
SCIENCE CHINA
Information Sciences

. Supplementary File .

Strategies for Mitigating Detrimental Effects in
Cyber-Physical Multiplex Networks

Yudong GONG1, Shenghai YANG1, Sanyang LIU1*, Pei WANG1 & Yiguang BAI1*

1School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China

Appendix A Preliminaries and Notations

Appendix A.1 Related Works

Lack of communication is believed to be the main causes of failure for immunization campaigns [1], this inspires works to conduct

the investigation on a kind of Epidemic-Awareness Coupling Mechanism (EACM). A seminal contribution in this domain was made

by Funk et al. [2], who introduced an epidemiological model, and unveiled the pivotal role of awareness diffusion in mitigating the

scale of epidemic outbreaks. Granell et al. [3] found the emergence of a meta-critical point wherein the onset of epidemics becomes

intricately regulated by the diffusion of information, shedding valuable light on this complex interplay. In a subsequent development,

they [4] had further extended their model to investigate the impact of self-awareness and mass media on dynamics. Remarkably,

this exploration revealed that the meta-critical point disappears due to the mass media. Recently, Liu et al. [5] explored individual

variances in information acceptance and protective measures against epidemics. Yin et al. [6] developed a three-layered network

model to examine the coevolution of negative vaccine-related information, vaccination behavior, and epidemic spread, determining

that the vaccination rate and the topology of epidemic spread layer are pivotal in defining the epidemic threshold. Yang et al. [7]

extended the EACM to encompass time-varying multiplex networks, delving into the complex dynamics driven by asymmetric

interactions over time. Guo et al. [8] analyzed a partial mapping relationship between two layers, in which only pairwise nodes

have correspondence, and the individual with knowledge of prevention information will take effective measures to avoid being

infected. Furthermore, as the future state of an individual at any given time depends only on its current state and is independent

of past states, the Microscopic Markov Chain Approach (MMCA) is extensively used to model epidemic diffusion dynamics within

EACM [9,10].

The Epidemic-Rumor Spreading Mechanism (ERSM) concentrates on mitigating the detrimental effects of epidemics and rumors,

concurrently. The application of evolutionary multi-objective optimization algorithms has gained significant traction across various

research domains. These algorithms are generally categorized into three groups: i) Pareto-based, such as NSGA-II [11], SPEA2 [12];

ii) Decomposition-based, such as MOEA/D [13], and iii) Indicator-based, such as Hypervolume metric [14]. Their efficacy in

identifying critical nodes or maximizing influence is well-documented across various studies [15–20].

Appendix A.2 Cyber-Physical Multiplex Networks

Multiplex networks offer a sophisticated framework where nodes maintain invariant identities across numerous interconnected layers,

while displaying distinct connections and dynamics within each layer. By splitting the overall systems into component networks,

new phenomena can be uncovered and predicted [21]. The spread of epidemics typically occurs through physical contact networks,

mirroring offline campaigns, while the propagation of information is prevalent within cyber-communication networks, akin to online

campaigns. Historically, various researches had largely treated these processes independently, yet real-world instances frequently

demonstrate interactions or couplings between them [3].

The present paper delves into intricacies of a multiplex network denoted as G := ⟨C,P ⟩, which is composed of two single layer

networks. The upper layer denoted as C := ⟨V,EC⟩ is the cyber-communication network where information spreads. Conversely, the

lower layer denoted as P := ⟨V,EP ⟩, represents the physical contact network where disease spreads. Notably, both layers share an

identical vertex set V = {v1, v2, ..., vn} while with distinct intra-link topologies: EC = {ec1, e
c
2, ..., e

c
m} and EP = {ep1 , e

p
2 , ..., e

p
w}.

Furthermore, the adjacency matrix of C is represented as {aij}n×n, where {aij} = 1 signifies the presence of a link from node vi
to vj within in layer C, while {aij} = 0 denotes the absence of such a link. Analogously, bij adheres to a comparable definition

within the context of layer P .

Then, we explore the dynamics of epidemic transmission within a community-structured layer P , where community characteristics

embody significant geopolitical elements integral to social networks, elucidates the process of initial localized epidemic spread within

communities, succeeded by wider network dissemination. In parallel, layer C categorizes information propagation campaigns into

two types: i) positive communications, such as awareness campaigns, which amplify individuals’ perception of epidemic risk and

advocate for protective measures; ii) negative communications, such as rumors, which are particularly pervasive in the context

of an epidemic outbreak. This integration of epidemic processes with both positive and negative informational content gives rise

to the emergence of two novel mechanisms: Epidemic-Awareness Coupling Mechanism (EACM) and Epidemic-Rumor Spreading

Mechanism (ERSM).
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Appendix B Methodologies in EACM

Appendix B.1 Propagation Dynamics

We implement the Susceptible-Infectious-Susceptible (SIS) model for the physical layer (P ) and the Unaware-Aware-Unaware (UAU)

model for the cyber layer (C). In layer P , the parameter β denotes the probability that a susceptible individual becomes infected,

while µ denotes the spontaneous recovery probability for an infected node. In layer C, the analogous roles of β and µ are represented

by φ and δ, respectively. Therefore, within the EACM framework, individuals can be categorized as either susceptible (S) or infected

(I) in layer P , and as unaware (U) or aware (A) in layer C. This relationship is summarized as N [t] = I[t] + S[t] = A[t] + U [t],

where N [t] signifies the total population at time t.

An additional intriguing facet of the EACM is the temporal discrepancy between its two constituent layers. Within layer P ,

the progression of epidemic transmission, governed by physical node contacts, unfolds at a more gradual pace compared to the

dissemination of awareness within layer C. This temporal difference can be quantified by a parameter, τ . For instance, τ = 3

signifies that at the moment infected nodes in layer P establish contact with their one-hop/immediate neighbors, aware nodes

within layer C have already succeeded in diffusing awareness to their three-hop neighbors, concurrently. It is this precise temporal

delay that imbues the study of EACM with heightened significance and complexity.

