-precision matrix
into addition operations by quantizing the values of A to {+1, 0,−1}. However, the multiplication with
A is essentially performed in full-precision mode. Moreover, quantizing the values of A to {+1, 0,−1}
not only violates the similarity assumption but also drops the important interaction weights between
nodes which are essential guarantees for good performance of GNN models [6, 20]. We can find that
existing studies on binary GNNs only study the binarization of the multiplication between two matrices.
We take matrix multiplication of AXW as an example and perform the multiplication with the order
of A · (XW ). We need to perform matrix multiplication twice. Suppose each matrix multiplication
has the same order of computation complexity. In that case, it is easy to verify that existing studies
can only reduce half of the full-precision operations, obtaining a limited speedup of a factor of about 2.
With a limited speedup, existing studies on binary GNNs are impractical for inference acceleration in
real applications. Hence, further reducing inefficient full-precision operations is of great significance.

Since each graph convolution layer involves multiplying three matrices, re-quantization is a neces-
sary procedure if we want to further reduce superfluous full-precision operations in the binarization of
the graph convolution layer. Specifically, inefficient full-precision multiplication between at least two
matrices in each graph convolution layer is unavoidable without re-quantization. Here, re-quantization
means that we need to further quantize the result of the multiplication between any two matrices before
multiplying with the third matrix. The challenges posed by re-quantization are mainly twofold. First, re-
quantization in different computation orders yields different results and subsequently results in different
performance. Since none of the existing studies have investigated re-quantization in binary GNNs, how
much computation orders affect model performance remains unknown. Second, model capacity is further
reduced, leading to a further decrease in model accuracy. It is easy to verify that re-quantization reduces
the model capacity. How to increase the model capacity without additional computation overhead poses a
challenge to re-quantization. Overall, how to solve the above challenges posed by re-quantization remains
unexplored.

In this paper, we propose a novel method, called re-quantization based binary graph neural networks
(RQBGN), to construct effective and efficient binary graph neural networks. The contributions of this
paper are outlined as follows.

• We are the first to identify and investigate the new problem, namely re-quantization, which is a
necessary procedure contributing to further reduction of superfluous inefficient full-precision operations.

• We identify that different computation orders in re-quantization have a significant impact on the
performance of binary models. Furthermore, we find that there exists an optimal computation order that
performs consistently better than the other one on various tasks.

• We introduce a mixture of experts (MoE) [21, 22] into RQBGN to increase the capacity of binary
graph neural networks and therefore increase model accuracy. We show that RQBGN has fewer floating
operations than other methods.

• Experiments on five benchmark datasets verify that computation orders have a significant impact
on the performance of binary models. Moreover, RQBGN can outperform other baselines to achieve
state-of-the-art performance.

2 Notations and preliminaries

This section first introduces notations and then briefly reviews preliminaries of graph neural networks,
binary neural networks, and a mixture of experts.

2.1 Notations

Let boldface uppercase letters, such as C, denote matrices and boldface lowercase letters, such as c,
denote vectors. Let Ci∗ and C∗j denote the ith row and the jth column of a matrix C, respectively. Cij

denotes the element at the ith row and the jth column in C. ‖C‖F denotes the Frobenius norm of C.
‖C‖0 denotes the number of non-zero entries in C. Let S(·) denote a sign function and Q(·) denote a
function for low-bit quantization.
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Let A ∈ R
N×N denote the normalized weight matrix of a graph G, where N denotes the number of

nodes. Aij = 1 iff there is an edge from node i to j, otherwise Aij = 0. Let X ∈ R
N×u denote the node

feature matrix, where u denotes the dimension of the node feature. Let L denote the layer number of
GNNs.

2.2 Graph neural networks

Graph neural networks (GNNs) are developed for the representation learning of nodes and graphs, with
the goal that the learned representation can capture the complex relationships contained in graphs. While
lots of representative GNN models [6,7,23] have been proposed, most of them are developed based on the
message passing framework [24]. For convenience, we take one of the most representative models namely
SAGE [7] as an example for illustration. SAGE can be formulated as follows:

H
(ℓ) = f

(

AH
(ℓ−1)

W
(ℓ)
1 +H

(ℓ−1)
W

(ℓ)
2

)

, (1)

where H
(0) = X, f(·) denotes an activation function, W

(ℓ)
1 and W

(ℓ)
2 ∈ R

r×r are learnable parameters.
The first term of the right-hand side, which refers to a graph convolution operation, encodes the structure
information of graph G into H(ℓ). A can be obtained by preprocessing the original adjacency matrix of G
or via a parameterized function. For example, in the attention-based GNN models [23,25], A is obtained
via a parameterized function of the node representation at each layer.

