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Abstract Game theory studies the mathematical models for self-interested individuals. Nash equilibrium is

arguably the most central solution in game theory. While finding the Nash equilibrium in general is known as

polynomial parity arguments on directed graphs (PPAD)-complete, learning in games provides an alternative

to approximate Nash equilibrium, which iteratively updates the player’s strategy through interactions with

other players. Rules and models have been developed for learning in games, such as fictitious play and

no-regret learning. Particularly, with recent advances in online learning and deep reinforcement learning,

techniques from these fields greatly boost the breakthroughs in learning in games from theory to application.

As a result, we have witnessed many superhuman game AI systems. The techniques used in these systems

evolve from conventional search and learning to purely reinforcement learning (RL)-style learning methods,

gradually getting rid of the domain knowledge. In this article, we systematically review the above techniques,

discuss the trend of basic learning rules towards a unified framework, and recap applications in large games.

Finally, we discuss some future directions and make the prospect of future game AI systems. We hope this

article will give some insights into designing novel approaches.

Keywords non-cooperative games, learning in games, no-regret learning, reinforcement learning, superhu-

man AI

1 Introduction

Games involve strategic interactions between multiple players where each rational player should pursue
the maximum payoff. A game is quite different from the single-agent decision-making problem, which
aims to find an optimal strategy that maximizes the agent’s expected payoff in a given environment. In
games, the payoff of each player heavily depends on the choices of other players, so the player may not
unilaterally achieve the maximum payoff without impairing other players’ interests. Games have been the
playgrounds of novel artificial intelligence techniques for ages. Game theory is the study of interactions
among independent, self-interested players. In this review, we mainly concentrate on non-cooperative
game theory1), which has become the most popular branch of game theory. Game theory also studies the
strategy of each individual. If the player has already known others’ strategies, a game will reduce to a
single-agent problem that seeks an optimal strategy, which is not the general case of games. As a result,
the notion of the optimal strategy is no longer meaningful in games, and game theorists deal with this
problem by identifying certain subsets of outcomes, called solution concepts.

One of the most influential solution concepts in game theory is the Nash equilibrium (NE), where
nobody has incentives to deviate from his current strategy unilaterally. In this case, the joint strategy of
all the players forms the NE. In the 1950s, John Nash proved that if we admit a mixed strategy, NE is
guaranteed to exist in games. However, finding NE is believed not easy. It does not correspond to NP
problems that are decision problems, since the answer to whether NE exists is always yes. Polynomial
parity arguments on directed graphs (PPAD) is a complexity class for these problems. The computational
complexity of finding NE is known as PPAD-complete [1] for multi-player general-sum games [2]. Even
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1) Note that non-cooperative games do not necessarily prohibit cooperation. The term “non-cooperative” refers to the fact that

the basic modeling unit in this type of game is the individual, rather than a group.
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for two-player general-sum games, finding NE is PPAD-complete [3]. However, finding the second NE or
NE that satisfies some property is NP-complete in general.

Instead of finding the exact equilibrium, an approximate equilibrium is often desired, which can be
obtained by learning approaches that learn from repeatedly playing the game. In broad strokes, the
approximation process iteratively evaluates the current strategy and updates it based on the feedback,
as if the player is learning to play the game. Fictitious play (FP) [4] is a well-established learning
framework where the player models the opponent’s (empirical) strategy by tracking the historical plays
of the opponent, and then chooses the strategy that achieves the highest payoff against the opponent’s
empirical strategy in each round. As a player would simulate the play in mind and update their future
play based on this simulation, hence the name fictitious play. Fictitious play is one of the earliest
learning rules, and it is actually proposed as an iterative method for computing NE in the 1950s. In
modern literature, the terminology learning in games refers to the mathematical models to describe the
behavior of players that learn to play the game, as well as the iterative solving framework. The theory
of learning in games [5] formally discusses learning models to study the long-run outcome of players and
their behaviors in a repeated playing game. A later work [6] raises the seminal question “If learning is
the answer, what is the question?” and frames the agendas of learning in games. These studies greatly
boost the formalization of learning in games.

In addition to mathematical models that describe the behaviors of learning players, a more practical
question is whether and when a learning rule will result in the desired outcome. Since the goal of
each player is to improve his payoff, learning in games is essentially an optimization problem. From
the optimization perspective, researchers have devised numerous learning algorithms for games via no-
regret/online learning [7] and variational inequality for generalized Nash equilibrium problems (GNEP) [8].
These learning algorithms are mainly tailored to stateless games, where players in each game interact once,
rather than sequentially, and thus solving for the best response to an opponent is tractable. However,
real-world large-scale games like Go and Poker proceed sequentially, and finding an optimal strategy
against a fixed opponent can be immensely challenging, which is equivalent to solving a single-agent
sequential decision-making problem with a large state-action space. Consequently, traditional reasoning
and search methodologies suffer from the curse of dimensionality. Reinforcement learning (RL) [9] offers a
viable solution to large-scale single-agent decision-making problems, which interacts with the environment
and learns an optimal policy (strategy). Since RL perceives the environment as a black box and does not
require much domain knowledge, it is a general oracle for solving the optimal policy and has also been
widely employed in large-scale games.

In recent years, we have witnessed many superhuman AI systems that incorporate learning algorithms
for more complex scenarios than ever, from single-agent problem [10,11] by RL to games [12–18] by search,
no-regret learning, RL, and meta-games. These advances that surpassed top humans in large-scale non-
cooperative games (especially two-player zero-sum games) adopt two seemingly different categories of
techniques, i.e., no-regret learning and reinforcement learning with population-based self-play training.
These two techniques have achieved unprecedented success in complex large-scale two-player zero-sum
games (Go, no-limit Texas Hold’em, StarCraft II) consecutively. Moreover, both techniques achieved these
feats earlier than the timeline humans predicted for AI to “defeat” humans. Tracing back the development
of these two approaches, it can be found that no-regret learning focuses more on the theoretical aspects,
and its implementation more closely aligns with the theory. On the other hand, although reinforcement
learning with population-based training has broader applications (board games, card games, real-time
strategy games, and multi-player online battles), there exist many heuristic designs in practice, such as
win-rate-based selections of the opponent for training, or a preference for the most recent ego policy,
and the final policy to deploy may not follow the theory. Thus, the theoretical understanding of these
practical techniques is still missing.

Additionally, the previous focuses of these two communities are quite different. No-regret learning
leaned more towards optimization techniques, proposing specific learning methods for different types of
games and providing proof of convergence. On the other hand, reinforcement learning in games has
two levels to study: the meta-game level and the original game level. At the level of the meta-game
(also called empirical game), beating a given opponent is assumed to be “easy” and there is usually
an increasing policy pool (also population), and then in order to reach an equilibrium, relevant studies
include which opponent to choose from the pool, how to evaluate the current policy pool, and how to
improve the effectiveness of the pool. In the original game level, the focus is on how RL algorithms
should be conducted in the multi-player game setting, with related studies including RL under the game-
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Figure 1 Milestones of learning in large-scale games that defeat top humans for the first time in chronological order.

theoretic framework, methods that focus on learning with opponent, theoretical properties, and the
sample complexity of multi-agent reinforcement learning.

Figure 1 presents the milestones of learning in large-scale games in chronological order. We noticed the
solving techniques for games have evolved from conventional search and learning [12] to purely RL-style
learning methods [18] which originate from the no-regret perspective, gradually getting rid of the prior
knowledge about the game structure and human demonstrations. Thus, these recent approaches have
the potential to scale to other complex games without changing too much. No-regret learning is one of
the earlier methods used for game learning, while reinforcement learning has broad applicability and is
widely used in some complex, large-scale games, due to its versatility and the recent advances of deep
neural networks as policy models. Although these two techniques may seem to belong to entirely different
categories, many ideas and tools can be borrowed from one another, and they develop toward a unified
learning objective. A successful example is DeepNash. Besides, we also add a concise overview in Table 1.

There exist many surveys concerning multi-agent learning (MAL) [19–21] mainly from the multi-agent
RL (MARL) view and modern AI in games [22, 23] from the technical view; however, we notice that
a systematic review of recent advances on learning in games from theory and algorithm to application
is missing. We also notice that these techniques of learning in games and reinforcement learning share
many commonalities and borrow tricks from each other. Learning in games has also reshaped the way of
thinking in other communities. Thus, we hope this review of recent techniques can boost new algorithms
for these fields.

The rest of this article is organized as follows. Section 2 gives the notations. In Section 3, we will
present the development of no-regret learning in games and some theoretic results. Counterfactual regret
minimization [24], the key technique in solving Poker in recent years, with its evolution is also reviewed
in Section 3. Then learning in games with RL is introduced in Section 4, which covers value-based
methods, policy gradient methods, RL with the game-theoretic learning framework, and opponent-aware
learning. As self-play with RL and population-based training has become a very popular paradigm for
many large-scale applications, population-based training methods, which originate from the empirical
game, are included in Section 4. In Section 5, we compare the design philosophy of different algorithms.
Then we retrospect the regret minimization and reward maximization, and discuss the unified learning
framework for regret minimization and reward maximization from recent studies. In Section 6, we recap
some applications in large-scale games and some platforms for learning in games. In the end, we briefly
discuss possible future directions and make the prospect of a future game AI system.

2 Preliminary

2.1 Non-cooperative games

A (non-cooperative) game usually contains a finite set N of n players. Each player is indexed by i, and
−i denotes the players except i. The finite set of available actions for player i is Ai. A = A1 × · · · ×An

is the joint action space, and each a = (a1, . . . , an) ∈ A is called an action profile. The utility (or payoff)
function ui : A 7→ R for player i is a real-valued function. Note that ui depends on the action profile
rather than merely on player i’s own action, which is different from the single-player decision-making
problem. When

∑

i ui(a) = 0 or
∑

i ui(a) = c for every a, where c is s constant, then the game is
zero-sum or constant-sum game. The two-player zero-sum game (2p0s) is widely studied in the field of
game theory, as it reflects a fully-competitive scenario and has many nice properties. If for any a and for
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Table 1 Concise overview of approaches to learning in games presented in this work

Category Methodology Pros and cons Some relevant work

No-regret learning

in games

No-regret learning

Intuitive with nice convergence

property, while the implementation

may be complicated.

FTRL [25], OFTRL [26, 27],

OMWU [28]

CFR family

The first scalable algorithm and easy

to use, but tailored to

extensive-form games.

CFR [24], MCCFR [29],

linearCFR [30]

RL in games

Centralized training
Theoretically sound but

too restrictive.
Minimax Q, Nash Q [31–33]

RL with self-play
Generally applicable, but sometimes

less efficient.
FSP [34], NFSP [35]

Policy gradient in games Able to combine powerful RL tools.
PG-based

algorithms [36–39]

Learning with opponent awareness
Leading to interesting outcomes but

is not scalable now.

