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Abstract Memory corruption attacks (MCAs) refer to malicious behaviors of system intruders that modify
the contents of a memory location to disrupt the normal operation of computing systems, causing leakage
of sensitive data or perturbations to ongoing processes. Unlike general-purpose systems, unmanned systems
cannot deploy complete security protection schemes, due to their limitations in size, cost and performance.
MCASs in unmanned systems are particularly difficult to defend against. Furthermore, MCAs have diverse
and unpredictable attack interfaces in unmanned systems, severely impacting digital and physical sectors. In
this paper, we first generalize, model and taxonomize MCAs found in unmanned systems currently, laying the
foundation for designing a portable and general defense approach. According to different attack mechanisms,
we found that MCAs are mainly categorized into two types — return2libc and return2shellcode. To tackle
return2libc attacks, we model the erratic operation of unmanned systems with cycles and then propose
a cycle-task-oriented memory protection (CToMP) approach to protect control flows from tampering. To
defend against return2shellcode attacks, we introduce a secure process stack with a randomized memory
address by leveraging the memory pool to prevent Shellcode from being executed. Moreover, we discuss
the mechanism by which CToMP resists the return-oriented programming (ROP) attack, a novel variant
of return2libc attacks. Finally, we implement CToMP on CUAV V54 with Ardupilot and Crazyflie. The
evaluation and security analysis results demonstrate that the proposed approach CToMP is resilient to various
MCAs in unmanned systems with low footprints and system overhead.

Keywords unmanned system, memory corruption attack, memory protection, system security, randomized
memory address

1 Introduction

Unmanned systems are embedded computing systems that monitor, respond to, or control an external
environment through sensors, actuators, and other input/output interfaces [1]. Such systems must meet
various constraints, such as timing, efficiency, and security, that are imposed on them by real-time
behaviors of the external world they interface with. These unmanned systems wide ranging applications,
such as search and rescue [2], agriculture [3], and autonomous vehicles. However, the increasing popularity
of unmanned systems increases security concerns regarding them [4,5]. According to recent studies [6-8],
current unmanned systems continue to possess a myriad of flaws that can be leveraged by malicious parties
to launch attacks, affecting their proper operations, stealing private data of users, or even endangering
public safety.

Among all the threats encountered by unmanned systems, software-oriented attacks are emerging and
gradually becoming one of the most concerning. These attacks exploit software vulnerabilities within
the unmanned system firmware to maliciously interfere with system operations, however, it has received
attention only recently [9-11]. Particularly, memory corruption attacks (MCAs) [12], a special form of
software-oriented attacks, are becoming increasingly rampant [13-15]. Unlike the segmented memory
management in general computer systems, the user code in unmanned systems shares the same physical
memory with the kernel. This design enables the user code to directly access, invoke, or even tamper
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Figure 2 Effect of MINION on unmanned system performance.

with critical kernel instructions. Furthermore, unmanned systems usually allow memory access from
peripherals (e.g., ZigBee and WiF1i), thereby allowing malicious parties to launch MCAs even wirelessly.
For example, in unmanned aerial vehicle (UAV) systems, attackers can launch MCAs to modify the re-
turn addresses of stack frames remotely, thereby seizing the control of drones through memory overflows.
Recent studies [14,16] have demonstrated the feasibility and risk of such MCAs in the real world. There-
fore, designing a practical and effective methodology to defend against MCAs is vital for ensuring the
reliability and stability of unmanned systems.

Multiple approaches have been proposed to tackle MCAs in unmanned systems. Their principal
methodology is equipping unmanned systems with memory management mechanisms to isolate the kernel
from the user code. Widely used techniques to achieve memory isolation include TrustZone [17] and mem-
ory protection unit (MPU) [13,14, 18]. Because the microcontroller units (MCUs) used by unmanned
systems rarely have TrustZone, more approaches focusing on employing MPU are required to tackle
MCAs (e.g., MINION [14]). According to multitasking and modular programming features in unmanned
systems, these approaches first create a memory view for the user code of each task from the perspectives
of code reachability, I/O interfaces, and in-memory data. This process can be done manually or semi-
automatically using low-level virtual machine (LLVM) [19]. They then leverage MPU to securely switch
memory views in task switchover, as shown in Figure 1. Although this methodology can limit MCAs to a
certain extent, it has several drawbacks. First, by applying such approaches, programmers must consider
memory range divisions in developments, which will confuse developers. Moreover, existing approaches
can cause considerable system overhead, reducing the processing power of unmanned systems. We con-
ducted some performance tests by implementing MINION, the most representative of these approaches,
on a UAV based on CUAV V5+ hardware with firmware Ardupilot. We found that some low-priority
tasks in MINION cannot reach the execution frequency in the original system because of the time and
system overheads caused by the memory view switching and MPU configuration (Figure 2). This flaw is
particularly fatal to unmanned systems with strict real-time requirements. For example, the execution
frequency of tasks update_gcs_send and ins_periodic is reduced by half. This reduction caused a severe
problem: we could not receive the Mavlink messages sent by the drone to the ground station in time, and



Ma CY, et al. Sci China Inf Sci  June 2024, Vol. 67, Iss. 6, 162305:3

the drone could not perceive its own acceleration and other states in real time. Eventually, the drone
lost control and crashed. Moreover, such approaches only use MPU to protect the memory security of
unmanned systems. However, because of the hardware performance limitation, the upper limit of the
memory regions MPU can protect is 16; hence, these approaches lack extensibility in the face of complex
unmanned systems.

To fill this gap, herein, we propose an effective and efficient approach called cycle-task-oriented memory
protection (CToMP) to protect unmanned systems from MCAs. Unlike existing approaches that isolate
memory regions for each task, CToMP treats tasks executed within one cycle as a whole and focuses on
protecting a few critical codes, variables, and registers. To reduce the system overhead and ensure the
timeliness of tasks, CToMP releases the pressure of memory view switching and MPU configuration by
performing security operations and memory allocations right before starting each cycle rather than before
beginning each task. To enhance the security and prevent the execution of injected Shellcode, CToMP
dynamically assigns the process stack address and buffer addresses by randomizing memory allocations.

Compared with previously reported approaches to resist MCAs, CToMP makes the following contri-
butions:

e To simplify the defense interface, we summarize the existing MCAs for unmanned systems and classify
them into two categories (i.e., return2libc and return2shellcode) based on their execution of Shellcode.

e We establish a cycle-based operation model for unmanned systems as the foundation for our system
design. To our knowledge, CToMP is a brand-new memory protection approach for unmanned systems.
Moreover, we build a secure process stack based on randomized memory allocation to enhance system
security.

e By evaluating CToMP on two unmanned platforms (CUAV V54 with Ardupilot and Crazyflie), its
effectiveness and efficiency are verified. Our approach defends against MCAs without compromising the
real-time performance of unmanned systems.

The remainder of this paper is organized as follows. After describing the security model and motivations
in Section 2, we present the design of CToMP in Section 3. Further, we evaluate CToMP in Section 4.
Finally, we describe related work in Section 5 and conclude this paper in Section 6.

2 Security model & motivation

In this section, we elaborate on necessary background knowledge to help readers understand our system
design. Later, to simplify the defense interface, we summarize and taxonomize existing MCAs against
unmanned systems, classifying them into two categories (i.e., return2libc and return2shellcode). Finally,
we demonstrate the motivations of our proposed approach.

