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Abstract Artificial intelligence technology is widely used in the field of wireless sensor networks (WSN).

Due to its inexplicability, the interference factors in the process of WSN object localization cannot be ef-

fectively eliminated. In this paper, an explainable-AI-based two-stage solution is proposed for WSN object

localization. In this solution, mobile transceivers are used to enlarge the positioning range and eliminate the

blind area for object localization. The motion parameters of transceivers are considered to be unavailable,

and the localization problem is highly nonlinear with respect to the unknown parameters. To address this,

an explainable AI model is proposed to solve the localization problem. Since the relationship among the

variables is difficult to fully include in the first-stage traditional model, we develop a two-stage explainable

AI solution for this localization problem. The two-stage solution is actually a comprehensive consideration

of the relationship between variables. The solution can continue to use the constraints unused in the first-

stage during the second-stage, thereby improving the performance of the solution. Therefore, the two-stage

solution has stronger robustness compared to the closed-form solution. Experimental results show that the

performance of both the two-stage solution and the traditional solution will be affected by numerical changes

in unknown parameters. However, the two-stage solution performs better than the traditional solution, espe-

cially with a small number of mobile transceivers and sensors or in the presence of high noise. Furthermore,

we have also verified the feasibility of the proposed explainable-AI-based two-stage solution.

Keywords explainable AI, object localization, semidefinite relaxation, mobile transceiver, two-stage solu-

tion, closed-form solution

1 Introduction

Localization is a fundamental problem for many applications, such as information monitoring in sensor
networks and object tracking in radar or sonar systems [1–5]. When two signal sources are very close,
some commonly used algorithms such as FOMP and 3D-FOMP can accurately detect them [6, 7]. As
an important component for wireless signal radiation and reception, antennas play an important role in
wireless communications. The antenna system consists of one or more antennas, which are responsible
for converting electrical energy into electromagnetic waves and transmitting them into space, as well as
receiving electromagnetic wave signals from space [8,9]. The object lies in the region where a number of
sensors are deployed. Through the signals emitted or reflected, the object position is uniquely determined
by the sensors with known coordinations. The propagations of the signals result in all kinds of range-
based measurements, including time of arrival (TOA) [10], time difference of arrival (TDOA) [11], angle of
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arrival (AOA) [12,13], and received signal strength (RSS) [14,15]. Among them, the TOA-based ranging
measurement has become popular due to its low complexity and high efficiency.

From these range-based measurements, the object position is estimated by using various localization
methods [16–19]. The direct search of the object position is subject to the high complexity [20, 21],
and the traditional numerical solutions may be trapped in local convergence. Hence, recent literature
focuses on the solution with the global optimum for the object position. The popular methods include
the closed-form solutions [22,23] and the convex relaxation techniques [24–27]. The closed-form solution
represents the unknown parameter as an algebraic solution form by applying the weighted least squares
(WLS) method [28–30]. Unfortunately, the constrained relationship among the variables is difficult to
be exploited in the WLS solution. As a result, the performance of the WLS solution is poor, and the
two-stage [31] and multi-stage WLS solutions [32] are proposed to improve the performance by availing
of the constrained relationships. However, the performance of the closed-form solution is still poor due
to its solution in multi-stages, especially at high noise levels.

Applying the convex relaxation process yields a semidefinite programming problem (SDP), the solution
of which does not depend on any initialization from the users and always converges global optimum [33,34].
Hence, semidefinite relaxation (SDR) has been a popular method for its excellent performance in terms
of localization accuracy. Different from the closed-form solutions, the constrained relationship can be
directly included in the SDP problem. As a result, the SDP performs better than the closed-form
solution due to its tight form. Recently, it has also been proven that the performance of the SDP solution
is able to sufficiently approach the Cramér-Rao lower bound (CRLB) accuracy for certain localization
problems [26,35,36], where the constrained relationships can be fully included by applying only one-stage
SDR process. Unfortunately, it is also verified that the form is too relaxed for some SDP problems [25,37],
where the object position is implicit in the constraints.

The minimum number of sensors needed for triangulation-based localization is two for the 2-D case
or three for the 3-D case. The study of observability with respect to the sensor geometry configuration
is a fundamental problem in localization systems [36]. Owing to the introduced auxiliary variables, the
minimum number of sensors needed for the WLS solution is always greater than that of observability.
Similar to the WLS solution, the performance of the SDP solution also highly depends on the sensor
geometry, and the minimum number of sensors needed for the SDP solution needs to be investigated to
ensure performance.

In this paper, we propose an explainable-AI-based two-stage solution for object localization using
mobile transceivers, which bridges the sensors and the object [3, 38]. The signals emitted from the
sensors, amplified and relayed by the transceivers, arrive at the object. After reflecting by the object,
the signals are forwarded from the transceivers to the sensors. As a result, the observable range of the
localization system is enlarged, and the system does not depend on the line of sight (LOS) propagation
between the sensors and the object. Even if the object is blocked by obstacles, the mobile transceivers
can also assist in detecting the object position accurately. Another application is the recently popular
reconfigurable intelligent surface (RIS), which has been proposed to customize the radio environment
for providing great benefits of localization [39, 40]. When the RISs are equipped with unmanned aerial
vehicles (UAVs) [41] or autonomous underwater vehicles (AUVs), they can be dedicated to addressing
the traditional positioning blind area problem caused by the signal block.

Recently, the localization problem using mobile transceivers is proposed in [42]. Mobile transceiver-
based localization provides a scheme for object localization when the object lies in the blind area of
positioning. In addition, the localization approach is very attractive since the motion parameters of
the transceivers are considered to be unknown. The observability for this problem is provided in [42].
However, an efficient solution for this problem is not proposed. The localization problem using mobile
transceivers is also rather challenging due to a large number of variables. By introducing auxiliary
variables, we transform the nonlinear localization problem into a pseudo-linear form. However, the
constrained relationships among the variables are difficult to include in the one-stage process. To handle
the problem, we propose a two-stage solution for object localization using mobile transceivers. In addition,
we also provide detailed proof of the feasibility of the two-stage by applying the rank analysis. The
contributions of this work are summarized as follows.

(1) We propose an explainable-AI-based two-stage solution for object localization using mobile
transceivers, and the relationships among the variables are included in the explainable AI model in
two stages.

(2) We prove that the performance of the two-stage solution is capable of approaching optimal accuracy
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Figure 1 (Color online) Application scenario of object localization using transceivers.

at small noise levels.