Opponent modeling [40],

LOLA [41–43]

Open-ended learning
PSRO and meta-strategy solvers

Generally applicable, but sometimes

less efficient; convergence is

in the asymptotic sense.

PSRO variants [44–47]

Population diversity

Important tools for finding diverse

policies, but they are mainly

heuristic methods.

[48–51]

any pair of players i, j, ui(a) = uj(a), then the game is common-payoff game. The general case, where
the utility function does not have some special property, is subsumed into the general-sum game.

In game theory, the strategy of player i prescribes how the player will play. The simplest way is to choose
a single action for the player, resulting in a pure strategy. When all the players adopt a pure strategy, the
action profile is equivalent to the (pure) strategy profile. The mixed strategy σi : Ai 7→ [0, 1] for player i
is a probability distribution over the action set. Similarly, the mixed strategy profile σ = (σ1, . . . , σn) is
the Cartesian product of each player’s mixed strategy, which can be simplified as σ = (σi, σ−i). Then the
expected utility for player i is ui(σ) = Ea∼σ[ui(a)] =

∑

a
ui(a)

∏n
j σj(aj). The best response of player

i against a given σ−i satisfies BRi(σ−i) = argmaxσi
u(σi, σ−i). However, the solution concept in the

game turns to equilibrium, since each player cannot unilaterally maximize his utility. A (mixed) strategy
profile σ = (σi, σ−i) is an NE if and only if

∀i, ∀σ′i, ui(σ
′
i, σ−i)− ui(σi, σ−i) 6 0, (1)

or equivalently for each player i, the strategy satisfies σi ∈ BRi(σ−i). The intuition behind an NE is that
nobody can gain more by unilaterally deviating from the NE. If the right-hand side of (1) is replaced by
a non-negative ǫ, then σ is a ǫ-NE. Nash convergence (NashConv) is a common approach to measure
the distance of a given σ to an NE, which is defined as

NashConv(σ) =
n∑

i

max
σ′

i

ui(σ
′
i, σ−i)− ui(σ). (2)

Another important metric is the exploitability of the other players’ strategy σ−i,

expli(σ) = ui(BRi(σ−i), σ−i)− ui(σ). (3)

expli(σ) tells how much σ−i will be exploited by player i when player i switches to a best response. And
the exploitability2) of a strategy profile σ is

expl(σ) =
n∑

i

expli(σ). (4)

In two-player zero-sum games, for the same σ, NashConv(σ) = expl(σ), and both values are 0 when σ
is an NE; i.e., an NE is unexploitable.

The basic assumption behind Nash equilibrium is that every player acts independently, and the prob-
ability of the joint action a is σ(a) =

∏n
i=1 σi(ai). However, players can act jointly, and thus their

2) In some studies, the exploitability is averaged by the number of players.
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strategies are correlated. Let the joint action a sample from the strategy profile σ (a coordinator), then
σ is a correlated equilibrium (CE) if it satisfies

∀i, a′i, Ea∼σ[ui(a)] > E(a′

i
,a−i)∼σ[ui(a

′
i, a−i)|ai]. (5)

That is, for player i, the utility will not increase if he replaces the action ai with another action a′i every
time the coordinator recommends ai. If the condition ai on the right hand side (RHS) of (5) is removed,
i.e.,

∀i, σ′i, Ea∼σ[ui(a)] > Ea−i∼σ−i
[ui(σ

′
i, a−i)], (6)

then σ is a coarse correlated equilibrium (CCE). It is easy to see that every Nash equilibrium is a
correlated equilibrium by letting σ(a) =

∏n
i σi(ai).

One more thing that deserves note is that real-world games are often extensive-form games (see Sec-
tion 5 in [52]) or Markov games (also known as stochastic games, see Definition 6.2.1 in [52]), while
only the normal-form games are introduced for simplicity. For instance, Poker games are extensive-form
games where players sequentially play to earn a higher utility in the terminal state. Real-time strategy
(RTS) games like StarCraft are often Markov games, where players simultaneously make decisions in
each state which usually corresponds to a normal-form game. Although these two kinds of games can be
transformed into an equivalent normal-form game, the actions of the resulting game will be exponential
in the number of game states rather than polynomials. Besides, players in these games aim to achieve
higher long-run utility, which intertwines with RL in recent years.

2.2 Reinforcement learning

RL [9] aims to find an optimal policy that maximizes the cumulative reward in a single-agent sequential
decision-making problem via the interactions with the environment. RL can be formulated as a Markov
decision process (MDPs) with a 5-tuple 〈S,A, P, r, γ〉, where S is the state space, A is the action space,
P : S ×A × S′ 7→ [0, 1] is the transition function which transits from state s to s′ when the agent takes
action a, r : S ×A 7→ R is the reward function, and γ ∈ [0, 1] is the discount factor that accounts for the
trade-off between the instant reward and the long-term return. The (behavioral) policy π : S×A→ [0, 1]
for the agent is a conditional probability over the action space. For a given policy π, the corresponding
state value function V (s) on the given s and state-action value function Q(s, a) on the given pair (s, a)
are defined as follows:

V π(s) = Eτ∼π,P

[ ∞∑

t=0

γtr(st, at)|s0 = s

]

, (7)

Qπ(s, a) = Eτ∼π,P

[ ∞∑

t=0

γtr(st, at)|s0 = s, a0 = a

]

, (8)

where τ = (s0, a0, r0, s1, a1, . . .) is the trajectory when the agent follows π to take actions in the envi-
ronment. The goal of the RL agent is to find an optimal policy that maximizes the expected trajectory
return, i.e.,

π⋆ = argmax
π

∑

s0

d(s0)V
π(s0), (9)

where d(s) is the distribution of initial states. Note that while the trajectory horizon above is infinite,
it also fits into the finite horizon with a maximum length of H . A simple approach is to learn the value
function Q(s, a) and then derive the final policy by π(a|s) = argmaxa Q(s, a). However, during the
learning process, the policy used to collect the samples is perturbed to explore the whole state-action
space, e.g., by an ǫ-greedy(Q) policy which follows the uniform random policy with probability ǫ. For
instance, in Q-learning [53], the Q function is updated as

Q(s, a)← Q(s, a) + α
(
r(s, a) + γmaxQ(s′, ·)−Q(s, a)

)
, (10)

where α is the learning rate, and the agent executes the ǫ-greedy(Q) policy in the environment. Another
important line of research is the policy gradient (PG) method with function approximations. Let πθ
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denote the policy parameterized by θ; then by policy gradient theorem [54], various policy gradient
algorithms follow the update rule on πθ as

θ ← θ + α · Eπθ
[f(s, a)∇θ log πθ(s, a)], (11)

where α is the learning rate and f(s, a) is a score function that evaluates the current policy πθ. Candidates
of the score function can be Q(s, a) or the advantage function A(s, a) = Q(s, a)−V (s). Under the policy
gradient theorem, subtracting a baseline (the baseline should not depend on the action) from the score
function does not influence the policy gradient. Besides, this technique can greatly reduce the variance
of the policy gradient when performing a sample-based policy gradient update. Later we will see that
the advantage function is equivalent to the instant regret.

We notice that some terms from game theory, online learning, and reinforcement learning are the same
thing, e.g., the player and agent, and the strategy3) and (behavioral) policy. In this following, we will
not distinguish these terms and interchangeably use them when necessary.

3 No-regret learning in games

The basic idea of no-regret learning algorithms is simple and intuitive: minimizing the cumulative regret
during the actual play. In no-regret learning, there are two seemingly heuristic algorithms, i.e., regret
matching (RM) [55] and multiplicative weight update (MWU) algorithm [56]. The former chooses ac-
tions proportion to the current accumulated regret, while the latter iteratively increases the weight of
well-performing actions and decreases the weight of poorly-performing actions. Both of these heuristic
algorithms have no-regret guarantees in the worst case. Subsequently, researchers proposed a unified
no-regret learning analytical framework, follow-the-regularized-leader (FTRL), which unifies these two
no-regret learning algorithms and other no-regret learning algorithms. Based on FTRL, researchers
turned to the convergence speed of no-regret learning algorithms beyond worst-case scenarios. The main
trend is to introduce an additional optimistic term in FTRL, which is a prediction of the future utility,
to achieve faster convergence. This framework is called OFTRL. In subsequent research, by adjusting
the learning step size or designing more advanced learning methods, the convergence speed has been
greatly improved in specific games. Additionally, theoretical research also focuses on the convergence of
the last-iterate convergence under the no-regret learning framework. In fact, many algorithms under the
OFTRL framework have last-iterate convergence in certain games, such as two-player zero-sum games.

In practical applications, especially in imperfect information extensive-form games (IIG) like Poker,
the backbone no-regret learning algorithms usually are variants of RM. This is simply because RM
has no additional parameters, and due to its simplicity in computation, it is more efficient than some
higher-order optimization methods [57,58]. The milestone work for solving Poker is counterfactual regret
minimization (CFR) [24], which demonstrated that minimizing the regret in each information node in IIG
can achieve global regret minimization, avoiding direct regret minimization on the complete game tree.
Based on CFR, subsequent studies have consistently improved the solving efficiency in each information
node. Unfortunately, later methods that converge significantly faster in practice currently only have a
convergence speed roughly on par with the basic CFR. The success achieved in Poker games also relies on
an efficient abstraction of poker, greatly reducing the state and action space. However, these abstraction
methods often require domain knowledge of Poker. Recently, there have also been efforts to combine
CFR with deep neural networks, aiming to remove the dependence on domain knowledge.

In the following sections, we will provide more details from these two perspectives.