Appendix B.2 Active-Passive Immunity

In the context of epidemic propagation within the layer P , individuals in susceptible states become aware of risk information via

communications in the layer C, prompting to adopt preemptive preventive measures. This process is characterized as the active

immunity. Li et al. [22] quantified the neighbor contact rate of a risk-informed individual as e−µ, where µ symbolizes the protection

degree and follows a Poisson distribution. This immunological response is encapsulated by a generalized quantitative relationship

between βA and βU , the infection rates for aware and unaware nodes, respectively. Various studies suggested a linear correlation:

βA = γ ·βU with γ ranging between 0 and 1 [4,9,23,24]. Nie et al. [25] proposed an alternative formulation: βA = k−α ·βU , α ⩾ 0.

Lima et al. [26] and Massaro et al. [27] defined βA
i = βU

i · exp(−J · s/ki), where s is the number of infected neighbors. These

models generally agree that βA ⩽ βU , but neglect the geopolitical context of nodes, such as correlation between the intensity of

preventive measures and the local infection rate. For instance, a node may not immediately react if the local infection rate is 0, but

is likely to adopt active measures, like self-isolation, when this rate exceeds 90%. In the light of these considerations, we propose

an adaptive model for βA
i :

β
A
i = β

U
i · exp(−λ

∑
v∈Γi

I(v) + 1

|Γi|
) (B1)

where λ ⩾ 0 is the adjustment factor, Γi is the community vi belongs to, I(v) is the indicative function:

I(v) =

 1, if v is infected,

0, otherwise.
(B2)

Eq. (B1) acknowledges that the likelihood of adopting preventive measures varies with the proportion of infected individuals in

a community.

Conversely, passive immunity refers to the immunological phenomenon where individuals’ responses are primarily shaped by ex-

ternal influences. Def. 1 delineates a classical form of passive immunity, characterized by nodes being directed by their community’s

collective consciousness.

Definition 1 (Community Consciousness). Community consciousness exerts a pervasive influence across the community, embody-

ing a consensus universally acknowledged by its members or a type of directive consistently disseminated by the most authoritative

institutions or governmental bodies within that community. For example, varying awareness levels and policies across different

regions lead to disparate preventive behaviors among their inhabitants.

It is noted that immunity campaigns are contingent not only upon the process of awareness propagation (i.e., active immunity)

but also the mechanism of community broadcasting (i.e., passive immunity). Consequently, Eq. (B1) can be further improved as:

β
A
i = β

U
i · k

−ci
i · exp(−λ

∑
v∈Γi

I(v) + 1

|Γi|
) (B3)

where ki denotes vi’s in-degree, meaning that earlier protections should be arranged if vi is popular in community. Eq. (B3) is

adaptively changed according to the active and passive effects, when ci = 0, βU
i is degraded by only active immunity; when λ = 0,

βU
i is degraded by only passive immunity.

Appendix B.3 Derivation of βU
c via MMCA

In the EACM framework, the integration of node states from both online and offline layers results in comprehensive states: Unaware

and Susceptible (US), Aware and Susceptible (AS), and Aware and Infected (AI). Notably, the state of Unaware and Infected (UI)

is absent as infection inherently triggers self-awareness about the epidemic. Fig. B1(a) delineates the macroscopic transition rules

among these three states. Nodes in AS state transition to AI with a contagious rate βA.

However, it is noted that the infection of a susceptible node is governed not solely by the contagion rate, but also by the node’s

interactions with its neighbors. For a more precise exploration, we employ a First Discrete Transition Probability Trees (FDTPT)

method from a microscopic perspective. Within the active-passive immunity paradigm, the FDTPT can be divided into four phases:

individual awareness spread (phase 1), community broadcasting (phase 2), epidemic contagion (phase 3), and self-awareness (phase

4). Each phase is meticulously incorporated into the transition trees, as depicted in Fig. B1(b).

Then, it becomes feasible to reconstitute the equations of the Microscopic Markov Chain Approach (MMCA), which articulates

the probability of a node occupying a specific state at time t + 1 as the function of its state at the preceding time point t:

p
US
i (t + 1) = p

AI
i (t)δ(1− ci)µ + p

US
i (t)ri(t)(1− ci)q

U
i (t) + p

AS
i (t)δ(1− ci)q

U
i (t) (B4)
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Figure B1 Macroscopic and Microscopic perspective of state transitions.

p
AS
i (t + 1) = p

AI
i (t)[δciµ + (1− δ)µ] + p

US
i (t)

[
ri(t)ciq

A
i (t) + (1− ri(t)) q

A
i (t)

]
+ p

AS
i (t)

[
δciq

A
i (t) + (1− δ)q

A
i (t)

] (B5)

p
AI
i (t + 1) = p

AI
i (t)[δci(1− µ) + δ(1− ci)(1− µ) + (1− δ)(1− µ)]

+ p
US
i (t)[ri(t)ci(1− q

A
i (t)) + ri(t)(1− ci)(1− q

U
i (t)) + (1− ri(t))(1− q

A
i (t))]

+ p
AS
i (t)[δci(1− q

A
i (t)) + δ(1− ci)(1− q

U
i (t)) + (1− δ)(1− q

A
i (t))]

(B6)

where pUS
i (t+1) denotes the probability of node vi being in the US state at time t+1, contingent upon its own states and transition

parameters at time t. ci denotes the intensity of community broadcasting, δ and µ are recovery rates for nodes in aware and infected

states, respectively. Additionally, ri(t) represents the probability that node vi remains unactivated by its aware neighbors at time

t, reflecting the influence of neighboring nodes on the state transition of vi, q
A
i (t) (qUi (t)) denotes the probability of node vi being

in aware (unaware) state, and not be infected by infectious neighbors at time t:

ri(t) =
∏
j

(1− ajip
A
j (t)φ) (B7)

q
A
i (t) =

∏
j

(1− bjip
I
j(t)β

A
i (t)) (B8)

q
U
i (t) =

∏
j

(1− bjip
I
j(t)β

U
i (t)) (B9)

In accordance with the established framework, it is demonstrated that the sum of equations (B4), (B5), and (B6) is equal to 1,

which facilitates the tracking of the temporal evolution of awareness and epidemic dynamics under any set of initial conditions.