2.3 Binary neural networks

With increased deep learning applications in various domains, it is urgent to construct efficient deep
learning models. BNNs are developed to construct efficient deep learning models with fast inference
speed, low energy consumption, and low storage overhead. The study of BNNs mainly includes how
to perform binarization [11, 12, 18, 19] and how to train binary models [26–28]. We take one of the
representative methods namely XNOR-Net++ [19] to illustrate how to perform binarization.

XW ≈ (S(X) · S(W )) ⊙α, (2)

where X is a feature matrix, W is a learnable weight matrix, ⊙ denotes element-wise multiplication, and
α is a learnable scaling vector. Since the gradient of S(·) is almost zero everywhere, approximation like
straight through estimator (STE) [26] is used to approximate the gradient of the full-precision variable
with that of the quantized variable. Details are shown as follows:

[

∂L

∂W

]

ij

≈







[

∂L
∂S(W )

]

ij
, if −1 < Wij < 1,

0, otherwise,
(3)

where L denotes the loss of models. BNNs can effectively learn model parameters with approximation
techniques for estimating gradients.

2.4 Mixture of experts

Big data and large models are a dominant trend in machine learning research. However, naively increasing
the number of parameters (e.g., increasing the depth and the width of models) poses challenges to training
and experimental equipment. To this end, the mixture of experts (MoE) models [21,22,29–34] is developed
to increase the model capacity without largely increasing computation cost. Specifically, different inputs
will activate different parameters (expert modules) via a routing strategy. Let x denote the input, fg(·)
denote a gating function, and fk

e (·) denote the kth expert module. Then the MoE unit is formulated as
follows:

xo =
K
∑

k=1

fg(x)kf
k
e (x), (4)

where K denotes the number of expert modules, and fg(x)k denotes the kth element of fg(x). By
introducing K expert modules, the model capacity is correspondingly increased by a factor of K, which
facilitates the absorption of information from big data. Generally, outputs of fg(·) are sparse. The
increased computation overhead mainly depends on the sparsity of fg(·) and the cost of computing fg(·).
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3 RQBGN

In this section, we first formulate re-quantization and analyze the challenges caused by it. Then, we
present our proposed solutions for the corresponding challenges. After that, we present the objective
function of RQBGN. Finally, we analyze the computation complexity of RQBGN.

3.1 Formulation and analysis of re-quantization

Here, we take the GNN model defined in (1) as an example to formulate re-quantization. And we analyze
the challenges caused by re-quantization in terms of computation orders and model capacity.

3.1.1 Formulation of re-quantization

Unlike existing BNNs that only need to binarize the multiplication between two matrices, operations

of AH
(ℓ−1)

W
(ℓ)
1 in (1) involve binarization of multiplying three matrices. This means H

(ℓ−1)
W

(ℓ)
1 or

AH(ℓ−1) needs to be further binarized before multiplying with the third matrix. We define the procedure

of binarizing H(ℓ−1)W
(ℓ)
1 or AH(ℓ−1) in AH(ℓ−1)W

(ℓ)
1 as re-quantization. Obviously, there are two

different orders for re-quantization. We adopt a similar framework in XNOR-Net++ [19] to formulate
these two computation orders, which are shown as follows:

H
(ℓ) = f

(

S
(

Q(A)S(H(ℓ−1))
)

S(W
(ℓ)
1 )⊙α

(ℓ)
1 + S(H(ℓ−1))S(W

(ℓ)
2 )⊙α

(ℓ)
2

)

, (5)

H
(ℓ) = f

(

Q(A)S
(

S(H(ℓ−1))S(W
(ℓ)
1 )

)

⊙α
(ℓ)
1 + S(H(ℓ−1))S(W

(ℓ)
2 )⊙α

(ℓ)
2

)