2.1 Background

As for power consumption, hardware platforms of unmanned systems are still dominated by low-cost
MCUs, such as STM32 series based on the ARM Cortex-M architecture. To ensure the availability
of systems, the development of unmanned systems focuses more on realizing more applications with
limited software and hardware resources rather than security protection that may take up more resources.
However, these low-cost MCUs are also designed with security features, which have not been taken
seriously. We will briefly introduce these features.

2.1.1 Ezxecution levels

Privileged and unprivileged modes are two execution levels of MCUs [20]. In privileged mode, the code can
invoke all available instructions and access all resources (e.g., system registers, memory, and peripherals).
In unprivileged mode, the code only has limited access to some resources. Any access to unpermitted
registers, including MPU, SysTick timer, and nested vectored interrupt controller (NVIC), will raise
hardware exceptions. Therefore, the kernel can be placed in privileged mode, and user code related to
the unmanned system task implementation can be placed in unprivileged mode.

The CONTROL register determines whether the code executes in privileged or unprivileged mode. Only
in privileged mode can the code modify the CONTROL register, thereby changing the execution level to
unprivileged mode. Correspondingly, in unprivileged mode, the code cannot change the execution level
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Figure 3 Execution level switching in unmanned systems. The system generally boots from privileged mode and then converts
to unprivileged mode to execute tasks. If kernel instructions are required, the system will switch to privileged mode.

Table 1 Summary of execution levels and stack use options

Execution level Used to execute Stack used
Kernel
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Exception handlers
Unprivileged Tasks Process stack
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Figure 4 (Color online) MCAs against unmanned systems are generally implemented by executing Shellcode, and their targets
are distributed in the code, data and device areas of memory.

by directly modifying the CONTROL register. Instead, it must call the SVC instruction to switch the system
to a handler mode, in which the code can change to privileged mode, as shown in Figure 3.

2.1.2  Stack pointer

Another key point is that the code will use a separate descending stack in privileged and unprivileged
mode, respectively. Consequently, MCUs must implement two stacks, the main stack and the process
stack. Meanwhile, each stack has an independent stack pointer holding the address of the last stacked
item in memory; we call them the MSP and PSP. When the code needs to invoke kernel operations, it
typically switches to the main stack, and the tasks always use the process stack. We summarize these
features in Table 1.

2.1.3  Memory protection unit

Cortex-M is the most commonly used ARM processor for embedded unmanned systems. MPU is a
security kernel feature of the Cortex-M series MCUs [21]. It can set the properties and access permissions
of different memory addresses by dividing the memory map into several regions, such as whether a certain
address range is allowed to be executed, read, or written. Furthermore, MPU can isolate system resources
and code by limiting access permissions in privileged and unprivileged modes. If the code accesses a
memory region that MPU protects without permission, the processor will throw a fault exception, which
can prevent illegal memory access.

2.2 Security model

In MCAs attackers use memory vulnerabilities to inject Shellcode into the stack to achieve various
malicious operations. As shown in Figure 4, Shellcode can be executed in two ways. Type I involves
overwriting the return address in the stack to the existing function address in memory so that the device
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Table 2 Attack cases and their attack targets. We divide these attack cases into two types (i.e., return2libc and return2shellcode)
according to the different implementation methods

No. Attack case Attack type Attack target
] Process termination Reusing kill() function in the Code area.
O Servo operation return2libc Invoking up_pwm_servo_set () in the Code area with two abnormal args

(channel and value) to change the speed of motors.

O Control parameter attack Overwriting the PID parameters in the Data area.
Overwriting ticks and last_run two count parameters in the Data

O Soft timer attack
area.

0 Memory remapping Qos}yin(g: tge malicious code to FLASH and replacing the existing function

return2shellcode M V1€ ode area.

O RC disturbance Modifying RC-related registers in the Peripheral area.

O Hard timer attack Reloading the system timer value of SYSTRVR in the Private Peripheral
area.

O Interrupt vector overriding Overriding NVIC registers in the Private Peripheral area.

can perform some operations that are not allowed or illogical; it is called return2libc. Type II involves
overwriting the return address in the stack with the starting address of Shellcode to execute the malicious
behavior customized by the attacker. We name it return2shellcode. Additionally, MCAs for embedded
unmanned systems are subdivided into several cases in Table 2 according to different Shellcode attack
targets. Notably, as a variant of return2libc attack, the ROP attack [22,23] has been widely discussed on
x86 architecture systems. This attack executes instruction sequences, called gadgets, in the existing code
area through the stack overflow vulnerability, and each gadget ends with a ret instruction. By chaining
these gadgets together with Shellcode, an attacker can modify registers or some memory data. In the
unmanned system scenario, the ROP attack is similar to attack case [ in Table 2.

Because of hardware and performance limitations, the existing embedded development platforms do
not have memory isolation or address randomization and other security protection measures that can
effectively avoid MCAs. Therefore, we believe that MCAs are ubiquitous in embedded unmanned systems.
We assume the attackers have the following abilities to find and exploit memory vulnerabilities to perform
attacks.

o Attackers can use Fuzzing [24-26] and other testing methods to discover memory vulnerabilities, such
as stack overflow in the communication protocol encoding/decoding of the system remote control (RC).

e Attackers can use static analysis tools [27-30] to reverse the firmware in embedded hardware and
obtain the memory addresses of sensitive parameters, such as the proportional-integral-derivative (PID)
parameters.

e Attackers can discover which key registers are accessed during the sensor reading and writing process
through firmware Re-Hosting [31-34].

Because Shellcode must be injected from outside the system, the vulnerabilities that can be easily ex-
ploited by attackers lie in the user code interacting with the outside rather than in the kernel responsible
for interrupt management, task scheduling and other internal features. After discovering the vulnerabili-
ties, attackers write Shellcode and tamper with the return address of the stack frame to achieve MCAs.
Because all codes in an MCU share the same physical memory, an attacker who launches an attack from
the user code can modify key parameters in the memory by injecting malicious instructions. In addi-
tion to attackers, ordinary users may also modify key parameters in the kernel because of misoperation,
such as setting unreasonable PID parameters through MAVLink commands [35], which can also have
disastrous consequences.

2.3 Finding of drawbacks in relevant studies

At present, the most effective solution to MCAs is to implement memory isolation between the kernel
space and user code, which limits the range that malicious code can access in memory [13,14,18,36]. These
relevant studies achieve memory isolation by building a memory view for each task, just like running a
task in a Sandbox, and we summarize them as task-oriented solutions. Task-oriented memory isolation
requires configuring MPU registers for the next task after one task ends, which is called memory view
switching. Since MPU registers are accessible only in privileged mode, memory view switching must
enter an exception handler and switch mode while the task runs in unprivileged mode. We summarize
two stages in memory view switching as follows.
First, before task application execution, the following steps are required:
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Table 3 Time cost of each step in the execution level and memory view switching. Since each task must configure different
numbers of accessible memory regions, the time spent by MPU also differs

Stage MPU configuration Stack initialization and switch SVC system call Execution level switch

Time (ps) 9-15 10 1 1

(1) The scheduler reads the task information list and decides which task must be executed next.

(2) The system initializes the process stack required by the task code and switches the memory view
to configure the memory regions that the task can access by MPU.

(3) The system switches from the main stack to the process stack.

(4) The system switches the execution level from privileged mode to unprivileged mode.

Second, to switch from unprivileged mode to privileged mode after task completion, the following steps
are required:

(1) The system enters SVC interrupt through a system call, and switches from unprivileged mode to
privileged mode.

(2) Then, the system switches the stack pointer from PSP to MSP.