Moreover, a notable aspect of this model is the ability to analytically resolve the stationary state of the entire system, and enables

the determination of the epidemic onset as a function of the various parameters within the model.

I. In the vicinity of the stationary state, where t → ∞, it holds that pi(t + 1) = pi(t). Originating from Eq. (B6), and

acknowledging the equivalence pAI
i (t) = pI

i(t), one can deduce the following calculation:

p
I
i = p

I
i(1− µ) + p

US
i

[
1− q

A
i + ri(1− ci)

(
q
A
i − q

U
i

)]
+ p

AS
i

[
1− q

A
i + δ(1− ci)

(
q
A
i − q

U
i

)]
(B10)

II. In proximity to the onset of an epidemic, the proportion of infected individuals approaches to 0, then pI
i can be approximated

as pI
i = ξi ≪ 1, by substituting this approximation into eqs. (B8) and (B9):

q
A
i ≈

∏
j

(1− bjiξjβ
A
i ) ≈ 1− γiβ

U
∑
j

bjiξj = 1− γiσi (B11)

q
U
i ≈

∏
j

(1− bjiξjβ
U
) ≈ 1− β

U
∑
j

bjiξj = 1− σi (B12)

in which the o(ξi
2) terms are removed, and parameters γi = k

−ci
i exp

−λ
∑

v∈ni

I(v)

|ni|

, σi = βU ∑
j

bjiξj .

The integration of these two conditions elucidates a critical juncture indicating the onset of an epidemic under a stationary

state. Consequently, it is possible to derive the phase transition point for the epidemic, characterizing the threshold at which the

epidemic emerges in the system.

Firstly, substitute Eq. (B11-B12) into (B10), one can get:

ξi = (1− µ)ξi + [1− (1− ci)(p
US
i ri + p

AS
i δ)]γiσi + [(1− ci)(p

US
i ri + p

AS
i δ)]σi (B13)

since ξi = pUI
i +pAI

i ≪ 1, i.e., pUI
i ≈ pAI

i = o(ξi), one can get pU
i = pUS

i + pUI
i ≈ pUS

i , pA
i = pAS

i + pAI
i ≈ pAS

i , and Eq. (B4) and

(B5) become to:

p
U
i = p

U
i ri(1− ci) + p

A
i δ(1− ci) = (1− ci)(p

U
i ri + p

A
i δ) (B14)

p
A
i = p

U
i (rici + 1− ri) + p

A
i (δci + 1− δ) (B15)
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It further refines the condition that pU
i + pA

i = 1. Then, substitute Eq. (B14) into (B13), one can get:

0 = −ξiµ + (1− p
U
i )γiσi + p

U
i σi = −ξiµ + (p

A
i γi + p

U
i )β

U
∑
j

bjiξj (B16)

since ξi =
∑
j

Eijξj , where

Eij =

 1, i = j

0, i ̸= j
(B17)

Eq. (B16) becomes to: ∑
j

[(p
A
i γi + p

U
i )bji−

µ

βU
Eij ]ξj = 0 (B18)

Define

hij = (p
A
i γi + p

U
i )bji (B19)

as the element of matrix H, then the Eq. (B18) is solvable if and only if µ/βU is the eigenvalue of H, i.e., Λ(H) = µ/βU.

Hence, the threshold of βU is:

β
U
c =

µ

Λmax(H)
(B20)

Additionally, solve Eq. (B14) by the truth pA
i + pU

i = 1, one can get that:

p
U
i =

δ − δci

1 + rici + δ − ri − δci
(B21)

p
A
i =

1 + rici − ri

1 + rici + δ − ri − δci
(B22)

Upon substituting equations (B21-B22) into (B19), one can construct matrix H and consequently solve for the critical threshold

βU
c . It is noted that βU

c is contingent upon parameters including φ, δ, ci, γi, µ, ri, and structural configurations of both the upper

layer C = {aij}n×n and lower layer P = {bij}n×n.

Appendix C Methodologies in ERSM
While direct evidence of a coupling relationship between epidemics and rumors is currently lacking, it is undeniable that the emer-

gence of an epidemic often catalyzes the spread of rumors. The reason can be attributed to: i) psychological comfort under disease

anxiety; ii) imbalance in information supply and demand under an unstable environment; iii) deliberate attack and convenient

online social platform; iv) the inherent allure of rumors [28].

The ERSM concentrates on concurrently mitigate the spread of epidemics and rumors. The present study frames this challenge

as a Multi-Objective Optimization (MOO) problem, focusing on the development of containment strategies that not only reducing

the prevalence of infection and rumors, but also ensuring cost-effectiveness. Compared to addressing them separately, the MOO

model offers two principal benefits:

i) Flexible budgeting: Traditional methods struggle to predict the effectiveness of specific cost expenditures in achieving con-

tainment. While our model mitigates this issue by offering a spectrum of scenarios across varying costs.

ii) Multiple strategies: This method can provides a range of containment strategies, facilitating a comprehensive overview and

more informed decisions on effectively managing both epidemics and rumors.

Appendix C.1 The Multi-Objective Optimization Model

(a) (b)

Figure C1 Instances for (a) βPWC calculation; (b) MOO problem solving, it sets β = 0.1, pT = pR = 1, ∆c = 0.005.

Appendix C.1.1 Minimizing the Connectivity of Epidemic Network
Timely supervision often faces challenges due to factors like the incubation period of the disease and the presence of asymptomatic

carriers, which can impede the effectiveness of containment strategies. An increasing body of research advocates for early vaccination

as a more efficient, cost-effective, and globally applicable immunization strategy. Building upon this insight, we propose a novel

objective: the removal (i.e., vaccination) of a specific set of nodes that minimizes the connectivity of the entire network.
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The PairWise Connectivity (PWC), a prevalent metric in CND problem is adopted to measure the connectivity of the epidemic

network after vaccinating a set of nodes.

npwc(G
′
) =

1

n(n− 1)

∑
vi,vj∈V,vi ̸=vj

p(vi, vj) (C1)

where G′ is the graph after removing vaccinated nodes and their corresponding edges. The connectivity p(vi, vj) is 1 if the node

pair (vi, vj) is connected via a path in G′. Clearly, it holds that npwc(G′) ∈ [0, 1], and a lower npwc value indicates a more

effective removal(vaccination) effect.