(3) We provide the feasibility of the two-stage solution by applying the rank analysis and require at
least (M = 2, N = 3) for the 2-D case and (M = 2, N = 4) for the 3-D case.

The rest of this paper is structured as follows. The problem formulation is described in Section 2.
Section 3 presents the explainable-AI-based two-stage solution. The feasibility is given in Section 4. The
performance analysis is provided in Section 5. The simulated results are evaluated in Section 6, and the
conclusion is in Section 7.

Following the convention, bold lowercase letters and bold uppercase letters represent column vectors
and matrices, respectively. The notations (∗)−1 and (∗)T represent matrix inverse and transpose oper-
ations. ‖∗‖ denotes ℓ2 norm. [a]i and [a]i:j are the i-th element and the sub-vector containing the i-th
to the j-th element of a. [A]i,j is the (i, j)-th element of matrix A. I and O are identities and zero
matrices, and 0 represents an all-zero vector. tr(A) and rank(A) stand for the trace and rank of A,
respectively. A � 0 indicates that A is positive semidefinite.

2 Problem formulation

Consider a q-dimensional space, in which the position uo ∈ R
q (q is 2 for 2-D or 3 for 3-D case) of an

object requires to be determined. A localization system composed of N sensors is deployed to locate the
object accurately. Each deployed sensor can both transmit and receive the signals, and the position of
i-th sensor is known and defined as si, i = 1, 2, . . . , N . Besides, M transceivers are used to relay the
signals from the sensors. These transceivers are attached to mobile equipment, such as UAVs or AUVs,
and they are moving in constant velocity vo

m. As a result, the instant position of the m-th transceiver at
the time step k can be modeled as

toj = tom,0 + kvo
m, (1)

where tom,0 is the starting position of the m-th transceiver, j = (k − 1)M + m, m = 1, 2, . . . ,M , k =
1, . . . ,K.

Figure 1 shows a diagram of object localization using mobile transceivers. Both the sensors and the
target are fixed. The propagation paths between the sensors and the target are blocked by obstacles and
prevent direct communication. Hence, multiple mobile transceivers are introduced. The initial positions
of the transceivers are placed in the near-field range of the sensors, and their function is to amplify and
forward the signal. The transceivers can not only forward the incident waves from the sensors to the
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object but also reverse the echo from the object to the sensors. Thus, the range measurements of the
propagation paths are modeled as

dp = ‖si − toj‖+ ‖uo − toj‖+ εp, (2)

where εp is additional noise, p = (j − 1)N + i, j = (k − 1)M + m, m = 1, 2, . . . ,M , k = 1, . . . ,K,
i = 1, . . . , N . For the signal reflected by the target or an obstacle in Figure 1, we can distinguish the
main path and the interference path by analyzing the spectral characteristics of the signal. Next, by
comparing the time of the sensor signal from transmission to reception, the propagation path of the
signal can be determined.

To simplify the description, we define the vectors by

d = [d1, d2, . . . , dL1 ]
T, ε = [ε1, ε2, . . . , εL1]

T, (3)

where L1 = KMN . Without loss of generality, ε is assumed to obey a zero-mean Gaussian distribution
with covariance matrix Σ.

Let the starting positions of all the transceivers be a vector form to0 = [toT1,0, t
oT
2,0, . . . , t

oT
M,0]

T. Similarly,

the velocities of all the transceivers are defined as a vector vo = [voT
1 ,voT

2 , . . . ,voT
M ]T. Using the measured

d, we aim at estimating the object position uo, even if the starting position to0 and the velocity vo of the
transceivers are unknown.

3 Two-stage solution

The range measurement is highly nonlinear with respect to the object position, and the numerical solution
to this problem may be trapped in the local optimum. In this section, we propose the two-stage SDR
solution that always converges to the global optimum. To conduct the SDR process, we first need to
establish the pseudo-linear equation.

By moving ‖uo − toj‖ to the left and squaring both sides, Eq. (2) becomes

sTi t
o
j − dpα

o
j + 0.5βo

j − 0.5(sTi s
o
i − d2p) ≃ ‖si − toj‖εp, (4)

where αo
j = ‖uo − toj‖, β

o
j = αo2

j − toTj toj .
Inserting (1) into (4) results in

sTi t
o
m,0 + ksTi v

o
m − dpα

o
j + 0.5βo

j − 0.5(sTi si − d2p) ≃ ‖si − toj‖εp, (5)

where p = (j − 1)N + i, j = (k − 1)M +m, m = 1, 2, . . . ,M , k = 1, . . . ,K, i = 1, . . . , N .
Let us define an unknown vector y1 by

y1 = [ toT0
︸︷︷︸

qM

, voT
︸︷︷︸

qM

,αoT
︸︷︷︸

KM

, βoT

︸︷︷︸

KM

]T, (6)

where αo = [αo
1, α

o
2, . . . , α

o
KM ]T, βo = [βo

1 , β
o
2 , . . . , β

o
KM ]T, y1 ∈ R

L2 , L2 = 2(q +K)M .
As a result, the pseudo-linear equation in matrix form is expressed as

G1y1 − h1 = B1ε. (7)

According to (5), G1, h1, and B1 are defined as

[G1]p,q(m−1)+(1:q) = sTi , [G1]p,q(m+M−1)+(1:q) = ksTi ,

[G1]p,2qM+j = −dp, [G1]p,(2q+K)M+j = 0.5,

[h1]p = 0.5(sTi si − d2p), [B1]p,p = ‖si − toj‖ ≃ ‖si − tj‖, (8)

where tj is the estimate of toj .
From the definitions of αo

i and βo
i , the variables defined in y1 have the following constrained relation-

ships:

[y1]2qM+j = ‖uo − [y1]m1+(1:q) − k[y1]m2+(1:q)‖, (9a)
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− [y]Tm1+(1:q)[y]m1+(1:q) − 2k[y]Tm1+(1:q)[y]m2+(1:q)

− k2[y]Tm2+(1:q)[y]m2+(1:q) + [y]2M1+j = [y]M2+j , (9b)

where m1 = q(m − 1), m2 = q(m + M − 1), M1 = 2qM , M2 = 2qM + KM , j = (k − 1)M + m,
m = 1, 2, . . . ,M , k = 1, . . . ,K.