3.1 No-regret learning

The basic philosophy and two representative no-regret algorithms. Regret, as the literal mean-
ing, measures how much worse could it get for not choosing the optimal action. We will formally introduce
regret through the lens of the online decision problem. In the online decision problem, the agent makes
a decision each round without knowing the future and suffers a loss ℓ : X × Y → R from the online
environment, where X ,Y are the decision space for the agent and the outcome space of the environment
respectively (see Subsection 2 in [7] for detailed notations). Imagine in round T the agent remembers the

3) In game theory, the strategy can be more complex than the behavioral or mixed form, which is beyond the scope of this

paper.
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environmental outcomes in previous T − 1 rounds and has the chance to choose again an ideal strategy
that minimizes the total loss. Since the agent cannot foresee the outcome of the environment, this ideal
strategy is the best he can do. Then a fundamental question raises: whether the agent can match this
ideal strategy during the online decision-making process. So the actual cumulative loss suffered compared
to some fixed optimal action/strategy in hindsight, i.e., the regret of the agent, is expected to be small.
In terms of games, each agent learns to play a game repeatedly, where the opponent can be fixed or also
maximize his utility. In general, the agent takes an action based on the history and then receives a utility
each round. Regret measures the utility (or loss, which can be simply converted to the utility by adding a
minus sign) difference between a comparison policy and the actual play in retrospect. The instant regret
of the action ai ∈ Ai for the agent i in round t is calculated by

Ri,t(ai) = ui(ai, a−i,t)− ui(ai,t, a−i,t), (12)

where ai,t, a−i,t are the actual plays of the agent i and the other agents, and ui is the utility function4)

for the agent i. The actual play of the agent i can also be replaced by the strategy in iteration t. The
main focus is the cumulative (external) regret (also regret for short) of the action ai after T rounds for
the agent i,

RT
i (ai) =

T∑

t=1

Ri,t(ai). (13)

The above cumulative regret (of action ai) measures the utility difference that the agent i could have
earned if he followed an expert, i.e., a constant action all the time. It also naturally extends to a fixed
mixed strategy. Intuitively, if the regret of some action is high, the agent will regret not following that
action. Thus, the online learning algorithm minimizes the regret based on history. When the regret of a
learning algorithm satisfies

Pr

[
1

T
lim

T→∞
max
ai∈Ai

Ri(ai) 6 0

]

= 1, (14)

then it is said to be no-regret (or Hannan consistent [59]).
If we represent each action using one-hot encoding, the fraction of time that each pure strategy is

played, in the limit, is called empirical play. This also induces an average strategy as 1
T

∑T
t=1 ai,t. Note

that when the opponent uses a fixed strategy, the average strategy from a no-regret learning algorithm
approximates a best response to the opponent. Moreover, there is a well-known close connection between
no-regret learning and the solution concept in games: if for every agent, the average regret Ri

T vanishes,
then the empirical play of the players converges to a CCE in general-sum games or NE in 2p0s games.

RM [55] is a simple no-regret learning algorithm where the strategy in iteration t + 1 for player i is
given as

σt+1
i =







(Rt
i(a))

+

∑

a′(Rt
i(a
′))+

,
∑

a′

(Rt
i(a
′))+ > 0,

1

|A| , o.w.,

(15)

where x+ = max(x, 0). RM uses a heuristic rule where the probability of an action is in proportion to the
cumulative regret if the cumulative regret is strictly greater than 0, and breaks ties uniformly at random if
the regret of each action is non-positive. RM can also be derived from Blackwell’s approachability [60,61].
Due to its simplicity, RM is often used as the no-regret learning backbone in many real-world complex
games, e.g., Poker games. Hedge [56], which is a member of the MWU algorithms, is also a no-regret
algorithm. Hedge obtains the strategy for the next round as

σt+1(ai) ∝ σt(ai) ·
(
1

β

)ηui(ai)

, (16)

where β ∈ (0, 1) which is often set as β = 1
e and η is a parameter. Hedge re-weights the strategy by an

exponential utility to get a weight for each action, and then normalizes the new weight to get the strategy.
When β = 1

e , Hedge is equivalent to the analytic form:

σt+1 =
exp(ηRt

i(ai))
∑

a′

i
exp(ηRt

i(a
′
i))

=
σt(ai) exp(ηRi,t(ai))

∑

a′

i
σt(a′i) exp(ηRi,t(a′i))

=
σt(ai) exp(ηuai,t)

∑

a′

i
σt(a′i) exp(ηua′

i
,t)

. (17)

4) Online learning often aims at minimizing the loss, which can be converted to maximize the utility.
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Algorithm 1 Regret matching

1: Input: T (number of iterations);

2: Set Rt(a) = 0 for each action a;

3: for t = 1 to T do

4: Compute the strategy σt as (15) for each action a;

5: Choose action at according to σt;

6: Observe utility ut(a) for each action a;

7: Update regrets: Rt
i = Rt

i + ua,t − uat,t
for each action a;

8: end for

Algorithm 2 Hedge algorithm

1: Input: T (number of iterations), η (learning rate);

2: Set Rt(a) = 0 for each action a;

3: for t = 1 to T do

4: Compute the strategy σt as (17) for each action a;

5: Choose action at according to σt;

6: Observe utility ut(a) for each action a;

7: Compute (instant) regrets: Ri,t = ua,t − uat,t
for each action a;

8: end for

Hence, Hedge can be viewed in a similar way as RM, which is exponentially in proportion to the regret.
Algorithms 1 and 2 show the side-by-side comparisons. The main differences are how the strategy is
derived and whether the instant regret will be accumulated. The benefit of Hedge algorithm is that
it updates incrementally and only needs the access to the current strategy and utility of each action,
thus avoiding storing the historical strategies, utilities, or other statistics. However, it involves an extra
parameter η which is often set as O(

√
T ) to guarantee the average regret is O( 1√

T
), while RM is parameter-

free.
A unified no-regret learning framework: FTRL. In general, the no-regret learning process is

decentralized5), where the learning agent treats the environment (with other players) as a black box.
The decentralized learning paradigm is formulated as uncoupled in [62] where the player is unaware of
other players’ utilities. So in games, the no-regret learning agent can be unaware of other players and
adapt to them. Due to the connection between the no-regret property and CCE6), no-regret learning
algorithms can be readily applied in learning in games, e.g., regret matching is originally proposed as a
solver for CCE. From the perspective of prediction with expert advice problem in online learning (see
Chapter 2 in [7]), the action taken in each round can be treated as following some expert’s advice. One
natural choice for the agent is to follow the (best) leader (FTL), which is the expert with minimum total
cost so far. It is easy to see that this learning strategy is equivalent to the fictitious play process. Let
ℓt = ℓ(xt, yt) denote the loss at round t. We mainly focus on the full-information feedback setting, where
the player can observe the expected loss function ℓ(·, yt). When the loss function ℓ is convex in X and the
experts are constant, i.e., ∀x, y and any round i, j, ℓi(x, y) = ℓj(x, y), then the average regret is bounded

by O( log T
T ) (see Subsection 3.2 in [7]).

Unfortunately, the above naive FTL process is not no-regret for general loss function. A simple counter-
example is given by the following loss sequences:

ℓ(1, yt) = (0, 1, 0, 1, 0, 1, . . .)

and

ℓ(2, yt) = (1/2, 0, 1, 0, 1, 0, . . .)

with 2 actions. The total losses of both actions are about T/2 after T rounds, while FTL suffers Θ(T )
regret if the agent is deterministic and does not have any knowledge of the loss sequence. However,
as suggested by Hannan’s work [59], this issue can be fixed by adding a small perturbation µ(x) to
the cumulative loss. The spirit of perturbation also motivates the more general no-regret framework
FTRL [25]. Under standard FTRL, the agent selects the strategy for the next round as

xT = argmin
x∈X

T−1∑

t=1

ℓt(x) +
µ(x)

η
, (18)

5) Decentralized is more common in multi-agent learning.

6) Ref. [62] showed uncoupled learning dynamics cannot guarantee the convergence to Nash equilibrium but to a CCE.
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or equivalently when it refers to utility,

xT = argmax
x∈X

T−1∑

t=1

ut(x)−
µ(x)

η
. (19)

The regularizer µ(x) is often strongly convex in FTRL. When X is a n-simplex, let u(x) = 〈x,u〉 denote
the expected utility in the vector form and by setting µ(x) =

∑n
i xi logxi and µ(x) = ‖x‖2 where xi is

the i-th component of x, FTRL recovers Hedge and RM for discrete action space, respectively. FTRL
framework also provides a general upper bound O( 1√

T
) with a strongly convex regularizer, which matches

the lower bound in the worst case given by [63] and is unimprovable in fully adversarial setting if we do
not prescribe the loss sequence. Online mirror descent (MD) is another no-regret algorithm framework
from online convex optimization (OCO) [64]. In each iteration of MD,

xt+1 = argmin
x∈X

η〈x,∇Gt(xt)〉+DR(x, xt), (20)

where DR(x, y) = R(x) − R(y) − 〈∇R(y), x − y〉 is the Bregman divergence with respect to a strictly
convex generating function R and Gt is a convex function. MD is derived from the proximal point
view, while FTRL and MD can result in the same implementation; e.g., Hedge can be derived from both
FTRL and MD. The relation between online learning and online optimization is very close (see [65, 66]),
especially for FTRL and MD.

Faster convergence with optimistic terms. In general, the loss sequence encountered is not always
worst-case. Although the individual regret of the player is O(T−1/2) in a fully adversarial setting, the
optimal regret in the more benign setting is of interest, e.g., when all the players follow the same learning
algorithms. It is established for normal-form 2p0s games in [67] that the individual regret of each player
can converge at the rate of O( log T

T ) when both players follow the proposed no-regret protocol. The
performance is near-optimal in the sense that the optimal performance is O( 1

T ). Moreover, this result is
obtained under the strongly-uncoupled learning dynamics in which the players are restricted to only a
limited history or the statistics of the history in case the players can recover the full game and call a Nash
equilibrium solver. The upper bound can also be greatly improved when predictive terms of the next
round Mt+1 are adopted in predictive FTRL and optimistic mirror descent (OMD) [26, 68–70]. FTRL
with the predictive term is also known as optimistic FTRL (OFTRL). The strategy for the next round
with discrete action in OFTRL is

xT+1 = argmax
x∈X

〈

x,

T−1∑

t=1

ut + ûT+1

〉

− µ(x)

η
, (21)

where ûT+1 is the predictive utility of round T + 1. Letting ûT+1 = 0, OFTRL incorporates FTRL.
The general framework of OFTRL is shown in Algorithm 3. Using predictive terms, OFTRL can yield

a O((1 +
√
∑T

i=1 ‖ût − ut‖2⋆)/T ) regret bound, where ‖ · ‖⋆ is the dual norm to ‖ · ‖. It implies that

the regret is bounded by the prediction error and will be constant if the prediction is perfect. If we
choose a lazy predictor, i.e., ût = ut−1, it is easy to see that the regret is bounded by

∑T
i=1 ‖ût − ut‖2⋆,

the gradual variations of the utility sequence, which is first introduced in the regret analysis in [71]. A
later work [27] generalized the gradual variation and proposed the regret bounded by variation in utilities
property (RVU).