However, due to the stronger connectivity of the social network, the removal of nodes will not necessarily lead to the disintegration

of the network, rendering npwc less applicable in the epidemic containment problem. On the other hand, the infection rate β also

worth consideration, for instance, even if a node v has high centrality within the network topology, if βv = 0, vaccinating this node

will not yield any significant protective effects for its neighbors. Such β-based protective utility is termed as the βPU. When nodes

pair (vi, vj) remains connected via a path, the probability of vi infecting vj is determined by aggregating the probabilities across

all possible paths from vi to vj ,

∆ij =
∑
l∈L

∏
(s,t)∈l

βst (C2)

Then, an improved metric incorporating βPU into Eq. (C1) is shown as:

βpwc(G
′
) =

1

n(n− 1)

∑
vi,vj∈V,vi ̸=vj

p
′
(vi, vj) (C3)

where

p
′
(vi, vj) =

 1, if ∆ij ⩾ ∆c,

0, otherwise.
(C4)

∆c is a predefined threshold, when ∆ij exceeds ∆c, it is considered that vi has a significant potential impact on vj . As illustrated

in Fig. C1(a), when setting ∆c = 0.1, ∆15 = 0.5 ∗ 0.9 + 0.5 ∗ 0.1 ∗ 0.3 = 0.465 > 0.1, then p′(v1, v5) = 1. While after vaccinating

node v2, ∆15 = 0.5 ∗ 0.1 ∗ 0.3 = 0.015 < 0.1, consequently, p′(v1, v5) = 0. It suggests that vaccinating v2 can effectively reduce the

connection, hence decreasing value of npwc.

The metric βpwc effectively integrates the βPU, accounting for the likelihood of infection transmission along the network paths,

thereby enhancing the metric relevance and applicability in the context of epidemic control. In this refined framework, a lower value

of βpwc indicates a more effective disruption or collapse of the epidemic network, signifying a successful containment strategy.

Therefore, the primary objective function revolves around identifying an optimal subset of nodes, S, S ⊆ V , so that the removal

(vaccination) of S can minimize the βpwc:

Minimize F1(S)

where F1(S) = βpwc(V \S), S ⊆ V
(C5)

Appendix C.1.2 Minimizing the Rumor Propagation
A practical approach to suppress rumor is to introduce the truthful information, thereby setting up a competitive dynamic in the

network. Once individuals receive truth, they not only stop accepting rumors but also begin disseminating the truth to others [18].

This process can be modeled as a Competitive Independent Cascade (CIC) model, with truth acting as a countermeasure to rumor

proliferation.

Competitive independent cascade (CIC): Both rumor and truth spread through the network following the Independent cascade

(IC) model. Once a node is activated by the truth, it becomes immune to rumor, and vice versa. Importantly, if a node is

exposed to both rumor and truth simultaneously, it will preferentially adopt the truth. The CIC model can be defined as a 3-tuple

(G⟨V,E⟩, pR, pT ) where G represents a directed graph, pR and pT are activation probabilities of rumors and truths, respectively.

To differentiate the impact of truth from rumors, we set pT = α · pR, where α ∈ (0, 1/pR] is an adjustment factor. The influence

diffusion function is denoted as σR(ST ), evaluating the expected number of final rumor-adopted nodes under the initial rumor-active

seeds R and truth-active seeds ST .

Therefore, the second objective function is focused on identifying an optimal set of nodes ST , ST ⊆ V \R, so that the activation

of ST for propagation of truth can minimize the σR(ST ):

Minimize F2(S)

where F2(S) = σR(S), S ⊆ V \R
(C6)

Appendix C.1.3 Minimizing the Associated Costs
The third objective function addresses the cost aspect of containment measures for both the epidemic and the spread of rumors.

These containment strategies, while effective, incur certain inevitable costs, making cost minimization an essential component of

the MOOP framework. The costs can be categorized as: i) vaccination costs c1(·), which is set as a constant value, e.g., c1(v) = 0.5

for all v ∈ V ; ii) truth-Deployment costs c2(·), which is set as c2(v) = kv
n−1 , v ∈ V , where kv denotes degree of v, under the premise

that more influential nodes (such as opinion leaders) typically require higher incentives or efforts to disseminate information. Then,

the third objective function of minimizing the total costs can be mathematically represented as follows:

Minimize F3(S)

where F3(S) = c1(S) + c2(S)
(C7)

In summary, the entire multi-objective optimization function is to integrate three objective functions:

Minimize F (S) = (F1(S), F2(S), F3(S))T

where F1(S) = βpwc(V \S),

F2(S) = σR(S),

F3(S) = c1(S) + c2(S)

(C8)
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Appendix C.2 The NSGAII-D Algorithm

Encoding and decoding process: A candidate solution S to Eq. (C8) is encoded as an integer string of length |V |, with each

element adopting values from {0, 1, 2, 3}. Here, “0” indicates no action is taken on the corresponding network node. Values

“1”, “2”, and “3” indicate the node is targeted for vaccination, truth activation, or both of the above, respectively. Conversely,

Decoding S involves mapping these integers to specific nodes. For example, for S = {0, 0, 1, 0, 1, 2, 3, 0}, which can be decoded

as S1 = {0, 0, 1, 0, 1, 0, 1, 0} = {v2, v4, v6} for F1(S1), S2 = {0, 0, 0, 0, 0, 1, 1, 0} = {v5, v6} for F2(S2), and S3 = S1 ∪ S2 =

{v2, v4, v5, v6} for F3(S3), effectively mapping the strategy for each objective.

Algorithm C1 Init pop(·)

Require: Multiplex network G⟨V,E1, E2⟩, z, q.
Ensure: Initial populations with size zq.