Through experiments, we also sorted out the time spent in each step, as shown in Table 3. However,
when we applied this task-oriented solution to Ardupilot, an open-source unmanned system firmware,
efficiency problems emerged. In the search for the cause, we found that although the task scheduling
of unmanned systems is uncertain and irregular in the traditional concept, we can use a cycle-based
model to describe it. Unmanned systems perform a certain number of tasks during each cycle. We will
describe this model in detail in Subsection 3.1. Since at least seven tasks need executing in one cycle
in Ardupilot, it takes at least 154 us for frequent memory view switching between tasks. Consequently,
some low-priority tasks cannot obtain the time in a cycle to execute, which affects unmanned system
availability. Therefore, we consider whether we can use MPU to manage the memory access range of a
cycle, which is similar to putting all tasks in a cycle into a sandbox rather than putting one task into
one sandbox. This approach reduces the frequency of memory view switching, thereby improving system
efficiency.

However, we need to prevent attackers from attacking tasks in the same cycle. When we simultaneously
manage several tasks in a cycle with MPU, tasks do not securely access the code and data from each
other because they share the same region of memory. We determine the static loading of the code as the
reason why embedded unmanned systems are vulnerable to MCAs. This attribute allows attackers to
easily analyze the call stack and memory addresses and inject Shellcode to cause damage. Therefore, we
hope to implement random memory allocation, which is not widely used in embedded unmanned systems
because of the lack of the memory management unit (MMU), and improve the difficulty of memory
analysis, so as to achieve the purpose of protecting user code and data in the same cycle.

3 Design

In this section, we elaborate on the design of CToMP. According to the use characteristics and require-
ments of unmanned systems, we have determined the following design goals.

G1 security. Our design needs to be resistant to MCAs.

G2 efficiency. After our design is added to unmanned systems, it only brings a minimum runtime
overhead, and cannot affect the real-time requirement of task execution.

G3 extensibility. Our design can adapt to different functional requirements in different scenarios
rather than being fixed.

G4 low footprint. Due to the limitation of memory size in unmanned systems, our design cannot
occupy too much memory space.

G5 generality. Our design can be easily adapted to different unmanned devices without much
additional development work.

Following these design goals, We first model the operation of unmanned systems in Subsection 3.1.
Then, we introduce the overall system architecture in Subsection 3.2. In addition, we describe the
structure of the secure process stack in Subsection 3.3 and the workflow of CToMP in Subsection 3.4.
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Table 4 RTOSs used by five kinds of unmanned system firmware, and their application scenarios

Firmware RTOS Number of tasks Application scenarios
Ardupilot ChibiOS 49 UAVs, rovers, submarines, ...
PX4 Nuttx 27 Drones, VT OLs, rovers, ...

FMT RT-thread 6 UAVs, cars, robots, ...
Paparazzi ChibiOS 9 Rotorcraft, hybrids, boats, ...
Crazyflie FreeRTOS 37 Drones

Priority High » Low
UAV
tasks T, T, T, T, T

Cycle Environment ) Behavior ) Action
perception decision execution —‘

Figure 5 (Color online) Cycle-based operation model of unmanned systems.

3.1 Cycle-based model of unmanned systems

Unmanned systems encapsulate simple functions such as sensor reading/writing and actuator execution
into multiple tasks, and realize more complex RC or autonomous operations through the cooperation
between tasks. In the traditional concept, the unmanned system, as a real-time system, requires each task
to be completed at a certain time, and these tasks are triggered uncertainly by the external environment.
For example, we cannot predict when the unmanned system will encounter an obstacle and change
its trajectory. Table 4 summarizes the results of our research on various unmanned system firmware
applicable to drones, rovers, and boats. However, we found that although the number of tasks in these
firmware varies, they all rely on the real-time operating system (RTOS) to implement task scheduling.
Further, the scheduling algorithms in these RTOSs are composed of preemptive scheduling and round
robin. This means, in practical design, unmanned systems only need to implement three stages of
functions — environment perception, behavior decision, and action execution, which are supported by
tasks within a specified time period to meet the real-time requirement, and we call this time period a
cycle. As shown in Figure 5, we regularize seemingly uncertain and irregular task executions in unmanned
systems with cycle-based modeling, thereby laying the foundation for our system design. In detail, f,, in
Figure 5 represents the cycle frequency, that is, how many cycles will be experienced in one second, and
the longest available duration of one cycle is 1/ f,,, seconds. Then for task 4, its frequency f; is determined
by the average cycle interval (ACI) at which it can be scheduled:

fi= fm/ACIi- (1)

For example, in an unmanned system with a cycle frequency of 400 Hz, a task is executed every two
cycles on average, then the frequency of this task is 200 Hz. What is more, each task is given a priority.
In a cycle, high-priority tasks must be scheduled first, while low-priority tasks will use the remaining
time as needed after the execution of high-priority tasks. This enables each task to meet its functional
requirements as much as possible. Therefore, it can be obtained that the less time a cycle takes, the
faster the cycle frequency becomes, and each task can be scheduled in a more timely manner, so the
real-time requirement of the unmanned system is guaranteed. Conversely, if the single cycle time is long,
the system reliability will be reduced.
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Figure 6 (Color online) Overall architecture of CToMP.

3.2 System architecture

The main goal of our system design is to prevent attackers from exploiting victim tasks with memory
vulnerabilities to access kernel code or modify memory data. Specifically, our approach should be able
to defend against each attack case in Subsection 2.2 effectively. As illustrated in Figure 6, in our system
architecture, the code segment, data segment, and device address segment in the memory are separated
by MPU into two environments: privileged mode and unprivileged mode. According to the assumptions
in Subsection 2.2, as user code for all tasks is executed in unprivileged mode, the Shellcode injected
by an attacker to exploit memory vulnerabilities usually occurs in unprivileged mode. Unlike relevant
task-oriented approaches that require designing a memory view for each task and attack to defend against
MCAs, our solution focuses on blocking two attack paths of Shellcode to secure the unmanned systems.
We explain how this architecture meets the design goal G1 Security as follows.

Defense against return2libc. Since functions located in privileged mode cannot be directly called
by user code running in unprivileged mode, for attack cases 0 and [, we place two functions kill and
up_pwm_servo._set in privileged mode. The kill is a kernel function used by RTOS in unmanned systems
to terminate the task. The up_pwm_servo_set is a function used to control the execution of actuators in
unmanned systems. Malicious calls to both of these functions can have catastrophic consequences, such
as the crash of drones and changing the driving path of unmanned vehicles. Therefore we configure them
with MPU not to be accessible in unprivileged mode to prevent Shellcode written by attackers from
maliciously jumping to their function addresses.

Defense against ROP. According to the description in Subsection 2.2, the ROP attack achieves the
goal of executing malicious code by exploiting gadgets of existing code and concatenating them. But
as we explained in defending against return2libc attacks, the code containing sensitive parameters has
been protected by MPU, so attackers cannot jump to gadgets that can modify these parameters through
Shellcode. Although attackers can still exploit gadgets located in unprivileged mode, these gadgets
cannot access registers and data protected by MPU; hence, our architecture can still effectively resist the
ROP attack.

Defense against return2shellcode. In this attack way, the attacker can execute more malicious
instructions in Shellcode and destroy more memory data. Since all code in the MCU shares the same
physical memory, in the absence of memory isolation, the attacker’s targets include, but are not limited
to, the PID parameters that control the unmanned system attitude, the count parameters responsible for
task scheduling, and various peripherals such as sensors and system Timer. Here we use two solutions to
protect them.