Definition 1. A vanishing regret algorithm satisfies the RVU property with parameters α > 0 and
0 < β 6 γ and a pair of dual norm (‖ · ‖, ‖ · ‖⋆) if the regret on any sequence of utilities u1,u2, . . . ,uT is
bounded as

T∑

t=1

〈x⋆ − xt,ut〉 6 α+ β
T∑

t=1

‖ut − ut−1‖2⋆ − γ
T∑

t=1

‖xt − xt−1‖2. (22)

Definition 1 stated in [27] is an instance of the predictor ût = ut−1, however, this definition can be
extended to any predictor, and the proof in that paper still holds. Then the authors of [27] showed both
OMD and OFTRL satisfy the RVU property. More importantly, the cumulative regret can be significantly
reduced, e.g, each player’s individual regret increases as O(T 1/4) under some mild conditions implying
the convergence to a CCE in general-sum games with a rate of O(T−3/4). On the other hand, the sum
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Algorithm 3 General (optimistic) FTRL framework

1: Set u0 = 0;

2: for t = 1 to T do

3: if use standard FTRL then

4: Set the optimistic term ût = 0;

5: end if

6: Compute the strategy as (21);

7: Observe utility ut and compute the cumulative utility;

8: end for

of each player’s regret can even be a constant when the predictor and the parameter η in OFTRL and
OMD are chosen appropriately (see Corollary 6 and 8 in [27]), albeit the regret can be negative for some
plays [72]. Thus, RVU property serves as a powerful tool to design novel OFTRL algorithms with faster
convergence. The results from [27] demonstrate the sum and individual regrets of each player under
optimistic Hedge are remarkably lower than the vanilla Hedge.

The pursuit of faster convergence of FTRL family never stops. Later studies that extend OFTRL to
more general settings [73, 74], with faster convergence rate in specific games. The regret for standard
optimistic Hedge is improved to O(T 1/6) in [75] for 2-player general-sum games in terms of external and
swap regrets, which are stronger regret notions7). More importantly, the above regret for optimistic Hedge
is further strengthened to O(log4 T ) in [76] for multi-player general-sum games. Note the predictive terms
ût+1 in [75,76] are both set as ut, resulting in xt+1 ∝ exp(η(2ut−ut−1)). Kernelized MWU/OMWU [77]
generalizes these results of MWU and OMWU for normal-form games to extensive-form games with a
kernel-based reduction, using only linear time per iteration, and obtains O(log4 T ) in extensive-form
games. The authors of [78] develop new techniques to extend the results of [76] from external regret to
internal and swap regret, thus obtaining O(log4 /T ) bound. Recently, LRL-OFTRL [79] improves the
regret for OFTRL to O(log T ) with the lifting trick in the more general convex game setting, which
linearly scales the strategy space first (in the lifting space) and then normalizes back to the original space
to get a valid strategy. There are also extensive studies that present faster convergence rate for OFTRL
(especially optimistic Hedge), and other variants of FTRL and MD [72,80–84].

Beyond the average convergence: last-iterate convergence. Besides the convergence of the
average policy, an interesting byproduct of optimistic Hedge/FTRL is its last-iterate convergence (also
point-wise convergence) in games. Late-iteration convergence ensures that the most recent policy will
converge, allowing for the adoption of the latest policy when deriving the average policy is non-trivial.
In practice, the last-iterate convergence is also noted for some variants of no-regret algorithms, e.g.,
in CFR+ [30] for Poker games. CFR-BR [85] proposes an asymmetric learning dynamics which runs
a no-regret and a best response solver for each agent in 2p0s games, and shows the current policy8)

converges to a part of equilibrium with high probability. A line of recent studies [28, 81, 86–93] have
studied the last-iterate convergence of the optimistic variants of no-regret methods, mainly from the
online optimization perspective, e.g., OMD and extragradient. These studies usually do not follow the
standard approaches in no-regret literature and have covered two-player zero-sum games, multi-player
general-sum games, extensive-form games, and Markov games. However, the last-iterate policy often
converges more slowly than the average convergence under the same assumption on specific games or
converges to an approximate perturbed equilibrium, e.g., to the quantal response equilibrium (QRE)
which adds the entropy of the current policy to the utility [94].

Another line of studies have studied the learning dynamics of no-regret algorithms in zero-sum games
and general-sum games [62,95–102], which tracks how the day-to-day behavior of the policy changes, i.e.,
the change of the current policy. Many studies show that the latest policy of MWU or the standard FTRL
cycles and thus does not converge to a fully mixed Nash equilibrium in 2p0s games [96,98,99,102]. On the
contrary, by the volume analysis tool, the last-iterate policy of OMWU shrinks towards the equilibrium
in zero-sum games [101], implying the optimistic term helps MWU achieve the last-iterate convergence.
These studies provide empirical and theoretic understandings of the dynamics of learning in games and
also motivate new variants of no-regret algorithms [39, 81] that achieve last-iterate convergence.

Remarks. Some of the analyses introduce advanced techniques to improve the upper bound for “old”
algorithms, rather than proposing novel algorithms, while other studies utilize new learning rules. This
implies some algorithms may perform better in practice. Interestingly, in large-scale games, those “faster”

7) The definition of external and swap regret can be found in Subsection 4.6 in [7].

8) In fact, the convergence property holds for any policy during the iteration.
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no-regret learning algorithms may not outperform simple versions, partly because of computational issues.
Although the theoretical foundation of no-regret learning is well-built, we will soon see the gap between
theory and practice.

3.2 Regret matching and CFR family in Poker

Besides the study from online learning community, imperfect-information extensive-form games (IIG)9),
such as Poker games, are perhaps the most prevalent and successful playgrounds for no-regret algorithms.
One fundamental change from the perfect-information game is that every player cannot observe the private
information of others, e.g., in Poker games, even when the player observes the same play history and
public information (his own cards and revealed cards), the cards in the others’ hands may have multiple
possibilities. These distinguishable information nodes fall into the same information state. Under the
perfect recall assumption, Kuhn’s theorem [103] shows the realization equivalence between the mixed
strategy10) and the behavioral strategy in IIG where each player can make decisions on the information
state sequentially, and thus later studies focus on the behavioral form.

RM is favored by many practitioners since it is parameter-free, e.g., Hedge should choose η appropri-
ately, and more computationally efficient than other no-regret variants. Counterfactual regret minimiza-
tion (CFR) [24] is a milestone for solving heads-up limit Texas Hold’em (HULHE), which is a two-player
zero-sum Poker game with about 1014 decision nodes. The authors of CFR propose a counterfactual
utility of strategy profile σ at the information set I as

ui(σ, I) =

∑

h∈I,h′∈Z πσ
−i(h)π

σ(h, h′)ui(h
′)

πσ
−i(I)

, (23)

where πσ
−i(h) is the counterfactual reach probability to the information node h, πσ

−i(I) =
∑

h∈I π
σ
−i(h) is

the counterfactual reach probability to information state I, and πσ(h, h′) is the probability of reaching
terminal node h′ from h. It is easy to see that player i always takes actions that will lead to h before
reaching h, which is counterfactual, and then all the players follow σ. The counterfactual reach probability
also cancels out player i’s contribution to the probability of reaching h. Thus, the counterfactual utility
denotes the expected utility of the information state I. Then the (average) immediate counterfactual
regret is defined as

RT
i,imm =

1

T
max

a∈A(I)

T∑

t=1

πσt

−i(I)(ui(σ
t|I→a, I)− ui(σ

t, I)), (24)

where σ|I→a denotes player i takes action a at I. Intuitively, the immediate counterfactual regret measures
the average regret of not playing the best action a at the state I in hindsight, where I would be reached
on each round if the player had tried to do so. Most importantly, the authors of [24] also prove that
the overall (average) regret is bounded by the sum of the immediate counterfactual regret of all the
information state of player i, which is a key property for more efficient implementation and computation.
Since then, minimizing the immediate counterfactual regret at each state I is the main technique for
finding an approximate Nash equilibrium using self-play in 2p0s IIGs. When applied in Poker games
like heads-up limit Texas Hold’em, the authors first abstract the dealt cards, resulting in approximately
1.65×1012 game states and 5.73×107 information states, and also use a domain-specific chance sampling
trick to reduce the computation cost per iteration (the vanilla CFR needs to traverse the whole game
tree). The final CFR agent is able to compute an approximate Nash equilibrium with roughly two orders
of magnitude larger than previous methods and beats other strong Poker bots, including the AAAI 2006
Computer Poker Competition’s winner. MCCFR [29] is a general framework for sampling in CFR and
provides a domain-independent sample-based CFR variant. MCCFR only traverses a small portion of the
full game which further reduces the per-iteration cost, thus leading to drastically faster convergence in the
empirical studies, even though it requires more iterations. There are also variants of MCCFR [104, 105]
using different sampling techniques.

9) We omit the formulation of IIG here. The readers may refer to Section 5 in [52] for details.

10) Intuitively, the mixed strategy of IIG is a distribution over all the possible pure strategies, where each pure strategy

corresponds to a decision sequence from the root node to the leaf.
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CFR+ [106] is a refinement of CFR, which replaces RM with RM+. Concretely, RM+ rectifies the
regret as

R+,T
i (a) =

{
(ui(a, σ

t
−i)− ui(σ

t))+, T = 1,
(
R+,T−1

i (a) + ui(a, σ
T
−i)− ui(σ

T )
)+

, T > 1.
(25)

Intuitively, RM+ neglects the negative part of the regret, which will be helpful when the “best action”
suddenly changes. RM requires more iterations to identify the bad actions, while RM+ can quickly adapt
to the good action. In addition, CFR+ uses no sampling (the performance degrades with sampling) and
does alternating updates, where CFR described in [24] should simultaneously update the regrets for both
players. The authors of CFR+ find the current policy almost converges to the equilibrium empirically
and the weighted averaging schema where the weight for round t is proportion to t converges faster.
This new variant, CFR+, is later proven to have at least the same regret bound of vanilla CFR [30],
but significantly outperforms CFR in Poker games with both the weighted average and the last-iterate
strategy. The authors of [107] showed that RM and RM+ are the instances of FTRL and online mirror
descent, and thus it is able to embody advanced techniques from no-regret learning into RM+. The
weighting schema also motivates the discounted variant11) of CFR (DCFR) [108], where not only the
early strategy is less weighted but also is the early regret. This idea is very intuitive: when “bad”
actions incur large regrets at earlier iterations, discounting these less significant regrets may dramatically
speed the convergence. DCFR has three parameters α, β, γ, denoted by DCFRα,β,γ and is defined by

multiplying the positive regrets by tα

tα+1 , negative regrets by
tβ

tβ+1 and using ( t
t+1 )

γ as the weight for the
stragtegy on iteration t. The setting α = 3/2, β = 0, γ = 2 in DCFR consistently outperforms CFR+.
Unfortunately, the performance gain in practice is theoretically justified, since these later variants have
only been proven to have at least the same convergence rate, and have not been directly proven to have
a faster convergence rate.