1: initial pop, j ← ∅, 0
2: # step 1: ensuring diversity;

3: Fmin
3 , Fmax

3 ← F3(∅), F3(V )

4: F̃3 ← {Fmin
3 + i · (Fmax

3 − Fmin
3 )/z|i = 0, 1, ..., z}

5: # step 2: ensuring accelerating convergence;

6: V ac cdd: rank nodes of G⟨V,E1⟩ in descending order according to closeness/betweenness centrality;

7: Tru cdd: rank nodes of G⟨V,E2⟩ in descending order according to degree centrality;

8: while F ′
3 in F̃3 do

9: while j < q/2 do

10: w ← random()

11: select S1 from V ac cdd with constraint c1(S1) = w · F ′
3, and S2 from Tru cdd with constraint c2(S2) = (1− w) · F ′

3;

12: sample S′
1, S

′
2 form V randomly, where |S′

1| = |S1| and |S′
2| = |S2|.

13: encode (S1, S2) as popi, (S′
1, S

′
2) as popi+1

14: pop← pop ∪ {popi, popi+1}
15: j ← j + 1

16: end while

17: end while

18: return pop.

Fig. C1(b) illustrates an example of computing Eq. (C8), v5 colored in red is the initial rumor-active individual. For two

solutions SA = {0, 0, 0, 3, 0, 0, 0, 0, 0, 0} and SB = {0, 0, 0, 1, 0, 0, 2, 0, 0, 0}, one can calculate that F1(SA) = F1(SB) ≈ 0.583,

F2(SA) = |{v5, v7, v8, v9}| = 4, F2(SB) = |{v2, v5}| = 2, F3(SA) = 0.5 + 6/9 ≈ 1.167, F3(SB) = 0.5 + 4/9 ≈ 0.944. Hence,

SB ≻ SA.

The trade-off between containment effects (F1 and F2) and associated costs (F3) presents a complex optimization challenge.

While a simplistic strategy might involve allocating separate budgets to distinct targeted algorithms, this approach may overlook

more efficient solutions. In contrast, the NSGAII-D algorithm, leveraging the Pareto front, offers a comprehensive array of solutions

that balance these competing objectives effectively. To evaluate the Pareto optimal frontier under varying budgetary and cost

constraints, and to ensure a diverse solution set, we propose a centrality-based method for initial population generation in Alg. C1.

For F3(·), its bounds are established as Fmax
3 = F3({3, 3, ..., 3}) = 0.5·n+k̄ for the upper limit, and Fmin

3 = F3({0, 0, ..., 0}) = 0

for the lower limit, where k̄ is the average degree. To ensure solution diversity, the algorithm employs equidistant selection for F3,

as detailed in lines 3-4, with a uniform distribution of z values drawn from the interval [Fmin
3 , Fmax

3 ). Then, to facilitate rapid

convergence, lines 6-7 utilize centrality rankings to inform the initial population generation. In the subsequent steps (lines 8-17),

for each F ′
3, F

′
3 ∈ F̃3, a random weight w, w ∈ (0, 1) is dedicated to derive two node sets S1 and S2, constrained by c1(S1) = w ·F ′

3

and c2(S2) = (1 − w) · F ′
3, respectively, where c1(·), c2(·) are as defined in Eq. (C7). Simultaneously, corresponding sets S′

1 and

S′
2 of equal size to S1 and S2 are randomly generated. This process results in an initial generation of zq populations, laying the

groundwork for the optimization procedure.

Algorithm C2 NSGAII-D

Require: Multiplex network G⟨V,E1, E2⟩, z, q, max t.

Ensure: Pareto optimal solution.

1: t, N ← 0, z · q
2: Pt ← Init pop(G, z, q)

3: while t < max t do

4: Qt ← genetic(Pt)

5: Rt ← Pt ∪Qt

6: Γ← fast non dominated sort(Rt)

7: Pt+1, i← ∅, 1
8: while |Pt+1|+ |Γi| ⩽ N do

9: Pt+1 ← Pt+1 ∪ Γi

10: i← i + 1

11: end while

12: crowding distance assignment(Γi)

13: Pt+1 ← Pt+1 ∪ Γi[1 : (N − |Pt+1|)]
14: t← t + 1

15: end while

16: return Γ1.

Alg. C2 delineates the modified NSGAII-D framework, specifically tailored for addressing the discrete multi-objective opti-

mization problem as formulated in Eq. (C8). Within this framework, the genetic(·) function encompasses the suite of genetic
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operators, namely selection, crossover, and mutation, which are instrumental in generating the offspring population. The practi-

cal implementation of these genetic operations is visually represented in Fig. C2. Additionally, fast non dominated sort(·)and
crowding distence assignment(·) are two classical operators of NSGA-II algorithm, with the former sorting the population based

on non-dominance levels, and the latter assigning a crowding distance to each solution.

1v2v 3v 5v 8v9v

0 2 1 1 0 3 0 0 2 1

1
1S 1

2S

decoding

1v 5v4v 9v

0 3 0 3 1 2 0 0 2 2

3v 2
1S 2

2S1v 3v
decoding

Crossover

Parent 1

Parent 2

1v

2v

3v 5v 8v9v 1
1S 1

2S

1v 5v

4v

9v3v 2
1S 2

2S1v 3v
Mutation6v 7v

encoding

0 0 0 0 1 3 1 2 2 1

0 3 1 3 0 2 0 0 2 2

Offspring 1

Offspring 2

Figure C2 Genetic process example.

Appendix D Experiments

Appendix D.1 Experimental Settings

Given the absence of real-world datasets that fully capture the characteristics of the EACM, the present paper combines various

single-layer networks. For the epidemic spreading layer P := ⟨V,EP ⟩, community-based topologies like LFR or SBM networks

are suitable as they mimic offline physical contact patterns. Conversely, for the information spreading layer C := ⟨V,EC⟩, there

are two main construction strategies: i) enhancing connectivity by adding new links to EP , or ii) generating synthetic networks

that mirror the scales of V , and epitomize characteristics typical of online social networks. The composition and attributes of the

datasets employed in this approximation approach are detailed in Tab. D1.

Table D1 Attributes of datasets.