According to the established pseudo-linear equation of (7), the constrained weighted least squares
(CWLS) problem of the object position estimation can be formulated as

min
y1,uo

(G1y1 − h1)
TW1(G1y1 − h1)

s.t. (9a), (9b), (10)

where the weighting matrix W1 is approximately equal to the inverse of the covariance matrix with
respect to the noise term B1ε, and

W1 ≃ (B1ΣBT
1 )

−1. (11)

The CWLS problem (10) has two constraints (9a) and (9b). Note that the object position uo is implicit
in the constraint (9a) and not defined in y1. Accordingly, we first consider the CWLS problem that does
not include the constraint (9a) in the stage-one SDR process. As a result, the CWLS problem (10) is
reduced to

min
y1

(G1y1 − h1)
TW1(G1y1 − h1)

s.t. (9b). (12)

3.1 Stage-one solution

To conduct the SDR process, we define an unknown matrix by

Y1 =

[

y1y
T
1 y1

yT
1 1

]

. (13)

Obviously, the defined Y1 satisfies

Y1 � 0, [Y1]L3,L3 = 1, (14a)

rank(Y1) = 1, (14b)

where L3 = 2(q +K)M + 1. When Y1 is defined, the cost function in (12) is also rewritten as

(G1y1 − h1)
TW1(G1y1 − h1) = tr(C1Y1), (15)

where

C1 =

[

GT
1 W1G1 −GT

1 W1h1

−hT
1 W1G1 hT

1 W1h1

]

. (16)

Besides, Eq. (9b) becomes

[Y1]M1+j,M1+j = tr(k2[Y1]m2+(1:q),m2+(1:q)) + [Y1]M2+j,L3

+ tr([Y1]m1+(1:q),m1+(1:q) + 2k[Y1]m1+(1:q),m2+(1:q)), (17)

where L3 = 2(q+K)M +1, and the definitions of j, m1, m2, M1, and M2 are the same as those of (9b).
As a result, the CWLS problem (12) is equivalent to representing as

min
Y1

tr(C1Y1)

s.t. (14a), (14b), (17). (18)
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Problem (18) is still non-convex due to the rank-one constraint (14b). Fortunately, dropping the rank-one
constraint (14b) yields the stage-one SDR problem:

min
Y1

tr(C1Y1)

s.t. (14a), (17). (19)

The SDR problem (19) can be effectively solved using a convex optimization package such as SEDUMI
and SDPT3. Extracting from the estimated Y1, we can obtain the estimate of y1 by

y1 = [Y1]1:L2,L3 . (20)

The solution W1 requires B1 that depends on the value of toj . Unfortunately, the true xo
j is unknown

from (8). Initially, setting W1 to an identity yields a coarse estimate of toj since the solution is insensitive
to the weighting matrix W1. Using the coarse estimate form W1 will give a better solution.

The CWLS problem (12) is equivalent to representing the problem (18), which is further relaxed as the
stage-one SDR problem (19) by dropping the rank-one constraint (14b). It seems that the stage-one SDR
problem is a relaxed form of the CWLS problem (12). In practice, the stage-one SDR problem (19) is
tight enough. In [35,43], it is proven that the SDR solution is rank-one over the small noise region when
G1 is full column rank. As a result, the performance of the stage-one SDR solution is also equivalent to
that of the CWLS problem (12). Hence, we derive the estimation error of y1 from the CWLS problem
(12). Let us define a vector φ = [y1]1:2qM+KM , and ∆φ is the estimation error of φ. In the CWLS
problem (12), the variable β is determined by φ, and both of them are included in y1. Hence, ∆φ is
given by

∂(G1y1)

∂yT
1

∂y1

∂φT
∆φ ≃ B1ε. (21)

Let us define

H1 =
∂y1

∂φT
. (22)

Applying the definition of y1, we have

[H1]1:M2,1:M2 = I, [H1]M2+j,m1+(1:q) = −2toTj ,

[H1]M2+j,m2+(1:q) = −2ktoTj , [H1]M2+j,M1+j = 2αo
j , (23)

where the definitions of j, m1, m2, M1, and M2 are also the same as those of (9b), toj and αo
j can be

approximated by the estimates.
As a result, the WLS solution to (21) gives

∆φ = (AT
1 W1A1)

−1AT
1 W1B1ε, (24)

where A1 = G1H1. At the low noise levels, the noise in A1 can be insignificant. Thus, the covariance of
∆φ is

cov(∆φ) = (AT
1 W1A1)

−1. (25)

3.2 Stage-two solution

The stage-one SDR is derived from the CWLS problem (12) that does not consider the constraint (9a).
In the stage-two SDR, we solve the object position by availing of the constraint (9a). The estimation
error gives

tom,0 − tm,0 = −∆tm,0, (26a)

vo
m − vm = −∆vm, m = 1, 2, . . . ,M. (26b)

Squaring both sides of αo
j = ‖uo − toj‖, and applying the definition of φo and φo = φ−∆φ yield

tTj u
o − 0.5uoTuo − 0.5tTj t

o
m,0 − 0.5ktTj v

o
m + [φ]22qM+j ≃ (uo − 0.5toj)

T∆tj + [φ]2qM+j [∆φ]2qM+j , (27)
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where tj = [φ]m1+(1:q) + k[φ]m2+(1:q).
Let the unknown vector be

y2 = [uoT, toT0 ,voT,uoTuo]T ∈ R
L4 , (28)

where L4 = q + 2qM + 1. From (26a), (26b), and (27), the pseudo-linear equation in matrix form is

G2y2 − h2 = B2∆φ. (29)

The detailed definitions of G2, h2, and B2 are provided in Appendix A.
From (29), the CWLS problem is formulated as

min
y2

(G2y2 − h2)
TW2(G2y2 − h2)

s.t. [y2]L4 = [y2]
T
1:q[y2]1:q, (30)

where the weighting matrix W2 is approximated by

W2 ≃ (B2cov(∆φ)BT
2 )

−1. (31)

To convert problem (30) into a convex SDP form, we define a matrix by

Y2 =

[

y2y
T
2 y2

yT
2 1

]

. (32)

Y2 needs to satisfy

Y2 � 0, [Y2]L5,L5 = 1, (33a)

rank(Y2) = 1, (33b)

where L5 = q + 2qM + 2. When Y2 is defined, the constraint in problem (30) becomes

[Y2]L4,L5 = tr([Y2]1:q,1:q). (34)

