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Abstract This study addresses the resilient sliding mode control (SMC) problem for two-dimensional

cyber-physical systems (2D CPSs) characterized by the Roesser model under denial-of-service attack (DoS-

A), which can interfere with signal transmission over the communication network. First, the DoS-A model

is established by introducing constraints on the DoS frequency and duration. Then, based on active or

silent attack situations, the considered system is described as a switched mode. Furthermore, together with

Lyapunov theory, the average dwell time technique is employed to deduce sufficient criteria that assure the

existence of the desired sliding mode controller. Finally, verification examples are provided to show the

validity of the established SMC scheme.

Keywords two-dimensional systems, cyber-physical systems, denial-of-service attack, resilient sliding mode

control

1 Introduction

With the rapid expansion of computer and communication technology, cyber-physical systems (CPSs)
have gradually become an intensified research field and have attracted considerable attention in the control
community. CPSs refer to systems that tightly combine physical resources, computation technologies,
and communication networks, i.e., the cyber realm and physical layer (PL). For the cyber realm of CPSs,
the system model commonly covers computation models, automata, and formal language. The main
purpose is to realize security and privacy. Moreover, the control plant in the PL of CPSs can be modeled
as a differential/difference equation and a 2D state-space model, and the control objective is to achieve
system stability, good tracking, and optimal performance. CPSs are currently employed in a variety of
fields, including smart homes and buildings, intelligent transportation, aerospace systems, medical and
healthcare systems, and electric power grids. However, despite the characteristics of CPSs bringing great
advantages, there are still challenges that cannot be ignored either. In particular, malicious attacks on
CPSs can damage not only the cyber realm but also the PL. Thus, tremendous efforts have been exerted
to address the issues of CPSs, and excellent achievements have been published [1–9].

Generally, security in CPSs primarily involves resilience against or protection from malicious attacks,
e.g., denial-of-service attack (DoS-A) and deception attacks. In contrast to deception attacks, prior
knowledge of the system model is unnecessary for adversaries to perform DoS-A, which is more profitable
with a higher success rate from the perspective of attackers. Notably, the basic question for DoS-A is how
to establish a suitable mathematical model. Generally, according to different attack strategies, DoS-A is
categorized into frequency- and duration-constrained (FDC) DoS-A and stochastic DoS-A, which follow a
probabilistic packet drop model. Compared with stochastic DoS-A, FDC DoS-A constrains the attacker’s
action by limiting the DoS frequency and duration, and it is more general and reasonable with practical
motivation. Recently, considerable attention has been focused on the cybersecurity problem of CPSs
subject to DoS-A, and significant results have been obtained [10–18]. For instance, a general DoS-A
model with limitations on the attack frequency and duration was established in [10]; meanwhile, the
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input-to-state stability of CPSs was analyzed. In [12], the resilient sliding mode control (SMC) scheme
based on a defense mechanism for CPSs subject to sensor DoS-A was proposed using zero-sum game
theory. In [15], the observer-based output feedback controller was designed for CPSs under periodic
DoS-A.

Notably, all of the aforementioned studies focused on the CPSs expressed by one-dimensional systems
(1DSs). Nevertheless, with the popularization of informatization and networking, the requirement for
multivariable/data processing is increasing. In particular, two-dimensional systems (2DSs), as a typical
multivariable system, have the capabilities of modeling some practical processes whose dynamic behavior
is characterized via independent variables, such as water stream heating, thermal processes, and sheet-
forming processes [19–21]. In comparison with those of 1DSs, the states of 2DSs evolve in two independent
directions, which can be expressed by partial differential/difference equations with more complicated
dynamics. Consequently, the existing 1DSs theory is no longer applicable to 2DSs [22]. These facts
have increased attention to research on the dynamic analysis problem of 2DSs [22–31]. Despite the
significant achievements in addressing the issues of stability analysis, control, filtering, and estimation in
2DSs, less research on the cybersecurity problem of 2D CPSs has been conducted. Recently, preliminary
results on the security issue of 2D CPSs have been obtained [32–34]. In [32], the resilient state feedback
controller design problem of 2D CPSs encountering DoS-A was considered. However, throughout the
analysis process, the characteristics of data transmission under DoS-A have not been reflected. In [33],
the secure filtering issue was addressed based on 2D shift-varying systems under deception attacks, which
were depicted by random variables following the Bernoulli distribution. Notably, in contrast to deception
attacks that demand the secret information of CPSs, DoS-A is more general in practice. Therefore, it is of
theoretical and practical importance to further explore the resilient control issue of 2D CPSs encountering
DoS-A.

Moreover, SMC, as an effective and robust control scheme, has stirred a noticeable research interest
in both control theory and engineering applications in recent decades. The core feature of SMC is the
establishment of a suitable control strategy to enforce the system trajectory to a prescribed sliding surface
and to stay on it with the desired properties. In contrast to various robust control strategies, the SMC
approach has notable advantages, such as rapidity, strong robustness, and good transient performance.
Considering the superiority of the SMC approach, numerous representative results on SMC have been
reported for 1DSs [35–39]. In addition, given the theoretical significance of 2DSs, the SMC problem
of 2DSs has been explored in the past few years [40–43]. Nevertheless, the resilient SMC problem of
2D CPSs under DoS-A has remained unsolved mainly because of the complexity caused by the multiple
dimensions and special dynamics of 2DSs. This motivates us to investigate the security control problem
of 2D CPSs using the SMC approach.