, (6)

where α
(ℓ)
1 ∈ R

1×r and α
(ℓ)
2 ∈ R

1×r are learnable scaling vectors. Eq. (5) indicates that Q(A)S(H(ℓ−1))

is calculated first, while Eq. (6) indicates that S(H(ℓ−1))S(W
(ℓ)
1 ) is calculated first. As we have explained

in Section 1, quantizing the values of A to {+1, 0,−1} is unreasonable and leads to poor performance,
which we will verify in Section 4. Instead, we quantize the values of A to 4 bits of precision. Specifically,
we replace S(A) with Q(A), which is a uniform quantizer defined in [35]. Formally, Q(A) is defined as
follows:

Q(A) = ⌊Clip(A/s, 0, 24 − 1)⌉ · s, (7)

where s is a learnable step size, ⌊·⌉ is a rounding operation, and Clip(·, 0, 24 − 1) is a function that clips
the input variable to the range [0, 24− 1]. A visual illustration of the re-quantization process is presented
in Figure 1.

3.1.2 Analysis of re-quantization

It is easy to verify that Eqs. (5) and (6) give different results and may lead to different performance.
Hence, one challenge is to answer whether there is an optimal computation order that performs consis-
tently better than the other computation order on various tasks. Furthermore, it is known that binary
operations will largely reduce the effective capacity of a model and further lead to a decrease in model
performance. Because re-quantization will further reduce the model capacity, another challenge is to
answer how to effectively increase the model capacity of binary GNN models after re-quantization.

3.2 Proposed solutions

We explore solutions for the challenges introduced in re-quantization. First, we present the findings
about the impact of different computation orders. Then, we introduce a mixture of experts to increase
the capacity of binary GNN models. The main idea is to replace the binary linear layer with multiple
binary linear layers and only activate one for each input via a routing function. A visual illustration of
RQBGN is presented in Figure 2.
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S(·) S(·)Q(·) Q(·)

A H(ℓ−1) A H(ℓ−1)

Figure 1 Visual illustration of the re-quantization process. H
(ℓ−1) denotes the feature matrix of the ℓth layer. Aggregation

denotes the operation of aggregating messages from neighbors for each center node. BLP denotes an operation of binary linear

projection. (a) B1 denoting the process defined in (5). For B1, the first two matrices of AH
(ℓ−1)

W
(ℓ)
1 are multiplied first and then

the obtained result is further binarized before multiplying the third matrix. (b) B2 denoting the process defined in (6). For B2,

the latter two matrices of AH
(ℓ−1)

W
(ℓ)
1 are multiplied first and then the obtained result is further binarized before multiplying

the first matrix.

3.2.1 Impact of computation orders

We perform extensive experiments to study the impact of computation orders. According to our ex-
perimental results in Section 4, we can draw two conclusions about the impact of computation orders.
First, computation orders have a significant impact on the performance of binary GNN models. Second,
the computation order defined in (5) is superior to the computation order defined in (6) in most cases.
Taking ogbn-products as an example, we can find that the order in (5) outperforms the order in (6) by
4.3% when applied to SAGE and 3.2% when applied to GAT. Hence, RQBGN adopts computation order
defined in (5).

3.2.2 Mixture of experts in RQBGN

Similar to [30], we extend W
(ℓ)
1 or W

(ℓ)
2 to a set of expert modules. We take a specific layer ℓ as an

example for illustration. For convenience, let W denote W
(ℓ)
1 or W

(ℓ)
2 and Z denote S

(

Q(A)S(H(ℓ−1))
)

or S(H(ℓ−1)). Expert modules for W are formulated as follows. Similar to the definition in (4), we have

fg(Zi∗)k =

{

1, if k = argmax (Softmax ((Zi∗S(Θ)) ⊙αe)),

0, otherwise,
(8)

fk
e (Zi∗) = Zi∗S(Wk), (9)

Z̃i∗ =
K
∑

k=1

fg(Zi∗)kf
k
e (Zi∗), i = 1, . . . , N, (10)

where W = {Wk ∈ R
r×r}Kk=1, Θ ∈ R

r×K , and αe ∈ R
1×K are learnable parameters, K is the number of

experts, fk
e (·) denotes the kth expert module with Wk as its parameter, fg(·) denotes a gating function

with Θ and αe as its parameters and it only activates one expert for an input, and Z̃i∗ denotes the
corresponding output of Zi∗. The above forward process can be abstracted as follows when given Z as
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f
g
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Q(·)

A H(ℓ−1)