Similar to the procedure of (18) and (19), the CWLS problem (30) can be relaxed as the stage-two SDR
problem:

min
Y2

tr(C2Y2)

s.t. (33a), (34), (35)

where

C2 =

[

GT
2 W2G2 −GT

2 W2h2

−hT
2 W2G2 hT

2 W2h2

]

. (36)

Solving the stage-two SDR problem yields the estimates of u, t0, and v which are given by

u = [Y ]1:q,L5 , t0 = [Y ]q+(1:qM),L5
, v = [Y ]q+qM+(1:qM),L5

. (37)

The independent variable in the CWLS problem (30) is ϕo = [uoT, toT0 ,voT]T. The estimated value of
ϕo is defined as ϕ, and ∆ϕ is its estimation error. Similar to the procedure of (21)–(25), we can obtain
the covariance of estimation error ∆ϕ,

cov(∆ϕ) = (AT
2 W2A2)

−1, (38)

where A2 = G2H2,

H2 =
∂y2

∂uoT
. (39)

The definition of y2 gives

[H2]1:q+2qM,1:q+2qM = I, [H2]q+2qM+1,1:q = 2uoT ≃ 2uT. (40)

The solution of W2 requires B2 that depends on the value of uo. Unfortunately, uo is unavailable at
the beginning. Initially, setting W2 to an identity gives a coarse estimate of uo, which is used to form
B2 and W2. The newly formed W2 produces a better solution. The performance degradation in this
procedure is negligible since the solution is insensitive to the weighting matrix.
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4 Feasibility of two-stage solution

The SDR problem is equivalent to its CWLS form if the SDR solution is rank-one and the SDR solution
is feasible. In this section, we perform the feasibility study by applying the rank analysis. The stage-one
SDR solution is rank-one at the small noise levels when G1 is full column rank, i.e.,

rank(G1) = 2(q +K)M. (41)

4.1 Rank of G1

In order to fulfill G1 to be full column rank, the number of rows in G1 should be greater than that of
the columns, yielding

K >
2q

N − 2
. (42)

The column rank is determined by the maximum number of linearly independent columns in G1. Let

the p-th column of G1 be g
(p)
1 , and the rank of G1 be P . As a result, there are P linearly independent

columns in G1. Thus, the equation

P∑

p=1

cpg
(p)
1 = 0, (43)

can only be satisfied by having

c1 = c2 = · · · = cP = 0. (44)

From (42), N needs to be greater than or equal to 3. Assuming sufficient K, we provide a detailed
analysis for the rank of G1 by considering varying (M,N) starting from their smallest value (1, 3). In
the following, we first consider the 3-D case (q = 3), and the rank analysis for the 2-D case (q = 3) is
provided in Appendix B.

(1) (M = 1, N = 3). The positions of three sensors are s1, s2, and s3, and the size of G1 is
3K × (2K +6). Let us define the vector by c = [c1, c2, . . . , cP ]

T. Obviously, the length of vector c is 3K.
The first three columns of G1 give

K∑

k=1

c3k−2s1 +
K∑

k=1

c3k−1s2 +
K∑

k=1

c3ks3 = 0. (45)

If the positions of s1, s2, and s3 are not coplanar, Eq. (45) implies

K∑

k=1

c3k−2 =

K∑

k=1

c3k−1 =

K∑

k=1

c3k = 0. (46)

Applying the 4th to the 6th columns to (43) yields

K∑

k=1

kc3k−2 =

K∑

k=1

kc3k−1 =

K∑

k=1

kc3k = 0. (47)

The subsequent K columns of G1 give

3∑

i=1

c3k−3+id3k−3+i = 0, k = 1, 2, . . . ,K. (48)

Applying the last K columns produces

3∑

i=1

c3k−3+i = 0, k = 1, 2, . . . ,K. (49)
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There are 2K+6 equations for (46)–(49). Unfortunately, they are not independent, and two correlated
equations can be found. The sum of all terms on the left sides of (46) is equal to the sum of all K terms
of (49). Hence, two sets of equations (46) and (49) are linearly dependent. Besides, the sum of the left
terms in (47) is equal to the sum of k times (49). As a result, the column rank of G1 is 2K + 4 for the
sufficient K.

(2) (M = 1, N = 4). The positions of four antennas are s1, s2, s3, and s4, and the size of G1 is
4K × (2K + 6). If s1, s2, and s3 are not parallel to one another, they span the 3-D space. Thus, s4 can
be expressed as

s4 = [s1, s2, s3][λ1, λ2, λ3]
T, (50)

where λ1, λ2, λ3 are not equal to zero.
As a result, the first three columns of G1 give

4∑

i=1

K∑

k=1

c4k−4+isi = 0. (51)

Substituting (50) into (51) yields

3∑

i=1

K∑

k=1

(c4k−4+i + λic4k)si = 0. (52)

Therefore, we have

K∑

k=1

(c4k−4+i + λic4k) = 0, i = 1, 2, 3. (53)

Similarly, applying the 4th to 6th columns to (43) produces

K∑

k=1

k(c4k−4+i + λic4k) = 0, i = 1, 2, 3. (54)

Correspondingly, Eq. (47) becomes

4∑

i=1

c4k−4+id4k−4+i = 0, k = 1, 2, . . . ,K. (55)

The last K columns give

4∑

i=1

c4k−4+i = 0, k = 1, 2, . . . ,K. (56)

The number of equations (53)–(56) is 2K+6, and they are linearly independent. Hence, there are totally
2K +6 independent equations, indicating rank(G1) = 2K +6 for the sufficient K > 3, obtained by (42).

(3) (M > 2, N = 3). The size of G1 is 3KM × 2(K + 3)M , and the length of vector c is 3KM .
Although the number of the equations (46)–(49) are increased to 2(K + 3)M , 2M sets of equations are
linearly dependent. Therefore, the rank of G1 is 2(K + 2)M and never to be full column rank for the
sufficient K.

(4) (M > 2, N > 4). Although the size of G1 is increased to KMN × 2(q +K)M , 2(q +K)M sets of
equations are still linearly independent due to the sufficient sensors of N > 4. As a result, G1 is always
full column matrix.

The G1 is full column matrix for N > 4 regardless of the value of M . Thus, the stage-one SDR solution
is rank-one and feasible to provide an estimated value for the unknown. Similar to the analysis for the
rank of G1, we conduct the feasibility analysis for the stage-two SDR by applying the rank of G2.
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4.2 Rank of G2

The size of G2 is (2q +K)M × (2qM + q + 1). In order to satisfy rank(G2) = 2qM + q + 1, the number
of rows in G2 needs to be larger than or equal to that of the columns, producing KM > 4 for q = 3. For
the sufficient K, we derive the rank of G2 by considering varying M starting from one.