First, for attack cases 0, [0, and [, the data and registers in these attack objects should be configured
and fixed in memory when the unmanned system is initialized. Therefore, we only need to configure
these parameters and registers to be unmodifiable in unprivileged mode with MPU after they are set.
They can be effectively protected from being accessed by the attacker’s Shellcode. At the same time, we
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configure the entire code segment to be non-writable with MPU, so that attack case 0 cannot overwrite
the existing code with malicious instructions through Shellcode.

For attack case [0, ticks and last_run, these two count parameters are used for task scheduling,
and they are changed in each cycle to ensure that the execution of each task can meet the functional
requirements. Parameter ticks is the number of cycles that have passed, last_run is an array used to
calculate the interval between the last executed cycle of each task and the current cycle. Therefore, we set
the two parameters to be modifiable only in privileged mode. When the tasks of a cycle are executed, the
system switches the execution level once, and then updates these two parameters after entering privileged
mode, which can satisfy the task scheduling and parameter security.

Finally, for some code and data that must share the memory with other tasks, such as reading RC
variables from registers that can only run in unprivileged mode (attack case 0), we design another
solution to protect their security. By analyzing the execution condition of return2shellcode, we found
that the attacker needs to obtain the starting address of injected Shellcode to jump to the malicious code
execution area by tampering with the return address in the stack. Due to the static loading code of MCUs,
it is easy for an attacker to analyze the required memory address and implement malicious behavior.
However, we noticed that using the two instructions __set PSP and __set_CONTROL (SP_PROCESS) can
specify an area in memory as the process stack used by tasks. If we randomize the stack in each cycle,
it will be much more difficult for an attacker to analyze the starting address of Shellcode, which can
effectively prevent the execution of Shellcode. Therefore, we design a memory pool in unprivileged
mode to dynamically allocate a random address area for the stack used in each cycle.

In summary, CToMP can resist all attack cases and meet the design goal G1 security. At the same
time, different from task-oriented solutions, we manage the memory access range of tasks in a cycle as a
whole, so that the MPU configuration and execution level switching do not need to be performed between
tasks, but only before the start of a cycle, so as to satisfy the design goal G2 efficiency. In addition, since
MPU in MCUs can protect up to 16 memory regions, it is difficult for solutions that only rely on MPU
to play a protective role when the functions of unmanned systems are gradually complex. Our solution
can effectively prevent the execution of Shellcode by randomizing the process stack, and is not limited
by the number of MPU-protected memory regions and other hardware resources, which meets the design
goal G3 extensibility. What is more, we only add a memory pool area into the system architecture to
achieve dynamic memory allocation, and we will describe how the memory pool satisfies the design goal
G4 low footprint in Subsection 3.3. Last but not least, MPU, execution levels and the process stack are
features supported by most unmanned system MCUs, so our system architecture can be easily adapted
to other unmanned system firmware and RTOSs, and our design realizes the G5 generality.

3.3 Secure process stack

Unfortunately, due to the lack of MMU support, MCUs for unmanned systems do not support dynamic
memory allocation, or can only allocate memory blocks with fixed addresses, which does not meet our
needs for randomizing the process stack. For example, only three fixed regions are provided for memory
allocation to choose from in ChibiOS, which supports the unmanned system firmware Ardupilot. In order
to be compatible with the existing memory allocation solutions in unmanned systems, we designate an
area in memory as a memory pool. We use the following structure array R = {ro,r1,...,7,} to denote
the usage of the memory pool.

1| typedef struct allocated_region {

2 void *pointer;

3 uint32_t start_address;

4 uint32_t size;

5| Yallocated_region[MAX_ALLOCATE_NUM];

In this structure, we define a pointer to the allocated memory region, the start addresses of the region
and the allocation size. At the same time, we also need to specify the maximum number of memory
regions that can be allocated by defining the value of MAX_ALLOCATE NUM. Three functions are designed
to allocate, re-allocate and free memory:

1| void *mem_alloc(uint32_t size);
2| void *mem_realloc(uint32_t size);
3| void mem_free (void *pointer);
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Algorithm 1 Allocation and release of memory regions for the secure process stack. Here, r; is a unit in the structure array R

1: function MEMALLOC(size)

2 if allocated_regions_.num > MAX_ALLOCATE_NUM then
3 return NULL;

4: end if

5: start_addr <~ TRNG();

6: end_addr <+ start_addr + size — 1;

7 for i = 0 — allocated_regions_.num do

8 if MAX(r;.start_addr, start_addr) < MIN(r;.start_addr 4 r;.size — 1, end-addr) then
9: return mem- realloc(size);

10: end if

11: end for

12: R < R U new region;

13: allocated_regions_.num + +;

14: return start_addr;

15: end function

16: function MEMREALLOC(size)

17: if realloc_times > 3 then > Retry times can be set.
18: return NULL

19: else

20: return mem-alloc(size);

21: end if

22: end function
23: function MEMFREE(pointer)

24: for ¢ = 0 — allocated_regions_.num do
25: if r;.pointer = pointer then

26: Delete r; from R

27: allocated_regions_.num — —;

28: return

29: end if

30: end for
31: end function

Table 5 The five memory regions that need to be dynamically allocated in the unmanned system firmware Ardupilot and their
sizes

Name ADC sample DMA buffer RX bounce buffer TX bounce buffer FIFO buffer Process stack
Size (Byte) 144 304 64 64 112 1024

As described in Algorithm 1, mem_alloc uses the true random number generator (TRNG) [37] sup-
ported by ARM Cortex-M series MCUs to generate a start address of the memory area to be allocated.
Then, when the number of allocated regions does not reach the maximum setting, the allocator needs to
traverse all memory regions in the structure array allocated_region to check whether there is a conflict
between the to-be-allocated region and the allocated regions. If there is no conflict, the allocator should
save the region information into the structure array. Otherwise, it will find the allocatable region again
by mem_realloc. To free the allocated memory, it just needs to call mem_free to delete the information
of the pointer in the structure array.

In order to measure the space occupancy of the memory pool, we summarize the stack and buffers that
use memory allocation and the size of regions they require in Table 5. It can be seen only five buffers
and one stack need to dynamically allocate memory; the value of MAX_ALLOCATE NUM should be set to
6, which means that the space occupied by the structure array allocated region is 72 bytes. At the
same time, the total memory space required for these buffers and the process stack is 1712 bytes. In
order to ensure the randomness of the process stack space address, we set the size of the memory pool to
5632 bytes, which is about three times the size of the total required space. Since most MCUs have 1-2
MB of Flash ROM and 192-512 kB of SRAM, the memory pool we designed has a very small footprint
and can meet the design goal G4.

On the other hand, in order to secure the memory allocation, we need to configure the three functions
and the struct array allocated.region to be accessible only in privileged mode with MPU. Only the
memory pool can be accessed by tasks in unprivileged mode. Due to the real-time requirement of
unmanned systems, the data in these buffers that need to dynamically allocate memory are only valid
for one cycle; that is, they will not be available in the next cycle. So we allocate memory for them at
the beginning of a cycle and release them at the end of the cycle, which can effectively meet their usage
requirements. This also means that we do not need to perform frequent execution level switching in order
to securely allocate memory by MPU. As illustrated in Figure 7, we implement a secure process stack to
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Figure 7 (Color online) Secure process stack with random addresses. We used MPU to configure the permissions of each module
in randomized memory allocation.

resist Shellcode execution.

3.4 Workflow of CToMP

Our approach studies upon cycle-based task modeling, where three stages of functions (i.e., environment
perception, behavior decision, and action execution in one cycle) are embedded within. The workflow of
CToMP corresponds to the three stages of functions in one cycle.