Figure 2 Visual illustration of RQBGN. MoE denotes the operation defined in (11). fg(·) is defined in (8). Top-1 gate means

that only the gate with a maximum score will be activated.

input:

Z̃ = MoE(Z;W ,Θ,αe), (11)

where Z denotes input, Z̃ denotes the corresponding output of Z, and W , Θ, and αe denote the learnable
parameters of MoE unit in RQBGN. Here, each expert in W has a different value, representing experts’
different knowledge. As in [30, 33], random initialization for each Wk is the most common practice.
Empirically, it is widely verified that the expert knowledge set W with random initialization is effective
enough to increase the model capacity [29,32,33]. Hence, random initialization provides a practical expert
knowledge set, which reaches MoE’s primary goal of increasing the model capacity. The gating function
fg(·) defined in (8) is also binary, where matrix multiplication is implemented by binary operations. Since
K ≪ r, the computation cost introduced by the gating function is negligible. Moreover, since a node
activates only one expert with the maximum gating value each time (see (8)), the computation cost of
(11) is almost the same as that of (5). Similar to S(·), we use STE to estimate the gradient of argmax(·).
Then an RQBGN layer is defined as follows:

H
(ℓ) = f

(

MoE
(

S
(

Q(A)S(H(ℓ−1))
)

;W
(ℓ)
1 ,Θ

(ℓ)
1 ,α

(ℓ)
1,e

)

⊙α
(ℓ)
1

+MoE
(

S(H(ℓ−1));W
(ℓ)
2 ,Θ

(ℓ)
2 ,α

(ℓ)
2,e

)

⊙α
(ℓ)
2

)

. (12)

Since each node i activates only one expert each time (see (8)), Eq. (12) has the same order of computation
complexity as (5).

Note that there are differences between RQBGN and the work in [34]. First, in RQBGN, the gate func-
tion in (8) is computed via binary matrix multiplication, while the gate function in [34] is computed via
full-precision matrix multiplication. Therefore, the gate function in [34] introduces additional inefficient
full-precision operations and the value of K cannot be too large. Second, RQBGN focuses on binarizing
GNNs, while the work in [34] focuses on binarizing CNNs.

3.3 Objective function

Let Ŷ = H(L) denote the output of RQBGN. The objective function for RQBGN is formulated as
follows:

min
P

∑

i∈Vtr

∑

c

−Yic log Ŷic + λ/2 ·
∑

P∈P

‖P ‖2F , (13)
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Table 1 Complexity analysis of operations. The analysis is mainly based on the GNN model in (1), and we only show the

complexity of layer ℓ a)

Method BOPs FLOPs

GNN (FP) 0 O(2Nr2 + 2‖A‖0 · r + 3Nr)

Bi-GNN [17] O
(

2Nr2) O(2‖A‖0 · r + 3Nr)

BGN [13] O
(

2Nr2) O(‖A‖0 · r + 3Nr)

RQBGN (ours) O
(

2Nr2 + 4‖A‖0 · r + NrK) O(3Nr + NK)

a) Numbers in column BOPs represent the numbers of binary operations. Numbers in column FLOPs indicate the numbers of

floating operations. FP indicates full-precision. r is the dimension of node representation. K is the number of experts.

where P = {W
(ℓ)
1,1 , . . . ,W

(ℓ)
1,K ,W

(ℓ)
2,1 , . . . ,W

(ℓ)
2,K ,Θ

(ℓ)
1 ,Θ

(ℓ)
2 ,α

(ℓ)
1 ,α

(ℓ)
2 ,α

(ℓ)
1,e,α

(ℓ)
2,e}

L
ℓ=1 denote the learnable

parameters in (12), λ is a hyper-parameter for the Frobenius norm regularization of P , and Vtr denotes
the training set.

3.4 Complexity analysis

This subsection compares the number of binary operations (BOPs) and floating operations (FLOPs) of
different methods in the forward process. The comparison is mainly based on the GNN model defined
in (1). The results are summarized in Table 1, from which we can draw the following conclusions. First,
the sums of BOPs and FLOPs for different methods are approximately equal. Second, since NK is much
smaller than ‖A‖0 and ‖A‖0 ·r is much larger than Nr, we can find that RQBGN has much fewer FLOPs
than other methods. In sum, RQBGN converts most of the inefficient FLOPs into BOPs. Consequently,
RQBGN is more efficient than other methods.