P Generation of C # V # Ep # Ec Ave deg of {P, C} # Comms

Multiplex 1 LFR1 add edges 8,000 26,130 78,339 { 6.53, 19.58} 207

Multiplex 2 LFR2 incorporate with WS 12,000 54,000 120,000 { 9.10, 20.00} 136

Multiplex 3 LFR3 incorporate with BA 15,000 224,775 224,775 {29.27, 29.27} 60

Multiplex 4 WS add edges 6,000 60,000 179,541 {20.00, 59.85} 36

Multiplex 5 SBM incorporate with Email 1,005 7,562 24,929 {15.05, 49.61} 30

Multiplex 6 Karate Club add edges 34 78 215 { 4.59, 12.67} 2

(a) Layer C (b) Layer P

Figure D1 Community-based density matrices and Degree distribution histograms of two layers of Multiplex 3.

Layer-PLayer-C

(a) Layer C (b) Layer P

Figure D2 Community-based density matrices and Degree distribution histograms of two layers of Multiplex 4.
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t=0 t=1 t=3 t=10

(a) Snapshots of the epidemic evolution: (b) Snapshots of the active immunity-based epidemic evolution:
(c) Snapshots of the Active-passive immunity-based epidemic evolution:

1c

2c

c

b

a

Figure D3 Snapshots of nodes states evolution on Karate graph, where US, AS, AI are colored in white, green and red, re-

spectively. Snapshots of (a) epidemic evolution; (b) active immunity-based epidemic evolution; (c) active-passive immunity-based

epidemic evolution. It sets φ = 0.2, δ = 0.1, βU = 0.3, µ = 0.2, λ = 1, τ = 2, c1 = 0.8 and c2 = 0.2.

To effectively showcase the properties of the datasets, a community-based density matrix is constructed. Suppose network P

encompasses q communities: {c1, c2, ..., cq}, then define matrix C = {cij}q×q , where

cij =
#links(ci → cj)∑q

k=1 #links(ci → ck)
(D1)

#links(ci → cj) counts the number of links from ci to cj . Fig. D1 and D2 display the community density matrices and degree

histograms of Multiplex 3 and Multiplex 4, respectively. We can find that both layers of Multiplex 3 conform to a power-law

degree distribution. Notably, in layer P , intra-community links are markedly denser compared to inter-community links, indicating

a strong community-based structure. Conversely, in layer C, the distribution of links exhibits a lesser degree of influence from the

community structure, suggesting a more dispersed and less clustered network topology.

Appendix D.2 Numerical Simulations

Appendix D.2.1 Part A: Experiments and Results in EACM

Fig. D3 delineates the evolutionary process of epidemics under different conditions. Initially infecting three nodes, the figures

demonstrate varied outcomes at t = 10: in (a), where only epidemic spreads, 97% of nodes are infected; in (b), where epidemic

is coupled with the active awareness, infection proportion drops to 71%; and in (c), where epidemic is incorporated with both

active and passive effects, the infection proportion further declines to 35%. These trends highlight the effectiveness of active-

passive actions in mitigating epidemic spread. Notably, stronger community influence, as indicated by c1 = 0.8 versus c2 = 0.2,

demonstrates greater efficacy in controlling the epidemic.

Fig. D4 - D9 systematically verify the impacts of six parameters: ci, λ, µ, φ, δ, and τ , on the epidemic spread. In each pannel,

the heatmap graph correlates the fraction of infected nodes (FIN) at the terminal time with βU and the respective parameter

under consideration. The color gradation in these heatmaps, demarcated at 0, 1%, 5%, 10%, etc., illustrating varying levels of

epidemic spread, with the assumption that a 1% FIN signifies the critical threshold for the onset of an epidemic. Additionally, the

Star-dotted line in each panel represents the solutions of βU
c calculated by Eq. (B20). These graphical representations provide a

visual validation of the MMCA’s predictions against the simulated outcomes, elucidating the influence of each parameter on the

dynamics of epidemic spread.

For each node vi, the passive impact originating from its communities (ci) is defined in two distinct manners: i) ci is drawn

from a unifrom distribution ranging from Rc − 0.1 to Rc; ii) ci = Sc/|Γi|, where Rc and Sc are scale factors, |Γi| denotes the

size of the community to which vi belongs. In Fig. D4, an inverse relationship is observed between the magnitude of ci (either

Rc or Sc) and the proportion of infected nodes in both multiplex 1 and 2. Specifically, when βU = 0.1, a high community passive

impact (with Rc = 0.7) effectively controls the epidemic. Moreover, the results obtained from the MMCA align well with the phase

transitions observed in the heatmap pattern, demonstrating the accuracy and applicability of the MMCA in predicting epidemic

dynamics under varying levels of community passive impact.

The parameter λ functions analogously to ci, but specifically pertains to the influence of active awareness within a community. As

depicted in Fig. D5, an increase in λ corresponds to heightened sensitivity of nodes to epidemic awareness within their community,

leading to more stringent protective behaviors. Notably, when the value of λ is greater than or equal to 10, the epidemic can

effectively be controlled at a βU value of 0.05. This trend underscores the significant role of active awareness in mitigating epidemic

spread, where higher λ values reflect a community’s enhanced responsiveness to the epidemic threat and consequent adoption of

preventive measures.

The parameter µ is pivotal in influencing both the evolution of the epidemic and the calculation of its threshold. Fig. D6(a)

illustrates the qualitative impact of increasing µ on the FIN. Notably, when µ = 0.5, the FIN remains below 50% even when βU

reaches 1. This observation is particularly encouraging the significant contribution of µ. However, it is difficult to improve µ by

manual intervention, for an efficient epidemic containment strategy, the other parameters within the EACM, such as ci and λ, may

synergistically contribute to the overall effectiveness of strategies.
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Multiplex 1 Multiplex 2

(a) (b)

Figure D4 (a) Fraction of infected nodes in terms of ci and βU on Multiplex 1 and 2; (b) numbers of node states (US, AS, AI)

in evolutionary process Multiplex 1. It sets λ = 1, µ = 0.2, φ = 0.1, δ = 0.1, τ = 2 for (a), βU = 0.1 for (b).

Multiplex 1 Multiplex 5

(a) (b)

Figure D5 (a) Fraction of infected nodes in terms of λ and βU on Multiplex 1 and 5; (b) numbers of node states (US, AS, AI)

in evolutionary process of Multiplex 1. It sets Rc = 0.3, µ = 0.2, φ = 0.2, δ = 0.1, τ = 2 for (a), βU = 0.05 for (b).