First, use MPU to configure hardware and software resources that can be accessed in one cycle. Then,
a region is allocated in the memory pool for tasks of this cycle as a secure process stack. At the same time,
we also need to allocate regions in the memory pool for other buffers. Next, we use the __set_CONTROL
instruction to make the stack pointer point to the secure process stack and switch the execution level to
unprivileged mode.

In unprivileged mode, each task is scheduled on demand based on the priority and two soft timing
parameters (ticks and last_run) that are read-only in this mode. At this stage, the unmanned sys-
tem uses various sensors and communication equipment to complete the perception of the surrounding
environment and its own state and receive control commands.

After tasks in a cycle are executed, the unmanned system needs to switch back to privileged mode to call
some key functions protected by MPU, implement behavior decision and action execution, and allocate
memory resources for the next cycle. Therefore, the user code is required to call the SVC instruction
into the exception handler. In exception handling, switch the execution level back to privileged mode,
and replace the running stack with the main stack after exiting the exception. In addition, we can also
update soft timing parameters in this mode. We describe the above workflow with Figure 8.

According to the unmanned system model in Subsection 3.1, we conclude that one of the ways to ensure
the real-time performance of unmanned systems is to shorten the running time of a cycle. Therefore, we
clarify the advantages of CToMP in the design goal G2 Efficiency by analyzing the computation cost of
CToMP in one cycle and comparing it with the task-oriented approach. We assume that n tasks need
to be executed in one cycle, and the task-oriented memory protection method uses MPU to limit m;
accessible areas for each task to prevent damage attacks caused by memory leaks. At the same time,
since the tasks are all executed in unprivileged mode, and MPU can only be configured in privileged
mode, each time a task is executed, it needs to go through the mode switch twice to configure MPU and
stack for the next task before return to unprivileged mode. Therefore, in a task-oriented manner, the
computation cost in one cycle is

n
Timetask-oriented == Z miTMPU + n(QTswitch + TStack + TSVC)~ (2)
1=1

In (2), Tmpu denotes the time cost for MPU to configure a memory area, Tstack denotes the time cost of
the process stack initialization, Tgyc is the time consumed in one SVC call, and Tyyiten 1S the time cost
of one mode switch. These indicators’ values can be found in Table 3.

From the workflow of CToMP in Figure 8, it can be seen that since we regard all tasks in one cycle as a
whole, CToMP mode only switches twice in one cycle. That is, switching to the unprivileged mode when
entering a new cycle. After the cycle ends, switching to privileged mode to process sensitive data with
an SVC call. What is more, due to only protecting key code and data, the memory regions configured
by MPU pre-cycle are also fewer. We suppose these memory regions are z blocks. The computation cost
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of CToMP is as follows:

Timectomp = 2IMpU + 2T switeh + Tstack + Tsve.-

By comparing (2) and (3), we can obtain that the computation cost of CToMP in one cycle is much
smaller than that of the task-oriented scheme, so CToMP meets design goal G2. More discussion on
performance evaluation will be detailed in Subsubsection 4.2.2.

4 Evaluation

In this section, we first introduce the implementation and configuration details. We then evaluate the
proposed approach from the following perspectives:
e How effectively CToMP can compete against MCAs?
e What is the performance impact of CToMP on the unmanned system?
4.1

Implementation & configuration

We implement CToMP on CUAV V54, a typical UAV that is full compatibility with the Pixhawk project
FMUv5 design standard. CUAV V5+ is equipped with an ARM 32-bit Cortex-M7 processor, a 512 kB
SRAM and a 2 MB Flash memory where the code and data are stored. Similar to most unmanned systems
designed based on the Pixhawk standard, CUAV V54 supports the open source firmware, Ardupilot,
which uses ChibiOS as the RTOS. We also chose an open source drone, Crazyflie, which is equipped with
an ARM 32-bit Cortex-M4 CPU, a 196 kB SRAM and a 1 MB Flash memory and uses FreeRTOS as
the operating system. We use Crazyflie as a supplementary experiment to verify the generality of our

solution. Figure 9 shows our experiment platforms and a simple ground control station (GCS) to record
the flight status of our UAVs so that we can analyze the experimental results.

4.2 Study case: CUAV V54 with Ardupilot
4.2.1 Security analysis

Since unmanned systems are closely related to the physical world, attacks against them tend to cause

damage and loss in the real world. Similarly, MCAs in Ardupilot mainly target the key code and data
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Figure 9 (Color online) Experimental platforms and our GCS. (a) CUAV V54 with Ardupilot; (b) Crazyflie; (¢) GCS.

stored in the memory that can affect the stable flight of drones [7]. In the following, we describe several
representative attacks in detail.

Process termination. ChibiOS, the RTOS in Ardupilot, provides some POSIX-like interfaces. The
kill function can directly terminate the execution of tasks. We modified the return address in the
stack used by the vulnerable user code, and terminated fast_loop, the core task of Ardupilot, by calling
kill through return2libc. However, under the protection of CToMP, kill cannot be called outside of
privileged mode, which makes it impossible for attackers to use the process stack in unprivileged mode
to perform malicious jumps.

Servo operation. The function of up_pwm_servo_set is to output the pulse width modulation
(PWM) waveform to control the motor speed of drones. Similar to the previous attack, this attack
changed the return address to up_pwm_servo_set address, and passed two illegal parameters (channel
and value) to this function, which caused motors rotating abnormally. Same as the previous one, CToMP
makes up_pwm_servo_set inaccessible in unprivileged mode, thus preventing the attack.

Control parameter attack. PID controller is the most widely used automatic controller. It has the
advantages of simple principle, easy implementation, and wide application. There are three important
parameters pid_rate roll, pid_rate pitch, pid_rate_yaw in Ardupilot, which respectively control the
roll, pitch and yaw angle of the drone aircraft attitude. After the aircraft debugging is completed,
these three parameters will be fixed and written into the memory and will not change; slight changes in
parameters will affect the stability of flight. In our experiment, the attack overwrote the PID control
parameters by injecting malicious code while the drone was hovering in the air. The drone began to
sway back and forth, left and right, gradually deviating from the original position. In our architecture,
we configure these three parameters to be read-only using MPU, protecting them from tampering, then
the attack will no longer work. Figures 10(a)—(c) record the data of three angles output by inertial
measurement unit (IMU). It is obvious that under the protection of CToMP, the output of IMU is more
stable.

Soft timer attack. The scheduler is an important component of unmanned systems, and it is
responsible for the on-demand execution of various functional tasks. We interfered with the execution
frequency of task update_altitude by modifying the two soft timer parameters ticks and last_run in
the scheduler. Figure 10(d) shows the flight altitude recorded by the GCS in both cases when the drone
is attacked and protected by CToMP. It can be seen when an attack occurs, although we increased the
RC throttle to make the drone start rising, the change of altitude is not reflected on the GCS in real-time,
which undoubtedly interferes with the driver’s control of the drone, bringing a certain risk. We effectively
avoid this attack by placing scheduling-related data in privileged mode that malicious code cannot access.

Memory remapping. ARM Cortex-M series MCUs allow users to perform a hot-patching operation.
This means the new program can be written into the Flash ROM, not through JTAG or USARTO, but
through USB, RS232, wireless transmission and other interfaces that are still preserved in the external
environment after hardware packaging. The attacker can replace the existing function in Flash with the
malicious code in Shellcode from the vulnerable user code, and the work of the program update should
only be the responsibility of Bootloader. Therefore, in our architecture, after Bootloader starts the
system, the entire code segment is configured as unwritable by MPU, making this attack ineffective.