The success of CFR in Poker games also relies on techniques that efficiently reduce the size of the
game, mainly from three aspects. (1) Pruning: decide which parts of the game tree to traverse each
iteration [109–111]; (2) subgame solving: solve a subgame and cast the strategy to the full game [112–
114]; (3) abstraction: bucket similar cards or “strategically similar” actions together and treat them
identically [115, 116]. For example, the abstraction algorithm can reduce the game size of heads-up
no-limit Texas Hold’em from 10161 decision points down to 1012. However, techniques like abstraction
may require domain-specific knowledge. Regression CFR (RCFR) [117] makes use of a regression tree
to learn the regret, and thus the abstraction is implicit and also learned. DeepCFR [118] incorporates
deep models into CFR, combining with linear CFR (DCFR1,1,1) and external sampling from MCCFR.
DeepCFR outperforms domain-specific abstractions in a subgame of Texas Hold’em, appearing to be the
first non-tabular variant of CFR to be successful in large games.

4 Reinforcement learning and games

When RL meets games, the game is always a Markov game. For general-sum Markov games, traditional
MARL methods augment the action in the value function with joint actions of multiple agents, and then
employ game-theoretic approaches like minimax value and Nash equilibrium value, to evaluate the value
function of the next state, updating the value function and deriving policies for each agent. This approach
is a centralized training and decentralized execution (CTDE) paradigm, which is also widely used in the
current cooperative MARL field. However, this paradigm does not fit non-cooperative games, where
each agent should learn from an individual perspective. Fully independent training is known to have
non-stationarity issues due to the changing of the opponent. Hence, new decentralized methods include
combining with game-theoretic frameworks, such as fictitious self-play, studying new RL-style learning
algorithms, or directly considering the impact of opponents. Moreover, since RL is mainly sample-based,
the theoretical analysis of MARL focuses more on sample complexity12), that is, how many samples are
needed for successful learning, while no-regret learning frameworks typically analyze time complexity.

Another category widely used in practice is referred to as open-ended learning, also known as population-
based training. The theoretical foundation is empirical game-theoretic analysis, which aims to study
various properties of the game based on the payoff of different strategies, especially when only black-box

11) Discount the regret is also investigated in [7] (Subsection 2.11).

12) Some studies also directly analyze the time complexity.
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Algorithm 4 General multi-agent Q-learning

Require: N (number of agents), M (number of episodes), T (number of steps per episode), α (learning rate), γ (discount factor),

ǫ (exploration rate), and subroutine Eval (Minimax, NE, CCE, FFQ, etc.);

1: Initialize Qi(s,a) for all agents i = 1, . . . , N , states s, and actions a;

2: for m = 1 to M do

3: Initialize state s;

4: for t = 1 to T do

5: for i = 1 to N do

6: Compute action (a∗

1 , . . . , a
∗

N ) = Eval(Q1(s,a), . . . , QN (s,a));

7: With probability ǫ, agent i selects a random action ai; otherwise, agent i selects action ai = a∗

i ;

8: end for

9: All agents execute their action ai, observe state s′, and receive their reward ri;

10: for i = 1 to N do

11: Compute action for next state a
′∗ = (a′∗

1 , . . . , a′∗

N ) = Eval(Q1(s
′, a′), . . . , QN (s′, a′));

12: Qi(s,a)← Qi(s,a) + α[ri + γQi(s
′,a′∗)−Qi(s,a)];

13: end for

14: Update state: s← s′;

15: end for

16: end for

access to the game is available. In practice, the game environment is typically treated as a black box,
with RL and other oracles to solve the optimal policy for a given opponent. The research focus is on
how to select opponents (solving meta-strategies) so that the trained policies can converge to desired
objectives. Open-ended learning also includes some heuristic designs, such as promoting the diversity of
the policy population.

The subsequent contents will delve into these two categories in detail.

4.1 Reinforcement learning in games

4.1.1 Centralized training

Although single-agent RL algorithm, e.g., Q-learning, can be applied to the multi-agent case as done
in [119], naive independent single-agent RL algorithm may not converge in multi-agent systems (MAS).
The naive independent learner treats other agents as parts of the environment, while when all the agents
are simultaneously learning, they all face a constantly changing environment. This is identified as the
non-stationarity issue of the multi-agent learning problem. The theoretic guarantees are violated since
traditional single-agent RL algorithm like Q-learning only converges in stationary environment. A quick
fix to Q-learning for multi-agent learning is to condition the Q function on the joint action a = (ai, a−i).
Minimax-Q [31] is such an extension of the Q-learning method to solve two-player zero-sum Markov
games, which update Qi for agent i as

Qi(s,a)← Qi(s,a) + α(r(s,a) + γVi(s
′)−Qi(s, ai, a−i)), (26)

where Vi(s
′) = maxπi

mina−i
Eai∼πi

[Q(s, ai, ai)] is evaluated with a minimax strategy. Friend-or-foe Q-
learning (FFQ) [32] generalizes minimax-Q with a team of maximizing agents and a team of minimizing
agents, and thus fits in cooperative, competitive, and mixed settings. Nash-Q and CE-Q [33,120] replace
the evaluation of Vi by Nash equilibrium and correlated equilibrium strategy, respectively. A general
multi-agent Q-learning framework is shown in Algorithm 4. However, many of these extensions use a
linear program in the evaluation, thus slowing down these algorithms in practice. Note although the Q
function may reply on centralized information (the joint action) for training, the derived policy should be
decentralized to execute. These studies pioneer the CTDE framework [121], which lays the foundation
of many recent multi-agent reinforcement learning algorithms in fully cooperative POMDPs [122–125]
or mixed cooperative-competitive environments [126]. There also exists other decentralized RL studies
applied to multi-agent learning [127–130], with variable learning rates or predictions to avoid the non-
stationarity.

4.1.2 Decentralized training

RL with self-play. For non-cooperative games, especially 2p0s games, a domain-knowledge-free training
framework called self-play with reinforcement learning has become the first choice in practice, which
plays against itself and improves the policy by RL. It plays an important role in large-scale games like
AlphaGo and AlphaStar, and appears to be overwhelming. Fictitious self-play (FSP) [34] implements
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Algorithm 5 General fictitious self-play

1: for each iteration do

2: Find the approximate best response ǫ-BR(σ̂−i) by RL;

3: Sample and store trajectories against the empirical strategy σ̂−i of the opponent;

4: Update the empirical of the opponent;

5: Update the average policy only with best response actions by supervised learning;

6: end for

the generalized weaken fictitious play (GWFP) framework [131] in a sample-based fashion with RL, and
applies to Leduc Poker to find an approximate NE by self-play. Algorithm 5 shows the main process
of FSP13), where it replaces the solver for the best response and the average strategy with RL and
supervised learning, respectively, and supports function approximation tools. Neural FSP (NFSP) [35]
proposes a deep networks implementation of FSP, solving the best response policy with DQN and distilling
the average policy from a reservoir buffer [132]. The FSP framework is agnostic about the game’s
specifics, except that it solves a two-player zero-sum game, and can also be applied in Markov games [133,
134]. Though FSP is general enough, it is less efficient than DeepCFR in Poker from the experimental
results [118].

Policy gradient of learning in games. Recalling the equivalence between the advantage function
and the instant regret, it is interesting to study the policy gradient RL families when learning in games,
which use the advantage function to weight the gradient. From the policy gradient perspective, it has
been revealed that the V function of PG method is the scaled counterfactual regret value in imperfect-
information games [36], leading to a new interpretation of actor-critic algorithms in POMDPs. For
discrete action space, the policy is often parameterized as a softmax function over the logits of an action

a in RL, i.e., π(a) = exp(y(a))∑
′

a
exp(y(a′))

, where y(a) ∈ R is the logits of action a. NeuRD [37] studies the

connection between the softmax PG algorithm and replicator dynamics (RD), which is the widely-used
model in evolutionary game theory [135]. NeuRD implements RD through the lens of PG-style updates
on all actions, contrasting to all-actions PG as

All-actions PG: yt(a) = yt−1(a) + ηtπt(a)

[

ut(a)−
∑

a′∈A
πt(a

′)ut(a
′)

]

︸ ︷︷ ︸

the advantage A(a)

, (27)

NeuRD: yt(a) = yt−1(a) + ηt
H
HH

πt(a)

[

ut(a)−
∑

a′∈A
πt(a

′)ut(a
′)

]

︸ ︷︷ ︸

the advantage A(a)

, (28)

where yt(a) is the logits before the softmax function. NeuRD differs from standard PG by removing
the extra πt(a) weighted on the advantage, which can be derived from the RD perspective. NeuRD
also proves to recover Hedge algorithm in the tabular single-state setting. Based on these findings,
we can perform regret minimization using PG-style reinforcement learning algorithms, with very minor
modifications. Motivated by CFR-BR in 2p0s games, exploitability descent (ED) [38] evaluates values of
the current policy against its best response (the exploitability of the current policy), qb(s), and then uses
PG to update the current policy based on qb(s). However, as the exploitability can now be tracked, ED
can pick the best iterate rather than uniformly sampling from a proportion of p iterations as CFR-BR,
and thus improves the probabilistic guarantee of the CFR-BR to a deterministic one and reducing the
equilibrium gap. Although ED does not require the average policy, the best iterate may be different from
the last-iterate policy. Moreover, independent PG update has been proven to converge to the min-max
equilibrium in two-player zero-sum Markov games if both players run independent PG in tandem and
the learning rates follow the two-timescale rules [136]. This is the first finite-sample convergence result
for fully independent learning with RL in competitive games. Ref. [39] showed that the cyclic behavior
of the current policy in the original FTRL in 2p0s games can be circumvented, by adding a policy-
dependent term into the reward. It first generalizes the negative cyclic results of [98] from norm-form
games to IIG, and then shows the last-iterate convergence can be achieved by model-free RL with the

13) In order to improve the sample efficiency, the original FSP uses the average policy to pit against the opponent and off-policy

RL algorithm to update the BR.
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transformed reward in monotone games14). This is an important step for reinforcement learning in games,
and later helps to build top AI in large-scale IIG with purely PG-style learning (NeuRD is adopted in
the experiment).