(1) M = 1. The size of G2 is (6 + K) × 10. There is only one transceiver, and its starting position
and velocity are to1,0 and vo

1 , respectively. Besides, j is equal to k for M = 1. Applying the first three
columns of G2 yields

K∑

k=1

c6+kt1,0 +

K∑

k=1

kc6+kv1 = 0. (57)

Considering t1,0 not parallel to v1, we arrive at

K∑

k=1

c6+k = 0,

K∑

k=1

kc6+k = 0. (58)

By applying (58), the 4th–9th columns of G2 give

c1 = c2 = · · · = c6 = 0. (59)

Finally, the last column of G2 gives

K∑

k=1

c6+k = 0. (60)

Eqs. (58)–(60) are not linearly independent since the left equation of (58) is the same as (60). As a
result, the maximum value of P can only be 8 to ensure Eq. (44) is the solution of (43). The rank of G2

is 8, which is less than the number of columns. Hence, the stage-two SDR is infeasible.
(2) M = 2. The size of G2 increases to (12 + 2K) × 16, and the starting positions and velocities of

two transceivers are to1,0, t
o
2,0, v

o
1 , and vo

2 , respectively. Applying the last column of G2 yields

K∑

k=1

c11+2k = −

K∑

k=1

c12+2k. (61)

Substituting (1) and applying the first three columns to (43) give

K∑

k=1

c11+2kt1,0 +
K∑

k=1

c12+2kt2,0 +
K∑

k=1

kc11+2kv1 +
K∑

k=1

kc12+2kv2 = 0. (62)

Similar to (50), t2,0 is expressed by the form in term of t1,0, v1, and v2, yielding

t2,0 = [t1,0,v1,v2][γ1, γ2, γ3]
T, (63)

where γ1, γ2, γ3 are not equal to zero. Provided that t1,0, v1, and v2 are not parallel to each other.
Inserting (63) into (62) and applying (61) give

K∑

k=1

c11+2k =
K∑

k=1

kc12+2k =
K∑

k=1

kc11+2k = 0. (64)

From the 4th–15th columns of G2, using (61) and (64), we arrive at

c1 = c2 = · · · = c12 = 0. (65)

Eqs. (61), (64), and (65) are linearly independent. Thus, the rank of G is 16, and G is full column
rank. The stage-two SDR solution is rank-one and feasible.

(3) M > 3. Each transceiver contributes K rows to G2. Two transceivers are sufficient to guarantee
G2 to be full column rank. Adding the new rows does not change the rank. As a result, the stage-two
SDR solution is still rank-one, and the solution is feasible.

In summary, the minimum N is 4 for the stage-one SDR, and the minimum M is 2 for the stage-two
SDR. Hence, the minimum value of (M,N) is (2, 4) for the two-stage SDR solution. In this situation,
both SDR solutions tend to be rank-one, and the localization result is guaranteed to be reliable.
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5 Performance analysis

In this section, the CRLB of this problem is derived. In addition, the performance of the two-stage SDR
solutions is proven to approach CRLB accuracy sufficiently. For notation simplicity, we shall use the
symbol ∇a,b to denote the partial derivative, i.e., ∇a,b = ∂a

∂bT .

5.1 CRLB derivation

For the proposed localization problem, the independent variables are ϕo = [uoT, toT0 ,voT]T. According
to the measurement equation, the fisher information matrix (FIM) is given by

F = ∇
T
d,ϕoΣ

−1
∇d,ϕo, (66)

where ∇d,ϕo ∈ R
KMN×(q+2qM) is defined as

[∇d,ϕo ]p,1:q = ρT
uo,to

j
, (67a)

[∇d,ϕo ]p,m1+q+(1:q) = ρT
toj ,u

o + ρT
toj ,si

, (67b)

[∇d,ϕo ]p,m2+q+(1:q) = k(ρto
j
,uo + ρto

j
,si

)T, (67c)

where m1 = q(m − 1), m2 = q(m + M − 1), p = (j − 1)N + i, j = (k − 1)M + m, m = 1, 2, . . . ,M ,
k = 1, . . . ,K.

As a result, the CRLB of this problem is

CRLB(ϕo) = F−1 = (∇T
d,ϕoΣ

−1
∇d,ϕo)−1. (68)

5.2 Performance of two-stage

The CWLS problem (12) is equivalent to the stage-one SDR problem (19) when its solution is rank-one.
Thus, the estimation error of the stage-one SDR solution is expressed by (24), and its covariance is
approximated by (25). Similar to the stage-one SDR, the stage-two SDR solution is also a solution to
the CWLS problem (35) if the SDR solution is rank-one. As s result, the covariance of the estimation
error in the stage-two SDR solution is obtained by (38).

Inserting (25) into (31) produces W2, which is then applied to (38). As a result, the covariance of the
estimation error ∆ϕ is also given by

cov(∆ϕ) ≃ (KTΣ−1K)−1, (69)

where K = B−1
1 A1B

−1
2 A2. The form of expression (69) is similar to that of (68). Obviously, the

covariance can approach the CRLB if satisfying K ≃ ∇d,ϕo. In Appendix C, we provide a detailed proof
for K ≃ ∇d,ϕo . Therefore, the MSE of the estimation error ϕ is able to approach its CRLB.

5.3 Closed-form solution

Similar to the two-stage SDR, the closed-form solution also avails the pseudo-linear equation (7). Thus,
the estimate of y1 is obtained by applying the WLS method. Unfortunately, the constrained relationships
among the variables in y1 are not considered, and the stage-one WLS solution performs poorly. A feasible
method to improve the performance is to apply the multi-stage WLS solution. Similar to the stage-two
SDR solution, the variable y2 is defined, and the stage-two WLS solution is proposed by exploiting
the constrained relationships among the variables. In the stage-two WLS, the constrained relationship
between uo and uoTuo fails to be established. Hence, the solution of the stage-two WLS needs to be
further refined by designing the stage-three WLS. In the following, we call it a multi-stage WLS for a
clear description. As a result, the multi-stage WLS solution performs well enough.