Multiplex 2 Multiplex 4

(a) (b)

Figure D6 (a) Fraction of infected nodes in terms of µ and βU on Multiplex 2 and 4; (b) numbers of node states (US, AS, AI)

in evolutionary process of Multiplex 2. It sets Rc = 0.3, λ = 2, φ = 0.1, δ = 0.05, τ = 2 for (a), βU = 0.2 for (b).

Multiplex 1Multiplex 1 Multiplex 5Multiplex 5

Figure D7 Fraction of infected nodes in terms of φ and βU on Multiplex 1 and 5. It sets Rc = 0.3, µ = 0.3, λ = 3, δ = 0.1, τ = 2.

Fig. D7-D9 delve into the impacts of the parameters φ, δ and τ on EACM. A key observation from these figures is that variations

in these parameters have a minimal impact on the FIN across most values of βU . Although φ, δ and τ play roles in the evolution of

the UAU-SIS model and contribute to the calculation of the epidemic threshold βU
c , both simulation and numerical results suggest

that their influence on βU
c is relatively minor. However, it is worth recognizing that, despite their limited effect on the epidemic

threshold, these parameters can still significantly influence the FIN at non-threshold points. This influence is often modulated

by network’s topology and other parameters. Thus, while their direct impact on the threshold may be small, φ, δ and τ are still

integral to a comprehensive understanding of epidemic dynamics.
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Multiplex 3 Multiplex 5

Figure D8 Fraction of infected nodes in terms of δ and βU on Multiplex 3 and 5. It sets Rc = 0.3, µ = 0.2, λ = 1, φ = 0.2, τ = 2.

Multiplex 1 Multiplex 4

Figure D9 Fraction of infected nodes in terms of τ and βU on Multiplex 1 and 4. It sets Rc = 0.3, µ = 0.2, λ = 3, δ = 0.05, φ =

0.1.

(a) (b)

F3F3 F3F3

Figure D10 The Hvs and PF diagrams achieved by NSGAII-D. (a) and (b) are under parameter settings i) and ii), respectively.

Appendix D.2.2 Part B: Experiments and Results in ERSM

To assess the efficacy of the NSGAII-D algorithm, two distinct numerical experiments are performed on Multiplex 5 with two

different sets of parameter configurations, respectively.

i) z = 30, q = 6, pc = 0.01, pm = 0.005, ∆c = 0.0005, β = 0.1, pR = 0.15, pT = 0.18, max iter = 100;

ii) z = 50, q = 4, pc = 0.05, pm = 0.01, ∆c = 0.0005, β = 0.1, pR = 0.2, pT = 0.22, max iter = 100.

Fig. D10 depicts the iterative convergence process of the NSGAII-D algorithm by a well-established metric in evolutionary

computing: the Hypervolume (HV) [29], and also provides the corresponding Pareto front at the end of iterations. An observable

trend in both scenarios is the gradual improvement in the quality of the solutions as the number of iterations increases. The

algorithm eventually converging towards an optimal or near-optimal set of solutions. In PF of panel (a), the algorithm initializes

with 180 populations, ultimately yielding 126 Pareto optimal solutions. These solutions represent the optimal strategies for different

budget levels (as defined by F3 values). For instance, if a manager seeks to minimize both the connectivity of the epidemic network

and the spread of rumors, all within a budget of no more than 0.38, (s)he can identify several Pareto optimal solutions that

satisfy the condition F3 ⩽ 0.38. One such solution, S∗, for example, achieves an F1 value of 0.6997, and an F2 value of 0.0121.

Furthermore, by querying solution space, the specific strategy entailed in S∗ involves vaccinating nodes in S∗
1 = {v7, v11, v15, ...},

and activating nodes in S∗
2 = {v2, v9, v11, ...} to propagate truth. Additionally, in both panel (a) and (b), several PF values are

situated at the extremities, such as (0.7589,0.7414,0), (0.7589,0.7013,0.1510), which also represent Pareto optimal values, since when

F3 = 0, indicating no budget allocation for node selection, solutions that can dominate this scenario do not exist, i.e., S = {0, ..., 0}
is naturally belongs to the PF.
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Table D2 NSGAII-D V.S Greedy under setting 1.

NSGAII-D Greedy

pop F1 F2 F3 F1 g F2 g

1 0.7589 0.7414 0 0.7589 0.7414

2 0.7542 0.0198 0.0679 0.7535 0.0179

3 0.7473 0.0152 0.1388 0.7475 0.015

4 0.7085 0.0172 0.2051 0.7056 0.0155

5 0.7586 0.0109 0.3161 0.7565 0.0147

6 0.6997 0.0121 0.3761 0.7036 0.0147

7 0.7298 0.0109 0.4691 0.7276 0.0144

8 0.5607 0.0143 0.5795 0.5581 0.0143

9 0.4769 0.0246 0.6534 0.4708 0.0207

10 0.4307 0.0282 0.7591 - 0.0271

11 0.3854 0.0229 0.8925 - 0.02

12 0.371 0.0153 0.9959 - 0.0131

T(s) 4825.86 41878.57

Table D3 NSGAII-D V.S Greedy under setting 2.

NSGAII-D Greedy

pop F1 F2 F3 F1 g F2 g

1 0.7589 0.7865 0 0.7589 0.7865

2 0.7545 0.1034 0.017 0.7492 0.1033

3 0.7139 0.0132 0.2 0.7105 0.0128

4 0.751 0.0112 0.3088 0.7492 -

5 0.6618 0.0117 0.3959 0.6572 0.0119

6 0.6881 0.0111 0.4573 0.6796 -

7 0.6566 0.0114 0.5088 0.6403 0.0111

8 0.6153 0.0113 0.5693 0.6187 0.0113

9 0.551 0.0116 0.6604 0.5491 0.0118

10 0.485 0.0202 0.7265 - 0.0303

11 0.4879 0.0127 0.8158 - 0.0123

12 0.4665 0.0109 0.9884 - -

T(s) 11838.16 52635.19

To verify the validity of NSGAII-D algorithm, we conduct comparative analyses against a high-performance greedy algo-