4 Experiments

We evaluate RQBGN and other baselines on five benchmark datasets by binarizing two base GNN models,
including SAGE [7] and GAT [23]. All methods are implemented with Pytorch [36] and Pytorch-Geometric
Library [37]. All experiments are run on an NVIDIA RTX A6000 GPU server with 48 GB of graphics
memory.

4.1 Datasets

Datasets for evaluation include ogbn-products, ogbn-papers100M, ogbn-proteins, ogbg-molhiv, and ogbg-
molpcba [38]1). The first three datasets are used for node classification and the latter two are used for
graph classification. The first three datasets are evaluated in a transductive setting and the latter two
are evaluated in an inductive setting. ogbn-products is extracted from Amazon products co-purchasing
network [39] and the task is to predict the category of a product. ogbn-papers100M is a paper citation
network data extracted from Microsoft academic graph (MAG) [40] and the task is to predict the sub-
ject areas of papers that are published in arxiv. ogbn-proteins is a protein-protein association network
data [41] in which edges indicate biologically meaningful associations between proteins, including phys-
ical interactions, homology, or co-expression. The task for ogbn-proteins is to predict the presence of
protein functions. ogbg-molhiv and ogbg-molpcba are molecular property prediction datasets extracted
from the MOLECULENET [42]. Each graph in ogbg-molhiv and ogbg-molpcba represents a molecule, in
which nodes represent atoms and edges are chemical bonds. The statistics of datasets are summarized in
Table 2.

4.2 Baselines

We choose SAGE [7] and GAT [23] as base GNN models for binarization. SAGE is one of the most
representative non-attention-based GNN models and GAT is one of the most representative attention-
based GNN models. Specifically, SAGE applies trainable aggregation functions to aggregate neighbor
information. GAT adopts an attention mechanism to learn aggregation weights for neighboring nodes
adaptively.

We mainly compare RQBGN with two state-of-the-art baselines, including BGN [13] and Bi-GNN [17].
Note that none of the existing studies have investigated the problem of re-quantization, and hence existing

1) https://ogb.stanford.edu/.
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Table 2 Statistics of datasets

Node classification datasets Graph classification datasets

ogbn-products ogbn-papers100M ogbn-proteins ogbg-molhiv ogbg-molpcba

#Nodes 2449029 111059956 132534 #Graphs 41127 437929

#Edges 61859140 1615685872 39561252 #Nodes per graph 25.5 26.0

#Features/node 100 128 8 #Edges per graph 27.5 28.1

#Classes 47 172 112 #Classes 2 2

#Training nodes 196615 1207179 86619 #Training graphs 32901 350343

#Validation nodes 39323 125265 21236 #Validation graphs 4113 43793

#Test nodes 2213091 214338 24679 #Test graphs 4113 43793

Task type Multi-class Multi-class Multi-label Task type Binary-class Binary-class

Metric Accuracy Accuracy ROC-AUC Metric ROC-AUC Average precision (AP)

Table 3 Hyper-parametersa)

L r T B p λ η

ogbn-products 5 128 200 32 × 1024 0.15 5E−6 0.01

ogbn-papers100M 3 256 200 32 × 1024 0.1 1E−7 0.01

ogbn-proteins 7 128 1200 32 × 1024 0.1 0 0.01

ogbg-molhiv 5 256 100 512 0 1E−5 0.002

ogbg-molpcba 5 256 100 8 × 1024 0.2 0 0.01

a) L is layer number. r is a hidden dimension. T is the maximum number of epochs. B is mini-batch size. p is the probability

of dropout. λ is the regularization coefficient for parameters. η is the learning rate. Note that values of p listed in the table are

for binary GNN models, while different values of p will be set for full-precision GNN models.

studies include lots of inefficient full-precision operations. For a fair comparison, implementations of
all methods, including RQBGN, only differ in the binarization process. To analyze the effectiveness of
different binarization strategies, additional training techniques in Bi-GNN [17], like knowledge distillation
and multi-stage training, are not adopted in our experiments.

The evaluation metrics for each dataset are presented in Table 2. Note that the evaluation metrics for
all datasets are provided by the researchers in [38]. Since most recent advances in GNNs follow the same
evaluation metrics in [38], we also adopt the same evaluation metrics.