RC disturbance. Most tasks of unmanned systems are to sense the surrounding environment and
receive control commands. In order to isolate from the kernel, we put the user code of these tasks into
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Figure 10 Under different attacks, protected system sensor output compared to the unprotected system. (a) Roll angle values
under control parameter attack; (b) pitch angle values under control parameter attack; (c) yaw angle values under control parameter
attack; (d) altitude values under soft timer attack.

unprivileged mode. For the cause of facilitating the management of these sensors and communication
devices, ARM Cortex-M series MCUs provide MMIO technology, which can map the registers of these
devices to the peripheral area in memory. This allows tasks to mutually access data from other devices,
which facilitates sensor data fusion, but attackers can exploit vulnerable code to attack some sensors
across tasks. For example, by modifying the channel value of RC registers in Shellcode, the attacker
can even take control of the unmanned system. In our architecture, due to the support of the randomized
process stack, it is very difficult for an attacker to find the starting address of Shellcode injected through
the vulnerable code, and cannot perform malicious operations.

Hard timer attack. All ARM Cortex-M series MCUs have a 24-bit system timer, SysTick. This
timer counts down from the reload value (SYST_RVR) to zero, providing the unmanned system with a
microsecond-accurate system clock. Through this clock, the unmanned system can count the execution
time of tasks in each cycle and schedule tasks efficiently. In the absence of memory isolation, an attacker
can slow down the system time by overwriting the value of SYST_RVR, which will seriously affect the task
scheduling of unmanned systems. Since SysTick is a private peripheral in MCUs, its SYST_RVR can only
be reloaded in privileged mode. In our architecture, vulnerable user code in unprivileged mode cannot
be exploited to attack the hard timer.

Interrupt vector overriding. The NVIC supports 1 to 240 interrupts for each task in unmanned
systems. Tasks can be configured with a priority in the range of 0-255, and this information is stored in
a vector table. By replacing the priorities in the original vector table and increasing the priority of some
tasks, the attack can make some unimportant tasks always be called in each cycle, which will inevitably
waste software and hardware resources. However, like the hard timer attack, the NVIC is also a private
peripheral, so this attack cannot be implemented in our architecture.

4.2.2  Performance evaluation

In order to measure the impact of new security features on the real-time performance of unmanned
systems, some relevant studies in recent years are based on the time of task execution. They believe
that as long as tasks are completed within the maximum executable time, it will not affect the real-
time performance of unmanned systems. However, according to our analysis of some existing unmanned
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Figure 12 Runtime overhead of two types of memory allocation solutions. (a) From small to large; (b) from large to small.

system firmware, we found that the initial-setup maximum executable time of these tasks is inaccurate,
and they will change dynamically during the operation of unmanned systems to improve the scheduling
efficiency. This is why we found that the relevant studies have problems with some complex unmanned
systems, such as Ardupilot. The maximum executable time is not an accurate measure of whether the
functionality of the task is affected.

According to the operation model of unmanned systems in Subsection 2.1, we believe that a task
needs to achieve a certain execution frequency to meet its functional requirement. Failure to reach the
execution frequency will affect the real-time performance of unmanned systems, such as perception delay
and command delay, which will directly affect the safety of unmanned systems. Therefore, we choose task
execution frequency as an indicator to measure the performance impact of security features on unmanned
systems. As demonstrated in Figure 11, we can see that our approach brings little system overhead. None
of the task execution frequency is affected under the protection of CToMP, enabling the protected system
to reach the same operation efficiency as the original system. In the framework of relevant work MINION,
many low-priority tasks are affected by the frequent configuration of MPU and cannot be executed in a
cycle, and the desired execution frequency cannot be achieved. Therefore, the effect of CToMP on the
efficiency of Ardupilot is completely acceptable.

At the same time, we noticed that randomizing memory allocation can lead to memory fragmentation
issues. This causes a large number of address conflicts in memory allocation, and multiple memory
reallocations will consume more time. We tried the simplest solution, which is to arrange the memory
regions that need to be allocated in order of size. We found that allocating memory from large to
small (Figure 12(b)) can improve the efficiency by 26.5% than allocating memory from small to large
(Figure 12(a)). The time of memory allocation also can be accepted.
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CToMP and the baseline in original system Crazyflie.

4.3 Study case: Crazyflie

To illustrate the generality of CToMP , we validate it on another unmanned system, Crazyflie. Since
Crzayflie uses the relatively low-end STM32F405 as the MCU, it needs more efficient security functions.
There are two main missions in Crazyflie, STABILIZER and SENSORS. STABILIZER is mainly responsible
for the attitude control of drones, while SENSORS is used to collect data from sensors such as gyroscopes
and accelerometers. At the same time, there is also a crazy RealTime protocol (CRTP) service for data
communication with the control side.

Similar to Ardupilot, attackers can exploit vulnerabilities??) in the firmware to inject Shellcode.
Therefore, in CToMP, we use MPU to put STABILIZER into privileged mode, which is isolated from other
user codes that can interact with the outside world. This can effectively protect the attitude control of
drones from being interfered with the malicious code. Unlike Ardupilot, where multiple tasks can use
the same process stack, the operating system FreeRTOS in Crazyflie uses xTaskCreate to allocate a
fixed stack for each task in RAM, and makes the PSP point to the corresponding stack when the task
is scheduled, as illustrated in Figure 13. This eliminates the need to build a memory pool, but only
needs to randomly change the stack address of each task in RAM in each cycle. We also tested the effect
of CToMP on the real-time performance of Crazyflie, as shown in Figure 14. In the experiments, the
execution frequency of Crazyflie tasks was not affected by CToMP.

5 Related work

Since the unmanned system is a typical embedded system, the security research of embedded systems
also inspires our research.

MCAs in embedded systems. Although the existing technology strictly checks the integrity of
the embedded software, monitoring methods for executing embedded system programs are not widely
used because of resource constraints [38]; hence, some attacks can cause memory corruption during
runtime, such as stack/buffer overflow attacks and code reuse attacks [39]. In particular, memory overflow
attacks have been one of the most mainstream methods to date [40-42], because in the most commonly
used embedded program language C\C++, some functions dealing with buffer data lack a boundary
detection mechanism, e.g., strcpy (), or because of unavoidable programmer negligence. These attacks
have always been difficult to solve, and several vulnerabilities related to memory overflow attacks are

1) https://forum.bitcraze.io/viewtopic.php?t=2063.
2) https://forum.bitcraze.io/viewtopic.php?t=4923.
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reported in CVE every day. These vulnerabilities are distributed in the firmware of embedded devices
that have been released, such as routers of various brands (TP—LINK3)4), NET GEAR5)), webcams®),
and even in the ARM official dependency library, which contains an unsafe function encode_ise()").
These vulnerabilities allow unauthenticated attackers to remotely execute arbitrary code, causing severe
losses. Furthermore, although few vulnerability reports are available for the UAV real-time system, after
analyzing 596 bugs submitted on github.com in two types of open-source flight control software, Ardupilot
and PX4, Wang et al. [43] found that hackers can exploit some bugs to launch security attacks. In Hooper
and Tian’s research [16], a buffer overflow bug was used to force a small commercial drone Parrot to land
without cracking the Wi-Fi password used for control communication. Consequently, designing a general
memory protection scheme is necessary in embedded real-time systems.

Memory protection in embedded systems. To resist the damage caused by MCAs, the most
effective approach is to establish a memory management mechanism to partition the memory usage
region of the embedded system. Some studies [44-48] use MMU in general-purpose computing systems
for reference to dividing the embedded system memory into blocks and realize dynamic memory allocation.
However, these schemes have considerable limitations in actual engineering applications. For example,
malloc function is also implemented in Ardupilot, but it only provides three fixed regions for memory
allocation.