rithm, noted for its capacity to secure a minimum 1 − 1/e approximation of the optimal solution when the objective function

exhibits submodularity. The validation methodology encompassed the following steps: firstly, sample 12 non-dominated popula-

tions (pop1, pop2, ..., pop12) evenly across the Pareto front generated by NSGAII-D, focusing on their F3 values. Subsequently,

derive the associated costs, c1 and c2, based on their F1 and F2 metrics, respectively. Finally, apply the greedy algorithm to

determine the optimal values of two objective functions, denoted as F1 g and F2 g, under the constraints imposed by c1 and c2,

respectively. For example, taking pop2 from Tab.D2 with F1 = 0.7542 and F2 = 0.0198, one can decode pop2 into S1 and S2,

thereby deriving their constraints c1 and c2. These constraints are integrated into Eqs.(C5) and (C6), respectively, and upon

solving with the greedy algorithm, yield outcomes of 0.7535 for F1 g and 0.0179 for F2 g, respectively.

Tabs.D2 and D3 delineate the outcomes of comparative experiments conducted under settings i) and ii), respectively, showcasing

the metrics F1, F2, and F3 in the second, third, and fourth columns. Given the greedy algorithm’s intrinsic focus on single-objective

optimization, modifications are made to accommodate the multi-objective framework of Eqs (C5) and (C6) using constraints c1
and c2, with results tabulated in the fifth and sixth columns. Notations of ”-” in both tables signal instances unassessed due to

prohibitive computational requirements. For the greedy algorithm, cessation of operation is predicated on exceeding a 10-hour

computational threshold.

The performance of the NSGAII-D algorithm is affirmed through dual dimensions:

1) Effectiveness analysis: Comparative scrutiny of F1 with F1 g and F2 with F2 g unveils the greedy algorithm’s marginal

superiority, attributed to its potent search mechanism. Nonetheless, the nominal variance between the algorithms underscores a

parallel in effectiveness, reinforcing the NSGAII-D’s competitive stance.

ii) Efficiency assessment: Operational efficiency is gauged by juxtaposing the algorithms’ execution durations. Here, NSGAII-D

conspicuously outperforms, with the greedy algorithm’s runtime surpassing NSGAII-D’s by factors of 8.68 and 4.45 in Tabs. D2

and D3, correspondingly. Unlike its counterpart, NSGAII-D, through a singular computational instance, furnishes a comprehensive

suite of Pareto optimal solutions, heralding substantial efficiency gains. This capability furnishes decision-makers with a nuanced

framework to equilibrate containment efficacy against fiscal prudence.

In essence, NSGAII-D’s proficiency in generating an expansive spectrum of Pareto optimal solutions epitomizes a more integrated

and flexible strategy for navigating the complexities of containment dilemmas, underscoring its value in multifaceted decision-making

landscapes.

Appendix E Contributions and Future Works

This study introduces two innovative mechanisms: the EACM and ERSM, which enhance understanding of meme propagation 
dynamics within coupled online-offline networks. The principal contributions are as follows:

In EACM: 1) The introduction of a community-structured physical contact layer, implementing an Active-Passive 
Epidemic Immunity (APEI) strategy that integrates online awareness with offline community effects. Comparative analyses with 
other state-of-the-art literature are detailed in Tab.E1. 2) The development of a Microscopic Markov Chain Approach (MMCA) 
with a novel community broadcasting phase to derive the epidemic threshold. 3) Validation of numerical and simulation 
results across six artificially synthesized multiplex networks.

In ERSM: 4) The formulation of a Multi-Objective Optimization (MOO) problem to minimize epidemic spread, rumor propa-
gation, and associated costs concurrently. 5) The design of an infection rate-based pairwise connectivity metric to evaluate nodes’ 
abilities in reducing the connectivity of the epidemic network; 6) The enhancement of the NSGAII-D algorithm with centrality-based 
initialization to boost diversity and convergence speed.

The integrated network model, intertwining online and offline domains, presents a captivating and pragmatic framework. 
Future enhancements to this model are planned, with an emphasis on expanding its application to broader social communication 
contexts, including virtual reality (VR) and mixed reality (MR) technologies. Community-based epidemic modeling is anticipated 
to inform the development of a ”divide and conquer” vaccination strategy, which could be incorporated into the EACM to 
establish a novel epidemic suppression framework that leverages the interdependencies among awareness, vaccination, and 
epidemic spread. There-after, the associated MMCA process is expected to incorporate a new state transition phase: 
Vaccination. Furthermore, delving deeper into the intricate interrelation between epidemic proliferation and rumor circulation, 
and developing more sophisticated metaheuristic algorithms tailored for solving discrete multi-objective optimization challenges 
are warrant extensive exploration in forthcoming research endeavors.
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Table E1 Comparison of main studies in EACM.

Studies Coupling Effects

on Epidemic

Immune

Strategy

Quantification of

Immune Behavior

Characteristics

of Layers

Granell et al. [3],

Gao et al. [30],

and Feng et al. [9]

awareness active βA = γβU , γ ∈ [0, 1] normal

Granell et al. [4],

Ma et al. [31], and

Xia et al. [32]

awareness,

mass-media

active,

passive

βA = γβU , γ ∈ [0, 1] normal

Guo et al. [33] awareness

(local)

active βA = 0 normal

Yang et al. [7] awareness active βA = γβU , γ ∈ [0, 1] time-varying

Nie et al. [25] awareness active βA = k−αβU , α ⩾ 0 heterogeneous

Liu et al. [5] awareness

(local)

active βA = k−αβU , α ⩾ 0 normal

Yin et al. [6], and

Li et al. [34]

awareness,

vaccination

active βV = γβU , γ ∈ [0, 1] three-layer

Wang et al. [35] positive/negative

awareness

active βA = γβU , γ ∈ [0, 1] normal

Guo et al. [8] awareness active βA = γβU , γ ∈ [0, 1] partial-mapping,

time-varying

Our study awareness,

community-

broadcasting

active,

passive

βA
i = βU

i · k
−ci
i

· exp(−λ
∑

v∈Γi
I(v)+1

|Γi|
)

community-

structured
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