6 Evaluation

In this section, the performance of the two-stage SDR solution is examined by simulations. The positions
of sensors used in the simulations are randomly generated according to uniform distribution [−100, 100] m.
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Table 1 Positions of eight sensors in 2-D simulations (m)

ID 1 2 3 4 5 6 7 8

x −60 82 −10 39 59 5 −65 −46

y 89 67 15 24 91 76 96 −49

Table 2 Positions of nine sensors in 3-D simulations (m)

ID 1 2 3 4 5 6 7 8 9

x −21 −58 34 −70 76 −70 65 50 −96

y 65 −36 14 −5 54 58 75 33 95

z 35 −73 −66 82 −59 55 −95 1 −70

Table 3 Positions of eight transceivers in 2-D simulations (m)

ID 1 2 3 4 5 6 7 8

x 135 145 51 132 72 102 121 95

y 126 106 110 148 120 143 73 67

Table 4 Positions of eight transceivers in 3-D simulations (m)

ID 1 2 3 4 5 6 7 8

x 81 63 51 134 87 95 143 77

y 93 123 65 135 91 124 73 82

z 50 132 72 73 87 55 82 142

Owing to the high complexity of the SDP calculation, one of the random geometry configurations is used
for performance evaluation, and they are listed in Table 1 for the 2-D and Table 2 for the 3-D case. The
object position is set at (300, 300) m for the 2-D and (300, 300, 300) m for the 3-D case. To determine the
object position, the transceivers are moving at the region near the object position, and their velocities are
generated randomly according to the uniform distribution [−1, 1] m/s. The starting positions of 9 mobile
transceivers are also randomly produced from the uniform distribution [50, 150] m, and one of the random
geometry configurations is used for evaluation and listed in Table 3 for the 2-D and Table 4 for the 3-D
case. The noise covariance is given by Σ = σ2I. The performance is evaluated using root mean square
error (RMSE), defined as

RMSE(u) =

√
√
√
√ 1

L

L∑

l=1

‖ul − uo‖2, (70a)

RMSE(t0) =
1

M

√
√
√
√ 1

L

L∑

l=1

‖tl0 − to0‖
2, (70b)

RMSE(v) =
1

M

√
√
√
√ 1

L

L∑

l=1

‖vl − vo‖2, (70c)

where ul, tl0, and vl are the estimates in the l-th ensemble run. L is the number of Monte Carlo (MC)
runs and L is adopted as 1000 in the simulations. The simulations are conducted by MATLAB, in which
the SDP solver is SeDuMi. For performance comparison, we also develop the two-stage WLS (TSWLS)
and the multi-stage WLS (MSWLS) solutions, which are described in Subsection 5.2. In addition, we
also designed the relaxed SDP (RSDP) solution [43], which is also included as a performance comparison.

6.1 Performance with varying noise level σ

We first examine the performance with varying noise level σ for two different cases.
Scenario 1. The performance of the 2-D case is examined. M and N are kept at 3 and 4, respectively,

and K is set at 10. The position parameters are the same as those of the first three transceivers in
Table 3 and the first four sensors in Table 1. The RMSE performance of object position estimation is
shown in Figure 2(a). Since the constrained relationships among the variables are not fully considered,
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Figure 2 (Color online) Performance of 2-D case with varying σ when using M = 3 mobile transceivers, N = 4 sensors, K =

10 time steps. RMSE comparison for (a) object position estimation, (b) starting position estimation, and (c) velocity estimation.
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Figure 3 (Color online) Performance of 3-D case with varying σ when using M = 3 mobile transceivers, N = 5 sensors, K =

10 time steps. RMSE comparison for (a) object position estimation, (b) starting position estimation, and (c) velocity estimation.

the TSWLS and RSDP solutions perform poorly at the entire noise levels tested. The RMSE of the
MSWLS approaches its CRLB at low noise levels, whereas it deviates from its CRLB at σ > 1.0 m.
In contrast, the RMSE curve of the two-stage SDR is closer to the CRLB than that of the MSWLS,
especially at the high noise levels of 1.0 m 6 σ 6 3.1 m.

Figures 2(b) and (c) show the RMSE performance in the estimation of starting positions and velocities,
respectively. The two-stage SDR solution only refines the estimate of object position by availing of the
constraint (34) and has no impact on the performance of the starting position and velocity estimation.
Hence, the performance of the two-stage SDR in the estimation of starting positions and velocities is the
same as that of the stage-one SDR. In addition, the RMSE curve of the MSWLS also almost overlaps
with that of the TSWLS due to the same reason.

Scenario 2. The performance of the 3-D case is examined with varying noise levels. M and N are kept
at 3 and 5, respectively, and K is also set at 10. The position parameters are the same as those of the
first three transceivers in Table 4 and the first five sensors in Table 2. The RMSE performance of object
position estimation is shown in Figure 3(a). Most of the observations are almost similar to those of the
2-D case. The difference is that the RMSE of the TSWLS deviates from its CRLB at σ > 0.1 m, which
is earlier than that of the 2-D case. In contrast, the two-stage SDR performs better, especially at high
noise levels.

The starting positions and velocities of the mobile transceivers are estimated together with the object
position. Figures 3(b) and (c) show their RMSEs as σ increases. Except for the high noise level of
σ = 10.0 m, all the solutions provide almost comparable CRLB accuracy. Hence, the performance for
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Figure 5 (Color online) Performance with varying N when using σ = 0.1 m, M = 3 mobile transceivers, and K = 10 time steps,

for (a) 2-D case and (b) 3-D case.

the estimation of the starting positions and velocities is not evaluated in the following.

6.2 Performance with varying M

In this subsection, we investigate the performance with varying M , the number of mobile transceivers.
Scenario 3. The performance of the 2-D case is examined. N is set to be 4, and four sensor positions

are the same as those of scenario 1. M is varied from 2 to 8, and the positions of M mobile transceivers
are the same as those of Table 2. σ is kept at 0.1 m, and K is set at 10. Figure 4(a) shows the RMSE
performance for the object position estimation. As shown in Figure 4(a), the RMSE performance of the
two-stage SDR approaches its CRLB even if there are only two mobile transceivers. The two-stage SDR
provides comparable CRLB accuracy when M is increased from 2 to 8. Although the MSTLS performs
well at N > 3, its performance has a small gap with the CRLB at N = 2.