Learning with opponent-awareness. The above approaches treat the opponent as a black box.
Intuitively, if the agent knows how others will act in advance, multi-agent learning will become simpler.
This idea falls into the opponent modeling approach in multi-agent learning. With the opponent model,
the agent will have the ability to adapt to the specific opponent. For example, in fictitious play, the player
implicitly models the opponent by tracking the historical plays and always best responds to them. A
line of studies model the opponent policy by generative models [40,137–139], and update the agent’s own
policy with the opponent policy. There exists a more complicated recursive reasoning model in opponent
modeling, such as level-K thinking [140] which originates from the theory of bounded rationality [141]
and is a popular behavior economic model. Level-K model has been widely used in multiagent learning
as an opponent modeling approach [142–144]. Learning with opponent learning awareness (LOLA) [41]
considers how the opponent’s learning will impact the learning of the primary agent. Compared with the
above opponent modeling approaches which mostly rely on past experiences with the opponent, LOLA
looks one step ahead: LOLA agent updates itself after the opponent takes a gradient update, i.e.,

θ1 ← θ1 + η · ∇θ1V1(θ1, θ2 +∆θ2), (29)

where ∆θ2 = δ · ∇θ2V2(θ1, θ2). When both agents use LOLA in iterated prisoner’s dilemma (IPD),
reciprocity-based cooperation emerges while the independent naive learner fails to cooperate. LOLA
also leads to more stable learning of the NE. The original implementation of LOLA uses a first-order
approximation, while DiCE [145] introduces a higher order estimator to avoid the first-order approxi-
mation and greatly improves the sample efficiency. LOLA model other agents as naive learners, while
other agents are also LOLA agents. Thus, the actual other agents encountered are inconsistent with
the ones anticipated. The following work COLA [42] addresses this inconsistency issue by minimizing
a pair of mutual consistent losses. POLA [43] identifies that the original LOLA is sensitive to policy
parameterization which is another failure mode of LOLA, and then it uses a proximal update with a
unique solution assumption to guarantee POLA update is invariant to policy parameterization. Thus, if
the original policies are the same, the new policies after the POLA update will also be the same. However,
due to the computation burden of the higher-order derivatives, experiments on LOLA variants have only
been conducted on small-scale games.

Theoretical aspects and sample complexity. Recently, extensive articles have studied the sample
complexity of learning in Markov games from the RL perspective, in the bandit feedback setting [146–
150], in the full-information feedback setting [91, 93, 151–154], or with function approximation [155–
157]. Importantly, learning ǫ-stationary CCE/NE is intractable (PPAD-hard) in general-sum Markov
games [150], which is in stark contrast to single-agent RL where sample efficient algorithms for near-
optimal stationary policy exist. The authors of [150] then provide a decentralized algorithm to learn
a nonstationary Markov CCE policy with polynomial time and sample complexity. The most recent [158]
designed a new decentralized RL algorithm for general-sum Markov games in tabular and linear function
approximation settings, respectively, improving the result of [150] by an order of magnitude.

Remarks on cooperative MARL. It is noteworthy that there is currently another prominent topic
in MARL that focuses on cooperative games (also coalition game theory). The formulation usually used
is the Decentralized POMDP, where each agent only has a partial observation of the environment and
follows its decentralized policy. Importantly, there is not an individual reward signal for each agent; in-
stead, the team members share a single reward signal, and these agents aim to maximize the cumulative
reward collectively. A crucial challenge in cooperative MARL is the credit assignment, which facili-
tates collaboration between agents. Representative methods include value-decomposition approaches like
VDN [122], QMIX [124], QTRAN [159], QPLEX [125], and multi-agent policy gradient methods such as
MADDPG [126] and MAPPO [160]. VDN aims to decompose the team value function into the individual
value functions of each agent through a simple additive decomposition. Following the Individual-Global-
Maximum (IGM) principle [159], QMIX improves VDN by learning a nonlinear mixing network. QPLEX
introduces the Advantage-Individual-Global-Maximum principle, employing a dual-dueling network ar-
chitecture to decompose the joint value function. MADDPG utilizes the “actor-critic” architecture,

14) As the authors’ note, this definition is hard to interpret, but it captures a wider class of games, e.g., 2p0s games and

polymatrix zero-sum games.
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Algorithm 6 Policy space response oracle

1: Input: Initial policy sets Π for all players, compute utilities UΠ for each joint π ∈ Π, initialize meta-strategies σ1
i =

UNIFORM(Πi);

2: while round t = 1, 2, . . . do

3: for player i = 1, 2, . . . do

4: Sample opponent by πt
−i ∼ σt

−i; /* Choose the opponent

5: Training over πt
−i and obtain π′

i; /* Call training oracle

6: Πi ← {π′

i} ∪ Πi;

7: end for

8: Evaluate current population and compute meta-strategy σt+1; /* Call meta-strategy solver

9: end while

10: Output: Meta-strategy σi and population Πi for player i;

optimizing each agent’s policy through the single-agent DDPG algorithm [161]. However, the high vari-
ance of MADDPG makes it less competitive. MAPPO and many of their variants apply PPO [162],
which is widely used in single-agent RL, to multi-agent reinforcement learning, effectively enhancing the
system’s collaborative capabilities. These approaches are primarily trained using the CTDE paradigm.
Recent research has identified potential conflicts of the learning objectives in the multi-agent policy gra-
dient update targets of previous studies, leading to the introduction of sequential update methods like
HAPPO [163] and MAT [164]. Nevertheless, the above methodologies primarily focus on how teams learn.
In contrast, this paper mainly focuses on individual learning, i.e., learning in non-cooperative games.

4.2 Empirical game and open-ended learning

A unified open-ended learning framework: PSRO. The goal of empirical game-theoretic analysis
(EGTA) [165] is to analyze or estimate various properties of a game, given only noisy black-box access
to it. Thus, it can be used for analyzing complex games, which extends strategies iteratively based on
experience with prior strategies and solves for the meta-strategy over the stored strategies to apply in the
original game. The empirical game (also meta-game) is modeled by an open-ended payoff table where
each item is a payoff vector under a joint strategy. The payoff table will extend when adding a new
strategy and thus is open-ended15). Note that a single strategy in EGTA can be very complex, while
only its empirical performance is the focus. Double oracle (DO) [166] is the first work that tries to find
the minimax equilibrium for two-player games under EGTA. DO randomly initializes two policy sets for
the row and column players, and in each iteration, DO takes the following steps.

(1) Solve for the equilibrium (p, q) of the matrix game M induced by the current policy sets R, C, and
take p over R and q over C as the current policy of each player.

(2) Find a pure best response to the opponent’s current policy and add it to the policy set.
As DO requires the best response to be pure, it is guaranteed to converge when no pure best response

can be added. In this case, DO will run an extra step to solve for the equilibrium with the policy sets,
and the solution is proven to be the equilibrium of the original game. In the worst case, DO will end up
adding all the pure strategies. Fortunately, it is reasonable to expect that the support of the equilibrium
is much smaller in complex games.

Policy space response oracle (PSRO) [44] generalizes DO by replacing steps 1 and 2 with a meta-
strategy solver and a training oracle, respectively, as summarized in Algorithm 6. PSRO recovers DO
when the meta-strategy solver is the NE and the training oracle is the BR oracle, so it shares the same
convergence guarantee when all the pure strategies are included. PSRO can also recover fictitious play if
the meta-strategy solver is a uniform distribution over all the past policies. For instance, the opponent
pool with uniform sampling in AlphaGo can be viewed as an instance of fictitious play.

Refinements of PSRO. To generate useful and better opponents, PSROrN [45] uses NE as the meta-
strategy solver and ignores policies it loses to. By ignoring the weakness, PSROrN uncovers strategic
diversity more efficiently. For complex games, solving for exact BR is intractable, thus approximate BR
solvers like RL are widely adopted in the PSRO family. Thus, the total iterations that PSRO needs to
converge become the bottleneck. PSRO provides a naive parallel variant named DCH, but it may fail
to converge even in small games. PSROrN is shown to diverge in small games in conjunction with DCH
in [46]. Pipeline PSRO (P2SRO) [46] is a scalable parallel version of PSRO which shares the convergence
guarantee as PSRO by maintaining a hierarchical pipeline of reinforcement learning workers, each training
against the policies generated by lower levels in the hierarchy. The hierarchical structure speeds up the

15) Some literature also uses the term unrestricted.
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training when the parallel studies increase. For IIG, as PSRO may need to expand all pure strategies
in the meta-game, which grows exponentially in the number of information states, it may require an
exponential number of iterations to approximate. Extensive-form double Oracle (XDO) [167] is designed
for IIG and is guaranteed to converge to an approximate Nash equilibrium linearly in the number of
states for 2p0s games. Another practical issue of PSRO is that the exploitability of meta-strategy in
PSRO may increase from iteration to iteration, so it is not guaranteed to always get lower exploitability
when the number of iterations increases. Two concurrent studies, Anytime PSRO (APSRO) [168] and
Efficient PSRO (EPSRO) [169], allow the opponent or player to access the full policy space when solving
for the meta-strategy, thus solving an unrestricted-restricted (URR) game, while PSRO restricts both
players to the current policy population for meta-strategy. Both APSRO and EPSRO prove to have a
non-increasing exploitability guarantee.

How to select the policy from the population: meta-strategy solvers. As for the meta-
strategy, Nash equilibrium, the uniform distribution, and other preference-based distributions, such as
Elo ratings [170] and prioritized FSP in [16], have been widely adopted. For general games, solving for NE
is PPAD-complete and other distribution may become unsafe. Even for symmetric 2p0s games, the Elo
rating cycle in the intransitive part of the game and NE may suffer from the equilibrium selection problem.
For instance, in Rock-Paper-Scissors, if we add a duplicate of Rock, there will be infinite many NE which
assign 1/3 to Paper and Scissor, respectively, and a total of 1/3 to the two duplicate Rock strategies.
MaxEnt NE (or Nash averaging) can provide a unique solution in zero-sum games, and it automatically
adapts to redundancy policies [171]. Unfortunately, the selection issue persists for Nash in general games.
The author of [172] proposed an alternative solution concept, α-Rank, through the lens of evolutionary
theory. They model the fixation probability of a focal population (a previously-monomorphic population
wherein a rare mutation has appeared) under the single mutant strategy and then construct the Markov
transition matrix for each pair of strategies. The stationary distribution of the Markov chain gives the
surviving probability of each monomorphic population after a long-term evolution. As the transition
matrix is irreducible and aperiodic, there always exists a unique stationary distribution, and it can be
computed in polynomial time. α-PSRO [47] replaces the meta-strategy solver by α-Rank, and can apply
to the multi-player general-sum setting more efficiently than prior PSRO applications.

Practical methods for improving the efficiency. The theoretical guarantee of PSRO and other
EGTAmethods is essentially based on an accurate evaluation of a pair of policies in the current population,
while for complex games, practitioners often evaluate the performance by many rounds of simulations.
Thus the evaluation is noisy and expensive. There exist studies [173–175] that handle the uncertainty and
reduce the rounds of simulations to improve the efficiency. Another approach focuses on how the popula-
tion is maintained and used to improve the learning efficiency. Mixed-Oracles and Mixed-Opponent [176]
can generate a new BR policy or opponent by a combination of previous Q functions, thus transferring
knowledge from previous iterations. NeuPL [177] represents a population of policies within a single con-
ditional model. It also enables the transfer of previous knowledge across policies. Simplex NeuPL [178]
generalizes NeuPL to learn the best responses to any mixture over the simplex of diverse basis policies
in symmetric 2p0s games.

