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GaN-based metal-insulator-semiconductor high-electron-

mobility-transistors (MISHEMTs) have many excellent per-

formances compared with the Si and GaAs counterparts,

and are prime candidates for applications in communica-

tion base stations, radars, and satellites. Most of the

current GaN RF transistors for the below Ka-band appli-

cations adopt a conventional AlGaN/GaN heterostructure

with a typical Al-composition from 0.25 to 0.3 for the bar-

rier layer. For higher frequency applications, the thin bar-

rier AlN/GaN heterojunction or InAlN/GaN heterojunction

is preferred [1].

The AlN/GaN heterojunction can provide a relatively

high breakdown electric field compared with that of the In-

AlN/GaN heterojunction, which is restricted by its narrow

bandgap and the quality of its epitaxy. However, the ex-

isting major issue in the former is the large ohmic contact

resistance (Rc) due to the wider bandgap of the AlN barrier,

especially in deep submicrometer AlN/GaN transistors. Al-

though the regrowth n++ GaN ohmic technique can yield

a low Rc [2], this method is more complicated for deep-

submicrometer devices.

In this study, a high-Al-composition Al0.65Ga0.35N/GaN

MISHEMT on Si with in-situ SiNx enhanced ohmic contacts

has been demonstrated. Several outstanding DC and RF

performances were experimentally realized.

Experiment. The details of the epitaxial structure were

described in [3]. The device fabrication started from the pla-

nar isolation implemented by ion implantation, followed by

deposition of patterned Ti/Al/Ni/Au stack metals on the 8-

nm thick in-situ SiNx surface, and rapid thermal annealing

at 850◦C for 30 s in N2 atmosphere to form ohmic contacts.

After that, ultra-short gate electrode windows were opened

by electron beam lithography process and followed by F-

based RIE to remove partial in-situ SiNx. There is a 2-nm

thick residual in-situ SiNx layer as gate dielectrics to sup-

press gate leakage current. Finally, 40-nm thick Ni metal

located at the center of the source and drain was defined

as the gate electrode. The device in this work has a 45-nm

rectangular gate (LG) for source-to-drain distance (LSD) of

650 nm.

Results and discussion. Figures 1(a) and (b) clarify

the cross-section schematic of the fabricated device and the

cross-sectional TEM (transmission electron microscope) im-

age of the 45-nm MIS-type gate respectively, where the

source and drain ohmic alloys have contacted with the

Al0.65Ga0.35N barrier layer after the high-temperature an-

nealing process. The ohmic contact performance was eval-

uated using the transmission line method (TLM) as shown

in Figure 1(c). The Rc was extracted to be 0.18 Ω·mm,

while that without in-situ SiNx layer is about 0.32 Ω·mm

(not shown). Such low Rc is mainly due to low-work func-

tion metal silicides and more TiN alloys were formed by

the solid-phase reaction of the metal stacks and the thin

layer in-situ SiNx during the high-temperature annealing

process [3]. Figure 1(d) depicts the DC output curves of the

device with LSD = 650 nm. A gratifying ID of 2.63 A/mm

was obtained. Meanwhile, an ultralow on-resistance (Ron)

of 0.68 Ω·mm was achieved without the use of other com-

plex techniques. Figures 1(e) and (f) plot the linear scale

and semi-log scale DC transfer curves. The high peak extrin-

sic transconductances (gm) were determined to be 704 and

560 mS/mm at VDS = 5 V and VDS = 2 V, respectively. The

ultra-high ID ON/OFF ratio of 109 was achieved at VDS =

2 V for the 45-nm gate device, which benefits from the high

gate-to-channel aspect ratio and the low gate leakage cur-

rent (IG) suppressed by the 2-nm amorphous in-situ SiNx

gate dielectrics. The drain induced barrier lower (DIBL)

and minimum sub-threshold swing (SS) were extracted to

be ultra-low values of 42 mV/V and around 100 mV/dec,

respectively. These results indicate that our transistor has

minimized short-channel effects (SCEs).

Figure 1(g) shows the de-embedding RF small-signal
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Figure 1 (Color online) (a) Cross-section schematic of the fabricated transistor; (b) TEM image of the MIS-gate structure;

(c) extraction of ohmic contact resistance by using TLM; the inset is I-V characteristics of TLM resistances; (d) output char-

acteristics of the 45-nm gate device with LSD = 650 nm; (e) linear and (f) log-scale transfer characteristics of the 45-nm gate

device under varying bias voltages; (g) RF small-signal characteristics of the transistor; (h) benchmarking the maximum current

and ON-OFF current ratio; (i) benchmarking the fT and LG; (j) benchmarking the Ron and fT.

characteristics of the transistor. A cut-off frequency (fT)

of 320 GHz was achieved by extrapolating |h21|2 with a

slope of −20 dB/dec. To the best of our knowledge, the

value of fT is the highest among the reported GaN-on-

Si transistors [1]. A value of fT × LG was yielded to be

14.4 GHz·µm, with a gate-to-channel aspect ratio of 6.4.

The low maximum oscillation frequency (fmax) value of

35 GHz is due to the high gate resistance. Figure 1(h)

illustrates advantages of the transistor in terms of IDmax

and ID ON/OFF ratio [1, 2, 4–7]. Figure 1(i) compares the

fT in this work with those reported state-of-the-art results

in [1, 2, 5, 6] for GaN-on-Si. Figure 1(j) depicts the plot

of Ron versus fT that benchmarks the performances of the

fabricated device against some state-of-the-art GaN-on-Si

and GaN-on-SiC transistors [1,2,6,7]. Compared with these

complex-process transistors, our transistor shows competi-

tive performances.

Conclusion. We demonstrated a novel high-Al-

composition-AlGaN/GaN MISHEMT on Si with in-situ

SiNx enhanced ohmic contacts. The fabricated 45-nm

gate AlGaN/GaN MISHEMT on Si exhibits a low Ron of

0.68 Ω·mm, a high ID of 2.63 A/mm, a high gm of

704 mS/mm, and a record fT of 320 GHz. These results

imply that this ohmic scheme has a significant potential to

facilitate the development of high-performance GaN-based

RF devices.
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