Scenario 4. The performance of the 3-D case is investigated. N is set to 5, and the five sensor
positions are the same as those of scenario 2. M is also varied from 2 to 8, and the positions of M
mobile transceivers are the same as those of Table 4. σ is also kept at 0.1 m, and K is also set at 10.
Figure 4(b) shows the RMSE performance for the object position estimation. The closed-form solutions
perform poorly, especially at a small number of mobile transceivers. For M = 2, the MSWLS fails to
provide a solution for the object position estimation. In contrast, the two-stage SDR gives a solution
for object position, although its performance is not close to the CRLB. When M is increased to 3, the
performance of the two-stage SDR can attain the CRLB.

6.3 Performance with varying N

The minimum N is 3 for the 2-D case and 4 for the 3-case. In this subsection, we also investigate the
performance with varying N , the number of sensors.

Scenario 5. The performance of the 2-D case is examined with varying N . σ is kept at 0.1 m, and
K is set at 10. M is kept at 3, and the positions of three mobile transceivers are the same as those of
scenario 1. In addition, we apply the first N sensors in Table 1 by considering varying N . The RMSE
performance in the estimation of object estimation is plotted in Figure 5(a). For N = 2, the RMSEs of
these solutions exceed the scope of the figure size and are not shown. The two-stage SDR can provide a
solution for the object position at N = 3, which is consistent with the result in Section 5. When N is
increased to 4, the RMSE of the MSWLS can approach the CRLB sufficiently.

Scenario 6. The performance of the 3-D case is examined. σ andK are set at 0.1 m and 10, respectively.
M is also kept at 3, and the positions of three mobile transceivers are the same as those of scenario 2.
Similarly, we apply N varying sensors in Table 2. Figure 5(b) shows the RMSE performance of the 3-D
case. For the varying range of 4 6 N 6 9, the two-stage SDR always provides comparable CRLB accuracy
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Figure 6 (Color online) Performance with varying K when (a) using σ = 1.0 m, M = 3 mobile transceivers, and N = 4 sensors,

for 2-D case and (b) using σ = 1.0 m, M = 3 mobile transceivers, and N = 5 sensors, for 3-D case.

for its full exploitation of the constrained relationships. Unfortunately, the RSDP performs poorly due
to its relaxed SDP form. The performance of the MSWLS is also poor except for N > 7.

6.4 Performance with varying time steps

Scenario 7. The performance of the 2-D case is examined with varying K. The parameter setup of
sensors and mobile transceivers is the same as that of scenario 1. The noise level σ is kept at 1.0 m,
and K is varied from 10 to 40 with an interval of 5. Figure 6(a) shows the RMSE performance in the
object position estimation. As shown in Figure 6(a), the performance becomes better as K increases.
The two-stage SDR performs well enough at the entire varying range of K. However, the RMSE of the
TSWLS has a small gap with the CRLB for K 6 20, confirming the disadvantage of the closed-form
solution.

Scenario 8. The performance of the 3-D case is examined. The parameter setup of sensors and mobile
transceivers is the same as that of scenario 2. The noise level σ is also kept at 1.0 m. Figure 6(b)
shows the RMSE performance as K varies. Different from the 2-D case, the performance of the MSWLS
has a large gap with the CRLB when K is varied from 10 to 40. The observations indicate that the
closed-form solution of the 3-D case performs worse than that of the 2-D case due to the increasing of
unknown parameters. In addition, the two-stage SDR solution performs best among these solutions, and
its performance always approaches the CRLB except for K = 10.

7 Conclusion and future work

The mobile transceivers are used to address the blind area problem of object localization. Considering the
motion parameters of the transceivers to be unavailable, we propose an explainable-AI-based two-stage
solution for this localization problem. The feasibility of the two-stage solution is derived, and we require
at least (M = 2, N = 3) for the 2-D case and (M = 2, N = 4) for the 3-D.

The relationships among the variables are difficult to include in the stage-one process, and the perfor-
mance of the one-stage is poor. Hence, the explainable-AI-based two-stage solution is proposed to fully
exploit the constrained relationships, and its performance is proven to approach the optimal accuracy
sufficiently. Compared with the multi-stage closed-form solution, the explainable-AI-based two-stage so-
lution performs better, especially at a small number of sensors and mobile transceivers, or in the presence
of high noise levels. The proposed explainable-AI-based two-stage solution can be extended to many
range-based localization problems where the object position is implicit in the constraints.

In real-world scenarios, for less open terrain, the transceiver needs to avoid obstacles. When K is
large, it may not be possible to ensure that the transceiver is always in uniform linear motion. In future
work, we will investigate the nonlinear motion of transceivers. There are many application scenarios
for transceiver-based localization methods, such as sensor networks that mix fixed and dynamic sensors,
underwater localization of AUVs, etc. In future research, the localization solution will be applied to a
wider range of scenarios.
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Appendix A Definitions of G2, B2, and h2

Obviously, G2 ∈ R
(2qM+KM)×(q+2qM) , the nonzero elements of G2 are defined as

[G2]m1+(1:q),qm+(1:q) = I, [G2]m1+(1:q),q(m+M)+(1:q) = I, [G2]M1+j,1:q = t
T
j ,

[G2]M1+j,q+1+qM = −0.5, [G2]M1+j,qm+(1:q) = −0.5t
T
j , [G2]M1+j,q(m+M)+(1:q) = −0.5kt

T
j , (A1)

where tj = [φ]m1+(1:q) + k[φ]m2+(1:q), m1 = q(m − 1), m2 = q(m + M − 1), M1 = 2qM , j = (k − 1)M + m, m = 1, 2, . . . ,M ,

k = 1, . . . ,K.

Besides, the vector h2 ∈ R
2qM+KM is defined as

[h2]m1+(1:q) = [φ]m1+(1:q), [h2]m2+(1:q) = [φ]m2+(1:q),

[h2]M1+j = 0.5(tTj tj − [φ]2M1+j). (A2)

In addition, B2 ∈ R
(2qM+KM)×(2qM+KM) is given by

[B2]1:M1,1:M1 = −I, [B2]M1+j,m1+(1:q) = (u
o
− 0.5tj)

T
≃ (u− 0.5tj)

T
,

[B2]M1+j,m2+(1:q) = k(uo
− 0.5tj)

T
≃ k(u − 0.5tj)

T
, [B2]M1+j,M1+j = αj = [φ]M1+j . (A3)

In (A2) and (A3), M2 = 2qM + KM , and the definitions of j, m, k, m1, m2, and M1 are the same as those of (A1).