Population diversity. Population diversity is crucial for population-based learning like PSRO, since
it measures the population rather than just an aggregated joint policy. Its importance is twofold: (1) it
helps explore the strategy space sufficiently which is akin to the exploration of RL, and (2) it avoids being
exploited by unknown malicious opponents, especially in non-transitive games. Many studies apply RL
exploration techniques to learn a novel policy [179,180]. Determinantal point processes (DPP) [181] is a
probabilistic framework that produces diverse subsets by sampling proportionally to the determinant of
the kernel matrix of points within the subset. Motivated by the application of DPP in machine learning,
some studies use DPP as a tool to promote diversity for population-based learning [48, 49]. DvD [48]
applies DPP to the behavioral embeddings of multiple policies, while G-DPP [49] applies DPP to a Gram
matrix spawned by the payoff matrix. These studies fall into two categories: behavioral diversity (BD)
and response diversity (RD), where BD focuses on the trajectory-wise or state-action diversity, and RD
focuses on the payoff diversity. A later work [50] unifies BD and RD, and proposes a new approach to
jointly optimize the trajectory diversity and the payoff discrepancy against previous policies. However,
there is a subtle difference between different policies and diverse policies. For example, in Rock-Paper-
Scissors, the policy (0.99, 0.01, 0) is different from (0.98, 0.02, 0), but they are not diverse. To better
measure the diversity, in the paper of PSROrN [45], the authors propose effective diversity (ED) to
quantify how the best agents (those with support in the maximum entropy Nash) exploit each other.



Qin R-J, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 171101:18

Population diversity (PD) in [48] uses the determinant of the kernel matrix which represents the volume
of a parallelepiped spanned by feature maps. Expected cardinality (EC) [49] is used to measure the
cardinality of a random sample from G-DPP, so that the policy population will be more diverse in terms
of the payoff if EC is higher. Population effectivity (PE) proposed in [50] is a more general opponent-
free concept of exploitability by considering the optimal aggregation of the current population in the
worst case. Recently, UDM [51] proposes a unified diversity measure that captures ED, PD, EC, and PE
by a general function which is a power series with a positive first-order derivative everywhere. Though
increasing diversity is very intuitive, whether it leads to better learning efficiency is currently a bit unclear
in theory.

5 Towards a unified learning framework

RL plays a more and more important role in learning in games, and the game-theoretic approach to
(multi-agent) RL, or the so-called game-theoretic RL, has drawn much attention. Many algorithms have
been proposed under game-theoretic RL. The design philosophy of these algorithms is roughly concerning
the following aspects.

Decentralized/uncoupled vs. centralized/coupled learning. Canonical learning models such
as fictitious play and regret minimization study the behavior of each individual so that they are fully
decentralized. CTDE paradigm is proposed for addressing the non-stationarity issue in MARL. In a more
general sense, centralized training may include knowledge of the game, the opponent’s strategy and even
the use of global oracle information. These techniques input the centralized information to the value
function and thus reduce the non-stationary training difficulty, at the cost of higher dimensional strategy
space. Some strongly coupled learning dynamics can even achieve much faster convergence speed [83],
while uncoupled learning can avoid the curse of dimensionality when the number of players is large.

Average vs. last-iterate convergence. These two kinds of convergence can approximate NE,
and as mentioned above, some algorithms can have both no-regret property and last-iterate convergence.
Nevertheless, the choice can be different for specific tasks. No-regret learning naturally studies the av-
erage convergence by definition, while showing last-iterate convergence usually requires non-standard
techniques other than no-regret analysis tools. As the exact average policy in complex games is compu-
tationally inefficient to obtain, we should adopt algorithms with a last-iterate convergence guarantee if
we aim to approach the equilibrium in complex games. For instance, as mentioned in ACH [182], the
authors add an entropy regularization to the current policy which is theoretically justified in [39], with-
out the calculation of the average policy. From the practical view, the last-iterate convergence is always
preferred, or the average is easy to conduct. On the other hand, if we aim to adapt to a non-stationary
opponent/environment, no-regret algorithms may be a better choice where the convergence properties of
no-regret families are usually better.

Population learning vs. single policy. DeepNash [18] reveals that a single policy can be trained
to master complex games without pitting against historical policies, saving space and time for evaluating
the population. Population learning, especially PSRO variants, requires an aggregate of the population,
which may be intractable for complex games. Mixed Oracles [176] and NeuPL [177, 178] work towards
solving the aggregation challenge with a single policy. The reasons for population learning are that
these historical policies can provide strong but diverse baselines when the game is highly intransitive,
and also make it possible to adapt to a specific opponent. As an aside, real-world games consist of
many highly intransitive parts as demonstrated in [183]. Besides, population learning combined has
facilitated curriculum learning, e.g., in automatically generating a curriculum of increasingly challenging
tasks/environments [184–186].

In the realm of RL, policy optimization or rewardmaximization refers to finding a policy that maximizes
the expected return with or without some regularized terms. Regret minimization methods usually find
a strategy in each iteration that minimizes the cumulative regret with regularizers. Earlier studies of no-
regret learning and RL seem to develop independently since RL solves an MDP, which is fundamentally
different from the matrix game that no-regret learning usually handles. Thanks to the approximate
dynamic programming (ADP) techniques, the policy optimization problem in RL can be decomposed as
independent policy optimization problems in every state. While for the regret minimization family, CFR
proves that if the regret on each information state is bounded then the total regret of the EFG is also
bounded, and thus extends RM from normal-form games to extensive-form games. These contributions
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make tools that solve the single-state problem sound again. With recent advances in deep RL and
no-regret/online learning, they greatly overlap with each other. For instance, deep regret minimization
methods, e.g., DeepCFR, ARMAC [187], and DREAM [188], use the advantage function in RL to calculate
the regret. RLCFR [189] incorporates an RL agent to select the strategy for calculating and updating the
regret by RM, DiscountCFR, and Hegde. These are examples of no-regret learning meeting RL. On the
other hand, ARM [190] is the first to introduce CFR+ into RL for solving POMDP which approximates
the regret by the cumulative advantage function. To our knowledge, ARM is the first step towards policy
optimization with no-regret learning. RegretPG [36] and NeuRD [37] both guide the policy gradient
toward a no-regret direction.

Recall the connection of FTRL and MD, which can derive the same no-regret algorithm, e.g., Hedge. By
appropriately choosing the objective function in MD, MD can be implemented in the policy optimization
manner. MDPO [191] is such work that directly applies mirror descent in RL as a new policy optimization
approach, which is closely related to two popular RL algorithms PPO [162] and SAC [192]. These signs
reveal that policy optimization and regret minimization can be implemented under the same learning
framework. In other words, we can move from reward maximization to regret minimization freely. We
have noticed the techniques of training RL agents can be seamlessly applied to learning in games. We
believe no-regret learning and RL are stepping towards a unified learning framework, just as FTRL unifies
no-regret learning.

The unified approach to regret minimization and reward maximization can be implemented by trans-
forming the reward to a policy-dependent version as [18, 39] or adding extra divergence terms to the
original policy optimization objective like [193–195]. For both approaches, the objective in each iteration
can be unified as the following objective:

πt+1 = argmax
π

Qπ
t − αDR1

(π, πref)− ηDR2
(π, πt), (30)

where R1,R2 are strongly convex regularizers and η1, η2 > 0. πref is a reference policy. Note Qπ
t should

be learned under the perturbed reward by DR1
(π, πref), rather than the original reward. When it is the

uniform distribution and R1 =
∑

x · log x, DR1
(π, πref) becomes the entropy of π. Intuitively, πt stores

historical regret information thus removing the cumulative regret. If all the agents follow (30), the policy
of each agent can be no-regret and has last-iterate convergence for the very specific 2p0s games. Besides,
Eq. (30) is an RL-style objective, so it can be updated with deep RL algorithms in a fully decentralized
way for large-scale games. Thus, we can perform regret minimization and RL with the same base learning
algorithm.

6 Applications in large-scale games

Extensive-form games (turn-based). In perfect-information board games, one of the key techniques
is Monte Carlo tree search (MCTS). Based on MCTS, AlphaGo [12] combines human play initialization,
RL, and population training to defeat the top Go professional in 2016, and starts the era of the Alpha
series in board games. Following studies AlphaGoZero [196] and AlphaZero [197] conquer Go and other
board games without human initialization. MuZero [198] further removes the dependency on a perfect
simulator (the transition is known and can reset to any given state) by performing the tree search
in a learned model. MuZero, without any knowledge of the underlying game dynamics, matches the
performance of AlphaZero and also achieves superhuman performance on a collection of Atari video
games.

Some studies manage to combine RL and search for IIG [17,199,200], which use various forms of perfect
information during training to make it technically sound. However, standard MCTS is not technically
sound for imperfect-information EFG like Poker. For Poker, DeepStack [201] uses deep networks to
predict the expected value for the purpose of depth-limited re-solving with CFR. Libratus [13, 202] uses
the CFR variant and multiple CPU servers for real-time solving. Both DeepStack and Libratus defeat
top humans in 1v1 no-limit Texas Hold’em in 2017, and Libratus even defeats top professionals by a large
margin, which is a premiere for Poker AI. Modicum [203], as the name suggests, achieves a master-level
play and runs in a 4-CPU laptop to beat some previous top bots. Pluribus [15] is a mature version of
Libratus and Modicum, and is also the first AI applied to play with human players in 6-player Texas
Hold’em in 2019. In both 1 AI vs. 5 humans and 5 AIs vs. 1 human mode, Pluribus outperforms human
players, which is thought to be a major breakthrough.
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Mahjong is a 4-player IIG which is very challenging for AI research due to its complex playing/scoring
rules and rich hidden information. Suphx [17] combines RL, global reward prediction, oracle guiding, and
Monte Carlo policy adaption. Suphx uses global reward prediction to give a more accurate evaluation of
each action. The oracle agent in Suphx sees all the perfect information about a state to speed up the
learning of the RL agent and gradually drops out the perfect features to transit to a normal agent in
the end. ACH extends the actor-critic framework to minimize the counterfactual regret by Hedge and
also beats a human champion in 1v1 Mahjong [182]. Doudizhu is another popular 3-player zero-sum
card game in China, where two players (Peasants) cooperate to pit against one player (the Landlord).
DeltaDou [199] is essentially a reproduction of AlphaGo in Doudizhu which uses Bayesian methods to
infer hidden information and searches the moves with MCTS. After training for two months, the policy
is shown to have on par performance with top human players. DouZero [204] uses Monte Carlo return as
the target value for Q function and follows a ǫ-greedy(Q) policy and names it deep Monte Carlo (DMC).
DouZero surpasses DeltaDou in ten days. DouZero+ [205] improves DouZero by opponent modeling and
coach-guide learning. PerfectDou [206] is the current state-of-the-art Doudizhu AI which shares a similar
spirit of Suphx. PerfectDou utilizes perfect imperfection distillation that allows the agents to utilize the
global information to learn the critic but learn the actor under imperfect information.