4.3 Implementation

Since training GNN models on node classification datasets will incur exponential computation and mem-
ory complexity, we adopt BNS [43] as our neighbor sampling strategy to reduce computation and memory
complexity. Furthermore, we apply GraphNorm [44] to normalize the hidden representation for acceler-
ating the training process.

For most hyper-parameters, we first tune them with full-precision GNN models on the validation set
and then set the same values for binary GNN models. Unless otherwise stated, the following settings
are set to be the same for SAGE and GAT, the same for full-precision models and binary ones, and
the same for RQBGN and other binarization strategies. For some common hyper-parameters, including
layer number L, hidden dimension r, maximum epoch T , mini-batch size B, probability of dropout p,
regularization coefficient for parameters λ, and learning rate η, we list their values in Table 3. Since we
adopt BNS for training GNN models on node classification datasets, three additional hyper-parameters
are needed to be set, i.e., s̃0, s̃1, δ. Specifically, s̃0 is the number of sampled neighbors for nodes at the
output layer, s̃1 is the number of sampled neighbors for nodes at other layers, and δ is the ratio of blocked
neighbors. For ogbn-products, s̃0 = 10, s̃1 = 4, δ = 1/2. For ogbn-papers100M, s̃0 = 20, s̃1 = 4, δ = 1/2.
For ogbn-proteins, s̃0 = 48, s̃1 = 24, δ = 2/3. For ogbn-products and ogbn-papers100M, we augment
node features with masked label information as in [25]. For ogbn-proteins, edge features are utilized
as in [25]. Since our goal is not to achieve high accuracy for the full-precision model but to verify the
effectiveness of different binarization strategies, we set the number of heads in GAT to 1. K for RQBGN
is selected from {2, 4, 6, 8, 16} according to the performance on the validation set. We use Adam [45] for
optimization. We adopt a cosine annealing schedule [46] on the learning rate to improve the convergence
rate.
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Table 4 Impact of computation ordersa)

Methods
Accuracy (%) ↑ or ROC-AUC (%) ↑ or AP (%) ↑

ogbn-products ogbn-papers100M ogbn-proteins ogbg-molhiv ogbg-molpcba

SAGE (FP) 81.49 ± 0.19 65.53 ± 0.10 85.14 ± 0.25 78.78 ± 0.55 23.62 ± 0.20

SAGE-B2 74.81 ± 0.73 61.32 ± 0.17 81.60 ± 0.58 76.39 ± 1.27 16.23 ± 0.19

SAGE-B1 79.10 ± 0.29 62.28 ± 0.10 81.74 ± 0.51 77.71 ± 1.41 18.73 ± 0.14

GAT (FP) 82.07 ± 0.16 65.53 ± 0.15 85.21 ± 0.28 77.68 ± 0.88 21.86 ± 0.48

GAT-B2 76.81 ± 0.34 61.34 ± 0.10 81.23 ± 0.37 74.94 ± 1.09 14.62 ± 0.17

GAT-B1 80.05 ± 0.24 62.01 ± 0.21 81.96 ± 0.39 76.19 ± 1.01 18.23 ± 0.05

a) FP denotes the full-precision models. B1 denotes the binary models performing forward propagation with the computation

order defined in (5). B2 denotes the binary models performing forward propagation with the computation order defined in (6).

Boldface letters denote the best results between order B1 and order B2.

Table 5 Comparison with baselinesa)

Methods
Accuracy (%) ↑ or ROC-AUC (%) ↑ or AP (%) ↑

ogbn-products ogbn-papers100M ogbn-proteins ogbg-molhiv ogbg-molpcba

SAGE (FP) 81.49 ± 0.19 65.53 ± 0.10 85.14 ± 0.25 78.78 ± 0.55 23.62 ± 0.20

BGN 73.18 ± 0.90 63.10 ± 0.16 76.81 ± 0.71 76.74 ± 0.92 19.74 ± 0.15

Bi-GNN 79.81 ± 0.45 63.03 ± 0.17 82.52 ± 0.40 78.85 ± 0.84 20.08 ± 0.53

RQBGN (ours) 80.32 ± 0.16 62.64 ± 0.08 83.17 ± 0.26 78.41 ± 0.76 19.48 ± 0.26

GAT (FP) 82.07 ± 0.16 65.53 ± 0.15 85.21 ± 0.28 77.68 ± 0.88 21.86 ± 0.48

BGN 78.15 ± 0.44 62.35 ± 0.11 68.36 ± 2.84 75.44 ± 1.31 17.83 ± 0.55

Bi-GNN 81.14 ± 0.10 62.79 ± 0.12 83.00 ± 0.25 77.06 ± 1.17 18.84 ± 0.20

RQBGN (ours) 81.49 ± 0.20 62.91 ± 0.12 83.04 ± 0.10 77.27 ± 1.23 18.74 ± 0.44

a) Boldface letters denote the best results among RQBGN and binary baselines.