Appendix B Rank of G1 and G2 for 2-D case

The rank analysis for the 2-D case is relatively simple due to the reduction of the dimension, and the procedure is similar to that

of the 3-D case.

Appendix B.1 Rank of G1

Obviously, two sensors (N = 2) are insufficient for the inequity of (42). Hence, the rank analysis of G1 is conducted by varying

(M,N) also starting from (1, 3).

(1) M = 1, N = 3. The size of G1 is 3K × (2K + 4), and the length of vector c is also 3K. The positions s1 and s2 span the

2-D plane, and s3 can be expressed by

s3 = [s1, s2][ω1, ω2]
T
. (B1)

Equating the first two columns of (43) gives

K∑

k=1

c3k−2s1 +
K∑

k=1

c3k−1s2 +
K∑

k=1

c3ks3 = 0. (B2)

Inserting (B1) into (B2) results in

K∑

k=1

(c3k−2 + ω1c3k)s1 +

K∑

k=1

(c3k−1 + ω2c3k)s2 = 0. (B3)

Therefore, we have

K∑

k=1

(c3k−2 + ω1c3k) =
K∑

k=1

(c3k−1 + ω2c3k) = 0. (B4)

Similarly, applying the 3rd–4th columns to (43) yields

K∑

k=1

k(c3k−2 + ω1c3k) =

K∑

k=1

k(c3k−1 + ω2c3k) = 0. (B5)

In addition, the subsequent K columns give

3∑

i=1

c3k−3+id3k−3+i = 0, k = 1, 2, . . . ,K. (B6)
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Equating the last K columns produces

3∑

i=1

c3k−3+i = 0, k = 1, 2, . . . ,K. (B7)

As a result, the 2K + 4 equations of (B4)–(B7) are linearly independent, and G1 is full column rank for the sufficient K > 4.

(2) M > 2, N > 3. The number of columns in G1 is 4M + 2KM . Applying a similar method to (B1)–(B3), we can obtain

4M independent equations for N > 3. The last 2KM columns also give 2KM independent equations, and they are also linearly

independent with the front 4M equations. Hence, the rank of G1 is also 4M + 2KM and equal to the number of columns. G1 is

always full column rank for the sufficient K.

Appendix B.2 Rank of G2

The size of G2 is (4M + KM) × (4M + 3), and KM > 3 needs to be satisfied to ensure G2 is full column rank. Similarly, let us

consider the case of M = 1.

(1) M = 1. The size of G2 is (4 + K)× 7, and j is equal to k for M = 1. Similar to (57), applying the first two columns yields

K∑

k=1

c4+kt1,0 +
K∑

k=1

kc4+kv1 = 0. (B8)

Provided that t1,0 is not parallel to v1, we have

K∑

k=1

c4+k = 0,
K∑

k=1

kc4+k = 0. (B9)

Equating the 3rd–6th columns to (43) gives

c1 = c2 = · · · = c4 = 0. (B10)

The last column of G2 gives

K∑

k=1

c4+k = 0. (B11)

Obviously, the first expression of (B9) is also (B11). As a result, the rank of G2 is 7, which is less than the number of columns.

Hence, the stage-two SDR is also infeasible for M = 1.

(2) M = 2. The size of G2 is (8 + 2K)× 11. The starting positions and velocities of two transceivers are to1,0, v
o
1 , t

o
2,0, and vo

2 ,

respectively. to1,0 and vo
1 span the 2-D plane, and to2,0 and vo

2 can be represented as

t2,0 = [t1,0,v1][ν1, ν2]
T
,v2 = [t1,0,v1][µ1, µ2]

T
. (B12)

Equating the last column of G2 to (43) yields

K∑

k=1

c7+2k = −

K∑

k=1

c8+2k. (B13)

Assuming t1,0 not parallel to v1. Inserting (B12) into (62) and applying (B13) give

K∑

k=1

(1 + kν1 − kµ1)c7+2k =
K∑

k=1

(1 + kµ2 − kν2)c8+2k = 0. (B14)

From the 3rd–10th columns of G2, we can obtain 8 independent equations. As a result, these equations are linearly independent.

Thus, the rank of G is 11, and G is full column rank. The stage-two SDR solution is feasible.

(3) M > 3. Similar to the 3-D case, G2 is still a full column matrix when adding the new rows. Two transceivers are sufficient

to guarantee that the stage-two SDR solution is feasible.

For the 2-D case, the minimum N is 3 for the stage-one SDR, and the minimum M is also 2 for the stage-two SDR. Hence, the

minimum value of (M,N) is (2, 3) for the two-stage SDR solution.

Appendix C Proof for K ≃ ∇d,ϕo

Direct multiplication yields B
−1
1 A1, given by

[B
−1
1 A1]p,m1+(1:q) = ρ

T
si,tj

, [B
−1
1 A1]p,m2+(1:q) = kρ

T
si,tj

, [B
−1
1 A1]p,2qM+j = −1. (C1)

Similarly, B−1
2 A2 is defined as

[B−1
2 A2]p,m1+(1:q) = ρ

T
si,tj

, [B−1
2 A2]p,m2+(1:q) = kρ

T
si,tj

, [B−1
1 A1]p,2qM+j = 1. (C2)

From A2 = G2H2, A2 is also defined as

[A2]1:2qM,q+(1:2qM) = I, [A2]2qM+j,1:q = tj − u,
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[A2]2qM+j,qm+(1:q) = −0.5tTj , [A2]2qM+j,q(m+M)+(1:q) = −0.5ktTj . (C3)

Applying the inverse formula of the block matrix, we arrive at

[B−1
2 ]1:2qM,1:2qM = −I, [B−1

2 ]2qM+j,q(m−1)+(1:q) = (0.5tj − u)α−1
j ,

[B
−1
2 ]2qM+j,q(m+M−1)+(1:q) = k(0.5tj − u)α

−1
j , [B2]2qM+j,2qM+j = α

−1
j . (C4)

Direct multiplication gives

[B−1
2 A2]1:2qM,q+(1:2qM) = −I, [B−1

2 A2]2qM+j,1:q = ρ
T
tj ,u

,

[B−1
2 A2]2qM+j,qm+(1:q) = ρ

T
u,tj

, [B−1
2 A2]2qM+j,q(m+M)+(1:q) = kρ

T
u,tj

. (C5)

As a result, B−1
1 A1 multiplying by B

−1
2 A2 yields K, and K is approximately equal to ∇d,ϕo .
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