In addition, there are some frameworks [9,13-15] that implement access control to embedded system
memory from the perspective of authority management. MINION [14] and M2MON [15] are two memory
protection architectures based on STM32 series chips and are applied to Ardupilot. They use MPU to
limit the memory-accessible range of tasks’ user code that may be hacked by unauthorized users and
protect sensitive data from malicious modification through memory corruption vulnerabilities. However,
with the update of unmanned systems, the functions supported by drones gradually increased, and the
performance of these task-oriented solutions declined. In some other low-cost platforms, such as Arduino
Yun based on the AVR architecture, Pastrana et al. [9] proposed to use an XOR-based encryption and
a liner pseudo random number generator (PRNG) to protect the confidentiality of private metadata.
However, this work is not universal and representative because of the platform specificity of this solution.
Additionally, we also noticed that to prevent code-reuse attacks (return2libc attacks), Refs. [9,49] used
address space layout randomization (ASLR) technology. However, their approaches can only randomize
the code address once during firmware burning or program startup. In contrast, CToMP randomizes the
stack address when each cycle begins so that the stack address will be different in each cycle, considerably
increasing the difficulty of analyzing memory corruption vulnerabilities for attackers. Hence, it prevents
return2shellcode attacks.

ARM TrustZone security. The initial stage of TrustZone [50] is a security architecture proposed for
high-performance Cortex-A processors. Recently, low-power Cortex-M33 series MCUs have also begun to
support TrustZone [51], and STM32L5 [52] is an earlier chip to cover this feature, but it is not widely used.
However, similar to the switching of execution levels in our system architecture, TrustZone technology in
Cortex-M33 divides the secure world and normal world through memory mapping and uses an exception
handler to achieve transitions [53,54]. In the future, we can adapt CToMP into the secure world of
TrustZone to complete the management of memory resources in the trusted environment.

6 Conclusion

With the widespread use of unmanned systems, the security issues they conceal have gradually gained
people’s attention. In this paper, we seek to tackle MCAs, which inject malicious code through memory
vulnerabilities and tamper with critical kernel instructions or data in memory.

To achieve this goal, we propose a CToMP approach. By analyzing and testing with various typical
attack interfaces, we found that CToMP is resilient to different types of MCAs, and it will not affect the
efficiency of unmanned systems. To summarize, CToMP is an efficient and dependable memory protection
mechanism that can meet the requirements of unmanned systems for velocity, practicality, and reliability

3) https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44632.
4) https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2022-25074.
5) https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45524.
6) https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33549.
7) https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44331.
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simultaneously. Our source code is available on GitHub: https://github.com/xidian-uav/uav_memory._
isolation.

Acknowledgements This work was supported by Key Program of the National Natural Science Foundation of China (Grant
No. 62232013), Fundamental Research Funds for the Central Universities (Grant Nos. ZYTS23202, YJSJ23007), Major Re-
search Plan of the National Natural Science Foundation of China (Grant No. 92267204), National Natural Science Foundation
of China (Grant No. 62372350), Key Research and Development Program of Shaanxi (Grant No. 2023-ZDLGY-52), Key R&D
Program of Shandong Province, China (Grant No. 2023CXPT056), and Shenzhen Science and Technology Program (Grant No.
CJGJZD20220517142005013). We also thank anonymous reviewers and editors for their comments and guidance.

References

1 Stankovic J A. Real-time and embedded systems. ACM Comput Surv, 1996, 28: 205-208
2 Tomic T, Schmid K, Lutz P, et al. Toward a fully autonomous UAV: research platform for indoor and outdoor urban search
and rescue. IEEE Robot Automat Mag, 2012, 19: 46-56
3 Messina G, Modica G. Applications of UAV thermal imagery in precision agriculture: state of the art and future research
outlook. Remote Sens, 2020, 12: 1491
4 Chai H X, Zhang G X, Zhou J L, et al. A short review of security-aware techniques in real-time embedded systems. J Circ
Syst Comput, 2019, 28: 1930002
5 ZhiY Y, FuZlJ, Sun X M, et al. Security and privacy issues of UAV: a survey. Mobile Netw Appl, 2020, 25: 95-101
6 Leccadito M, Bakker T, Klenke R, et al. A survey on securing UAS cyber physical systems. IEEE Aerosp Electron Syst Mag,
2018, 33: 22-32
7 Fei F, Tu Z, Yu R K, et al. Cross-layer retrofitting of UAVs against cyber-physical attacks. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2018
8 Xiao M B, Wang X D, Yang G S. Cross-layer design for the security of wireless sensor networks. In: Proceedings of the 6th
World Congress on Intelligent Control and Automation, 2006. 104—-108
9 Pastrana S, Tapiador J, Suarez-Tangil G, et al. AVRAND: a software-based defense against code reuse attacks for AVR embed-
ded devices. In: Proceedings of the 13th International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2016. 58-77
10 Niesler C, Surminski S, Davi L. HERA: hotpatching of embedded real-time applications. In: Proceedings of the 28th Annual
Network and Distributed System Security Symposium (NDSS), 2021
11 Bai J, Li T, Lu K J, et al. Static detection of unsafe DMA accesses in device drivers. In: Proceedings of the 30th USENIX
Security Symposium (USENIX Security 21), 2021. 1629-1645
12 Regalado D, Harris S, Harper A, et al. Gray Hat Hacking The Ethical Hacker’s Handbook. 4th ed. New York: McGraw-Hill
Education, 2015
13 Koeberl P, Schulz S, Sadeghi A, et al. TrustLite: a security architecture for tiny embedded devices. In: Proceedings of the
9th European Conference on Computer Systems (EuroSys’14), 2014
14 Kim C H, Kim T, Choi H, et al. Securing real-time microcontroller systems through customized memory view switching.
In: Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS), 2018
15 Khan A, Kim H, Lee B, et al. M2MON: building an MMIO-based security reference monitor for unmanned vehicles.
In: Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), 2021
16 Hooper M, Tian Y F, Zhou R X, et al. Securing commercial WiFi-based UAVs from common security attacks. In: Proceedings
of the IEEE Military Communications Conference (MILCOM 2016), 2016. 1213-1218
17 Wang J W, Li A, Li H R, et al. RT-TEE: real-time system availability for cyber-physical systems using ARM trustZone.
In: Proceedings of the IEEE Symposium on Security and Privacy (SP), 2022. 352-369
18 Hardin T, Scott R, Proctor P, et al. Application memory isolation on ultra-low-power MCUs. In: Proceedings of the USENIX
Annual Technical Conference (USENIX ATC 18), 2018. 127-132
19 Lattner C, Adve V. LLVM: a compilation framework for lifelong program analysis & transformation. In: Proceedings of the
International Symposium on Code Generation and Optimization (CGO), 2004. 75-86
20 STMicroelectronics. STM32F7 Series and STM32H7 Series Cortex®-M7 Processor Programming Manual. 2019.
https://www.st.com/resource/en/programming-manual/pm0253-stm32f7-series-and-stm32h7-series-cortexm7-processor-
programming-manual-stmicroelectronics.pdf
21 STMicroelectronics. Introduction to STM32 Microcontrollers Security. 2021. https://www.stmcu.jp/download/?dlid=633724_
en
22 Shacham H. The geometry of innocent flesh on the bone: return-into-libc without function calls (on the X86). In: Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS 07), 2007. 552-561
23 Roemer R, Buchanan E, Shacham H, et al. Return-oriented programming: systems, languages, and applications. ACM Trans
Inf Syst Secur, 2012, 15: 1-34
24 Mouzarani M, Sadeghiyan B, Zolfaghari M. Smart fuzzing method for detecting stack-based buffer overflow in binary codes.
IET Softw, 2016, 10: 96-107
25 Rawat S, Mounier L. Offset-aware mutation based fuzzing for buffer overflow vulnerabilities: few preliminary results.
In: Proceedings of the 4th International Conference on Software Testing, Verification and Validation Workshops, 2011. 531-533
26 Mouzarani M, Sadeghiyan B, Zolfaghari M. A smart fuzzing method for detecting heap-based buffer overflow in executable
codes. In: Proceedings of the 21st Pacific Rim International Symposium on Dependable Computing (PRDC), 2015. 42-49
27 Redini N, Machiry A, Wang R Y, et al. Karonte: detecting insecure multi-binary interactions in embedded firmware.
In: Proceedings of the IEEE Symposium on Security and Privacy (SP), 2020
28 Costin A, Zarras A, Francillon A. Automated dynamic firmware analysis at scale: a case study on embedded web interfaces.
In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA CCS’16), 2016.
437-448
29 David Y, Partush N, Yahav E. FirmUp: precise static detection of common vulnerabilities in firmware. SIGPLAN Not, 2018,
53: 392-404
30 Qasem A, Shirani P, Debbabi M, et al. Automatic vulnerability detection in embedded devices and firmware: survey and
layered taxonomies. ACM Comput Surv, 2021, 54: 2
31 Wright C, Moeglein W A, Bagchi S, et al. Challenges in firmware re-hosting, emulation, and analysis. ACM Comput Surv,
2021, 54: 1-36