4.4 Results

4.4.1 Impact of computation orders

Let B1 denote the computation order defined in (5), and B2 denote the computation order defined
in (6). To compare B1 and B2, we conduct experiments with the base binary GNN models. The results
are summarized in Table 4. We can draw the following conclusions. First, computation orders have a
significant impact on the performance of binary GNN models. For example, different computation orders
have an accuracy gap of 4.3% on ogbn-products, 1.0% on ogbn-papers100M, 0.7% on ogbn-proteins, 1.3%
on ogbg-molhiv, and 3.6% on ogbg-molpcba. Second, computation order B1 can perform better than B2
on all datasets. Third, computation order B1 consistently outperforms B2 when applied to both SAGE
and GAT. The above conclusions show that binarizing GNN models with computation order B1 is better.

4.4.2 Comparison with baselines

We compare our RQBGN with BGN [13] and Bi-GNN [17]. Results are summarized in Table 5. We
can draw the following conclusions. First, RQBGN can achieve comparable performance to state-of-the-
art baseline Bi-GNN on all datasets. For example, gaps between RQBGN and Bi-GNN on all datasets
fluctuate in a small range of [−0.60%, 0.65%] when all methods are applied to SAGE and in a range
of [−0.07%, 0.35%] when all methods are applied to GAT. Moreover, RQBGN outperforms Bi-GNN in
6 out of 10 cases. Since RQBGN has much fewer FLOPS than Bi-GNN (see Subsection 3.4), RQBGN
demonstrates its effectiveness by achieving accuracy comparable to that of Bi-GNN. Specifically, RQBGN
can effectively increase binary GNN models’ capacity and alleviate the problem of reduced model capacity
caused by re-quantization. Second, we observe that BGN performs worse than other methods in most
cases and the gaps are relatively large. For example, gaps between BGN and other methods fluctuate in a
large range of [−7.14%, 0.46%] when all methods are applied to SAGE and in a range of [−14.68%,−0.56%]
when all methods are applied to GAT. In particular, gaps between BGN and RQBGN reach −7.1% on
ogbn-products and −14.7% on ogbn-proteins. Moreover, BGN performs worse than Bi-GNN and RQBGN
in 9 out of 10 cases. This point shows that quantizing the values of A to {+1, 0,−1} leads to poor
performance because a value of −1 violates the similarity assumption and values of {+1, 0,−1} drop the
important interaction weights between nodes. In sum, RQBGN can achieve comparable performance to
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Figure 3 Effect of the number of experts K. SAGE and GAT are two base models for binarization. (a) Node classification

datasets; (b) graph classification datasets

state-of-the-art baseline Bi-GNN when applied to both SAGE and GAT.

4.4.3 Effect of the number of experts

We perform experiments to analyze the effect of the number of experts. The results are summarized in
Figure 3. We can find that the performance of binary GNN models improves in general as K increases
in the range of [2, 12]. The results show that a mixture of experts can effectively increase the capacity
of binary GNN models. As in [30, 33], this point also verifies that an expert knowledge set with random
initialization is effective enough to increase the capacity of binary models.

5 Conclusion

In this paper, we propose a novel method, called RQBGN, to construct effective and efficient binary
graph neural networks. To the best of our knowledge, we are the first to identify and investigate the new
problem, namely re-quantization, which is a necessary procedure contributing to the further reduction
of superfluous inefficient full-precision operations. In RQBGN, we identify that computation orders can
significantly impact the performance of binary models. Furthermore, we find that there exists an optimal
computation order that performs consistently better than the other one on various tasks. To ensure
the effectiveness of RQBGN, we introduce a mixture of experts to boost the model capacity. We show
that RQBGN has fewer FLOPs than other methods, and hence is more efficient than other methods.
Experiments on five benchmark datasets demonstrate the effectiveness of RQBGN.
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