DeepNash [18], a large-scale extension of the regularized Nash dynamics (R-NaD) from [39], masters the
complex imperfect information board game Stratego by a policy gradient algorithm with the transformed
reward. It is the first time an AI algorithm is able to learn to play at a human-expert level in a complex
board game by purely RL-style algorithm end-to-end from scratch without deploying any search method
or explicit opponent modeling. More importantly, except R-NaD, DeepNash neither trains against past
versions of the agent, nor adds reward-shaping or expert data in the training algorithm, which is used to
stabilize the learning in AlphaGo, OpenAI Five, AlphaStar, etc. Thus, this is a very different approach
and may unlock further applications of RL methods in imperfect information tasks. Another recent
work using a novel human regularized approach named distributional lambda piKL (DiL-piKL) [194]
masters the complex No-Press Diplomacy, which is a complex strategy game with both cooperation and
competition. While previous methods are mainly tailored to competitive games and thus are inefficient
for No-Press Diplomacy, DiL-piKL regularizes a reward-maximizing policy towards a human imitation-
learned policy. Theoretically, Dil-piKL is proven to have both the no-regret property in general games
and last-iterate convergence in 2p0s games. Besides, there also exist studies [207, 208] that solve other
complex card games.

Markov games (RTS and MOBA). There are also many successful applications in Markov games,
including real-time strategy (RTS) games and multi-player online battle arena (MOBA) games. OpenAI
Five [14] first releases its AI in 2018 and finally defeats the world champion team in 2019. Both OpenAI
Five and AlphaStar [16] train the agent with self-play RL. OpenAI Five trains against a mixture of 20%
past opponents and 80% the current policy, while AlphaStar samples opponents by pFSP that favors
the most competitive or the closest opponents. Besides, AlphaStar also uses human demonstrations and
a league exploiter that trains against the current agent. These self-play approaches are also applied
in a popular Chinese mobile MOBA game, Honor of Kings, in the 1v1 mode [209], and the 5v5 full-
game [210]. TiZero [211] combines the self-play mechanism in OpenAI Five and AlphaStar to train in
the 11 vs 11 Google Research Football environment [212]. Concretely, the authors adopt pFSP to sample
past opponents, while 80% of the time current agents play against the most recently saved agents. They
also design a curriculum self-play mechanism, in which agents are trained on a sequence of progressively
more difficult scenarios.

Game platforms. A variety of platforms are proposed for learning in games with no-regret learning,
RL, and search. OpenSpiel [213] contains a collection of games, including NFG, EFG, and Markov games.
OpenSpiel also provides many algorithms and evaluation approaches. RLCard [214] is mainly designed
for RL in Poker games and provides some baselines. Google Research Football [212] is a platform for the
multi-player Markov game, and it also contains small scenarios such as 1v1 and 1v3. Melting Pot [215]
and PettingZoo [216] both provide a variety of competitive-cooperative games. Melting Pot focuses on
evaluating generalization to novel social situations and uses RL to reduce the human labor required to
create novel test scenarios. PettingZoo wraps previous multi-agent environments with a universal OpenAI
Gym-like API, which is friendly for RL practitioners.
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7 Closing remarks

With the power of current deep models and the success of learning in games, we believe the future direc-
tions may focus on the learning objective for real-world tasks and solve more realistic open-environment
problems. For realistic scenarios, we think the following aspects are crucial for future research and
applications.

Novel learning objectives. The main solution concepts of learning in games are still towards
equilibrium, or equilibrium under specific games, e.g., the team-maximin equilibrium for multi-player
mixed games [217]. There have been some alternatives to NE [171, 172], which may be studied further
from other perspectives. Another goal of learning in games is to adapt to unseen opponents, either
achieving zero-shot human-AI coordination [218, 219] or performing real-time solving like Libratus.

Learning in dynamic games. The game played may be time-varying rather than static in the real
world, e.g., the financial trading market and e-commerce platforms. There have been some studies on
the dynamic games setting [220–222].

Offline learning in games. For most current successful studies, both RL and learning in games
require a perfect simulator, while for open-world learning problems, such simulators may be inaccessible.
Offline reinforcement learning [223] attempts to learn from a batch of static data without interacting with
the simulator during the training. A line of studies turned to offline learning in games [224–228], thus
enlarging the applicability of learning in games.

Large pretrained models. A very recent trend is to apply large pretrained models based on Trans-
former [229] to multi-agent learning [230] or to play a broad class of games by a large model [231]. These
large pretrained models have the potential to efficiently transfer knowledge across multiple tasks.

An intelligent game AI system should not only be unexploitable, but also can exploit opponents. Ideally,
it should be endowed with an unexploitable policy, but can identify the opponent and adapt to it fast.
Previous solutions for policy adaption rely on real-time solving techniques as used in Libratus, which
requires massive computational resources. Large pretrained models on multiple tasks may alleviate this
issue. If the AI system will cooperate with other unseen teammates to play against a team of opponents,
it should be able to adapt to the teammate, too. The adaptation ability will save the time of retraining
from scratch and improve the reliability in the open environment.

Recently, numerous studies have modeled their problems from the game-theoretic view and borrowed
techniques from learning in games, let alone the applications of learning in games. We expect this review
will serve as a catalyst for learning in games and its applications in more realistic tasks in the future.
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133 Pérolat J, Piot B, Pietquin O. Actor-critic fictitious play in simultaneous move multistage games. In: Proceedings of

International Conference on Artificial Intelligence and Statistics, 2018. 919–928

134 Kawamura K, Tsuruoka Y. Neural fictitious self-play on ELF Mini-RTS. 2019. ArXiv:1902.02004

135 Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press, 1998

https://arxiv.org/abs/1407.5042
https://doi.org/10.1016/S0004-3702(02)00121-2
https://doi.org/10.1137/S0363012903437976
https://doi.org/10.1109/TAC.2016.2598476
https://doi.org/10.1016/j.geb.2005.08.005
https://doi.org/10.1145/3147.3165
https://arxiv.org/abs/1902.02004


Qin R-J, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 171101:25

136 Daskalakis C, Foster D J, Golowich N. Independent policy gradient methods for competitive reinforcement learning. In: Pro-

ceedings of Advances in Neural Information Processing Systems, 2020

137 Raileanu R, Denton E, Szlam A, et al. Modeling others using oneself in multi-agent reinforcement learning. In: Proceedings

of the 35th International Conference on Machine Learning, Stockholmsmässan, 2018. 4254–4263
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146 Bai Y, Jin C. Provable self-play algorithms for competitive reinforcement learning. In: Proceedings of the 37th International

Conference on Machine Learning, 2020. 551–560

147 Bai Y, Jin C, Yu T. Near-optimal reinforcement learning with self-play. In: Proceedings of Advances in Neural Information

Processing Systems, 2020

148 Liu Q, Yu T, Bai Y, et al. A sharp analysis of model-based reinforcement learning with self-play. In: Proceedings of the

38th International Conference on Machine Learning, 2021. 7001–7010

149 Mao W, Yang L, Zhang K, et al. On improving model-free algorithms for decentralized multi-agent reinforcement learning.

In: Proceedings of International Conference on Machine Learning, Baltimore, 2022. 15007–15049

150 Daskalakis C, Golowich N, Zhang K. The complexity of Markov equilibrium in stochastic games. 2022. ArXiv:2204.03991

151 Sayin M O, Zhang K, Leslie D S, et al. Decentralized Q-learning in zero-sum Markov games. In: Proceedings of Advances

in Neural Information Processing Systems, 2021. 18320–18334

152 Song Z, Mei S, Bai Y. When can we learn general-sum Markov games with a large number of players sample-efficiently?

In: Proceedings of the 10th International Conference on Learning Representations, 2022

153 Ding D, Wei C, Zhang K, et al. Independent policy gradient for large-scale Markov potential games: sharper rates, function

approximation, and game-agnostic convergence. In: Proceedings of International Conference on Machine Learning, Baltimore,

2022. 5166–5220

154 Yang Y, Ma C. O(T−1) convergence of optimistic-follow-the-regularized-leader in two-player zero-sum markov games. In: Pro-

ceedings of the 11th International Conference on Learning Representations, 2023

155 Xie Q, Chen Y, Wang Z, et al. Learning zero-sum simultaneous-move Markov games using function approximation and

correlated equilibrium. In: Proceedings of Conference on Learning Theory, 2020. 3674–3682

156 Huang B, Lee J D, Wang Z, et al. Towards general function approximation in zero-sum Markov games. In: Proceedings of

the 10th International Conference on Learning Representations, 2022

157 Jin C, Liu Q, Yu T. The power of exploiter: provable multi-agent RL in large state spaces. In: Proceedings of International

Conference on Machine Learning, Baltimore, 2022. 10251–10279

158 Cui Q, Zhang K, Du S S. Breaking the curse of multiagents in a large state space: RL in Markov games with independent

linear function approximation. 2023. ArXiv:2302.03673

159 Son K, Kim D, Kang W J, et al. QTRAN: learning to factorize with transformation for cooperative multi-agent reinforcement

learning. In: Proceedings of the 36th International Conference on Machine Learning, Long Beach, 2019. 5887–5896

160 Yu C, Velu A, Vinitsky E, et al. The surprising effectiveness of PPO in cooperative multi-agent games. In: Proceedings of

the 36th International Conference on Neural Information Processing Systems, 2022. 24611–24624

161 Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning. In: Proceedings of the 4th

International Conference on Learning Representations, San Juan, 2016

162 Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. 2017. ArXiv:1707.06347

163 Kuba J G, Chen R, Wen M, et al. Trust region policy optimisation in multi-agent reinforcement learning. In: Proceedings

of the 10th International Conference on Learning Representations, 2022

164 Wen M, Kuba J G, Lin R, et al. Multi-agent reinforcement learning is a sequence modeling problem. In: Proceedings of the

36th International Conference on Neural Information Processing Systems, 2022. 16509–16521

165 Wellman M P. Methods for empirical game-theoretic analysis. In: Proceedings of the 21st National Conference on Artificial

Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, Boston, 2006. 1552–1556

166 McMahan H B, Gordon G J, Blum A. Planning in the presence of cost functions controlled by an adversary. In: Proceedings

of the 20th International Conference on Machine Learning, Washington, 2003. 536–543

167 McAleer S, Lanier J B, Wang K A, et al. XDO: a double oracle algorithm for extensive-form games. In: Proceedings of

Advances in Neural Information Processing Systems, 2021. 23128–23139

168 McAleer S, Wang K, Lanier J B, et al. Anytime PSRO for two-player zero-sum games. 2022. ArXiv:2201.07700

169 Zhou M, Chen J, Wen Y, et al. Efficient policy space response oracles. 2022. ArXiv:2202.00633

170 Elo A E. The Rating of Chess Players, Past and Present. New York: Arco Pub., 1978
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