https://github.com/xidian-uav/uav_memory_isolation
https://github.com/xidian-uav/uav_memory_isolation
https://doi.org/10.1145/234313.234400
https://doi.org/10.1109/MRA.2012.2206473
https://doi.org/10.3390/rs12091491
https://doi.org/10.1142/S0218126619300022
https://doi.org/10.1007/s11036-018-1193-x
https://doi.org/10.1109/MAES.2018.160145
https://www.stmcu.jp/download/?dlid=633724_en
https://www.stmcu.jp/download/?dlid=633724_en
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1049/iet-sen.2015.0039
https://doi.org/10.1145/3296957.3177157
https://doi.org/10.1145/3423167

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Ma CY, et al. Sci China Inf Sci  June 2024, Vol. 67, Iss. 6, 162305:19

Clements A A, Gustafson E, Scharnowski T, et al. HALucinator: firmware re-hosting through abstraction layer emulation.
In: Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), 2020

Gustafson E, Muench M, Spensky C, et al. Toward the analysis of embedded firmware through automated re-hosting.
In: Proceedings of the 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), 2019
Johnson E, Bland M, Zhu Y F, et al. Jetset: targeted firmware rehosting for embedded systems. In: Proceedings of the 30th
USENIX Security Symposium (USENIX Security 21), 2021

Han R D, Yang C, Ma S Q, et al. Control parameters considered harmful: detecting range specification bugs in drone con-
figuration modules via learning-guided search. In: Proceedings of the 44th International Conference on Software Engineering
(ICSE’22), 2022. 462-473

Kim H, Lee J, Pratama D, et al. RIMI: instruction-level memory isolation for embedded systems on RISC-V. In: Proceedings
of the 39th International Conference on Computer-Aided Design (ICCAD’20), 2020

STMicroelectronics. STM32F76xxx and STM32F77xxx advanced Arm®-based 32-bit MCUs Reference Manual.
2018. https://www.st.com/resource/en/reference_manual/rm0410-stm32f76xxx-and-stm32f77xxx-advanced-armbased-32bit-
mcus-stmicroelectronics.pdf

Wang W K, Liu M Y, Du P, et al. An architectural-enhanced secure embedded system with a novel hybrid search scheme.
In: Proceedings of the International Conference on Software Security and Assurance (ICSSA), 2017. 116-120

Das S, Zhang W, Liu Y. A fine-grained control flow integrity approach against runtime memory attacks for embedded systems.
IEEE Trans VLSI Syst, 2016, 24: 3193-3207

Mullen G, Meany L. Assessment of buffer overflow based attacks on an loT operating system. In: Proceedings of the Global
IoT Summit (GIoTS), 2019. 1-6

Rajendran G, Nivash R. Security in the embedded system: attacks and countermeasures. In: Proceedings of the International
Conference on Recent Trends in Computing, Communication & Networking Technologies (ICRTCCNT), 2019

Xu B, Wang W K, Hao Q, et al. A security design for the detecting of buffer overflow attacks in IoT device. IEEE Access,
2018, 6: 7286272869

Wang D H, Li S Q, Xiao G P, et al. An exploratory study of autopilot software bugs in unmanned aerial vehicles.
In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021. 20-31

Bai L S, Yang L, Dick R P. MEMMU: memory expansion for MMU-less embedded systems. ACM Trans Embed Comput Syst,
2009, 8: 3

Bukkapatnam K, Prashant, Rekha C K, et al. Smart memory management (SaMM) for embedded systems without MMU.
In: Proceedings of the International Conference on Recent Advancements in Engineering and Management (ICRAEM-2020),
2020

Cheng X H, Gong Y M, Wang X Z. Study of embedded operating system memory management. In: Proceedings of the 1st
International Workshop on Education Technology and Computer Science, 2009. 962-965

Deligiannis I, Kornaros G. Adaptive memory management scheme for MMU-less embedded systems. In: Proceedings of the
11th IEEE Symposium on Industrial Embedded Systems (SIES), 2016. 1-8

Yu Y H, Wang J Z, Sun T Y. A novel defragmemtable memory allocating schema for MMU-less embedded system.
In: Proceedings of the Advances in Intelligent Systems and Applications, 2013

Salehi M, Hughes D, Crispo B. MicroGuard: securing bare-metal microcontrollers against code-reuse attacks. In: Proceedings
of the IEEE Conference on Dependable and Secure Computing (DSC), 2019. 1-8

ARM Ltd. ARM security technology-building a secure system using TrustZone technology. 2009. https://developer.arm.com/
documentation/PRD29-GENC-009492/latest /

ARM Ltd. Introduction to the ARMv8-M architecture. Version 2.0. 2017. https://developer.arm.com/documentation/
100690/0200

STMicroelectronics. STM32L552xx and STM32L562xx advanced Arm®-based 32-bit MCUs Reference Manual.
2020. https://www.st.com/resource/en/reference manual/dm00346336-stm321552xx-and-stm321562xx-advanced-arm-based-
32-bit-mcus-stmicroelectronics.pdf

Azab A M, Ning P, Shah J, et al. Hypervision across worlds: real-time kernel protection from the ARM trustzone secure
world. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’14), 2014. 90-102
Pinto S, Santos N. Demystifying arm TrustZone: a comprehensive survey. ACM Comput Surv, 2019, 51: 130


https://doi.org/10.1109/TVLSI.2016.2548561
https://doi.org/10.1109/ACCESS.2018.2881447
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/100690/0200
https://developer.arm.com/documentation/100690/0200

	Introduction
	Security model & motivation
	Background
	Execution levels
	Stack pointer
	Memory protection unit

	Security model
	Finding of drawbacks in relevant studies

	Design
	Cycle-based model of unmanned systems
	System architecture
	Secure process stack
	Workflow of CToMP 

	Evaluation
	Implementation & configuration
	Study case: CUAV V5+ with Ardupilot
	Security analysis
	Performance evaluation

	Study case: Crazyflie

	Related work
	Conclusion