Thus, in this work, we address the security control issue of 2D CPSs using the SMC approach. The
challenges that we are confronted with lie in three aspects: (1) How to establish the mathematical
model of DoS-A given the bidirectional evolution of 2DSs and intermittent DoS-A? (2) How to construct
a feasible sliding surface for 2DSs with horizontal and vertical components to guarantee the expected
system performance? (3) How to design a suitable SMC law and analyze the reachability of the 2D sliding
mode dynamic (SMD)? Therefore, the primary objective of this study is to overcome the aforementioned
challenges. Furthermore, the main contributions of this study are listed as follows:

(i) The control plant in the PL of CPSs is expressed as a 2D Roesser model. Along with the intermittent
DoS-A and bidirectional propagation of the 2D Roesser system, a proper mathematical model of DoS-A
is proposed by introducing constraints on the frequency and duration of DoS.

(ii) Given that a DoS-A arises intermittently, the 2D CPSs under investigation are represented as a
class of switched systems. With the help of the switched Lyapunov theory and the average dwell time
(ADT) approach, sufficient criteria for the stability and H∞ performance of the underlying systems are
derived.

(iii) By constructing an appropriate sliding surface, the corresponding resilient SMC law is proposed
to ensure the expected performance of 2D CPSs subject to DoS-A. This is our first attempt to address
the resilient control issue of 2D CPSs using the SMC technique.

The remainder of this paper is organized as follows: Section 2 provides the system formulation and
preliminaries, which include the 2D physical dynamic, DoS-A model, and construction of the estimator
and sliding surface. Section 3 provides the theoretical result of the performance analysis and the design
process of the resilient SMC scheme. Section 4 confirms the validity of the proposed SMC scheme using
two examples. Finally, Section 5 presents the conclusion.



Li L L, et al. Sci China Inf Sci June 2024, Vol. 67, Iss. 6, 162202:3

Physical layer

Physical

process
Sensor

Actuator

Resilient

controller
Estimator

DoS

attack

Cyber layer

y(h, r)

u(h, r)

y(h, r)

y(h, r)x(h, r)

−y(h, r)

–

ˆ

ˆ

x1(h, r)
Cell

(h, r)

u(
h,

 r)

x2(h, r)

x1(h+1, r)

x2(h, r+1)

Figure 1 (Color online) Diagram of CPSs. Figure 2 Dynamic evolution of the 2D Roesser model.

2 System description and preliminaries

A diagrammatic presentation of CPSs is shown in Figure 1, which incorporates the PL and cyber layer
(CL). For the CL, only the sensor attack is considered. Figure 2 shows the evolution of the 2D Roesser
model. Similar to the 1D state-space model, where the current state is evaluated using the previous state
and input, the state vector components x1(h+1, r) and x2(h, r+1) of the 2D Roesser model are evaluated
from the previous state and input. Notably, the information of the 2D Roesser systems propagates along
the horizontal and vertical directions. Thus, the destruction of cell(h, r) influences both x1(h + 1, r)
and x2(h, r + 1). For convenience, cell(h, r) will be represented by cell(l) with l = h + r. Furthermore,
l1 = h1 + r1 and l2 = h2 + r2, and l1 < l2 (i.e., (h1, r1) < (h2, r2)) means (h2, r2) ∈ {(h, r)|h > h1, r >
r1} ∪ {(h, r)|h = h1, r > r1}.

2.1 2D physical process

The control plant in the PL of CPSs is represented by the following 2D dynamical process:

[

x1(h+ 1, r)

x2(h, r + 1)

]

= Ax(h, r) +Bu(h, r) +Dω(h, r),

y(h, r) = Cx(h, r), (1)

where x(h, r) = [ x1T(h, r) x2T(h, r) ]T; x1(h, r) ∈ R
ih and x2(h, r) ∈ R

iv with h, r ∈ N are the horizontal

and vertical states, respectively; u(h, r) ∈ R
iu is the control input; ω(h, r) ∈ R

iω is the external distur-

bance belonging to ℓ2{[0,∞), [0,∞)}; and y(h, r) ∈ R
iy is the measured output. A = [ A11 A12

A21 A22
], B =

[ B1

B2
], C = [C1 C2 ], and D = [ D1

D2
] are the system matrices, which are real known with appropriate

dimensions. In addition, matrix B is assumed to be full-column rank. The boundary condition (BC) of
system (1) is assigned as X0 = {x1(0, r), x2(h, 0)|h, r ∈ N} and satisfies the following condition:

{

x1(0, r) = νr, ∀ 0 6 r 6 z1, x2(h, 0) = ωh, ∀ 0 6 h 6 z2,

x1(0, r) = 0, ∀ r > z1, x2(h, 0) = 0, ∀ h > z2,
(2)

where ν0 = ω0 for h = r = 0, νr and ωh are given vectors, and z1 and z2 are positive integer values.

2.2 Denial-of-service attacks

With regard to DoS-A, the objective of the attacker is to degrade the system performance by disrupting
data transmission and reception on communication channels. In this study, we only consider the attack on
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the measurement channel (i.e., sensor attack), which leads to missing state information. In addition, for
cell(h, r), the emergence or absence of DoS-A depends on the time instant l with l = h+ r. Furthermore,
{li}i∈N denotes the moment of DoS off/on switching. Then, Γi , li

⋃

[li, li+τi) denotes the i-th activated
time interval of DoS-A with the length τi > 0. If τi = 0, then the i-th DoS-A is launched merely at
instant li. τi > 0 indicates that data transmission is interrupted between cell(li) and cell(li + τi).

For an interval (k, l) with k = h0 + r0, l = h+ r, and 0 6 k 6 l, two types of subintervals, i.e., F1(k, l)
and F2(k, l), which denote active and silent attacks on the interval (k, l), respectively, are defined and
expressed as follows:

F1(k, l) =
⋃

i∈N

Γi

⋂

(k, l), F2(k, l) = (k, l) \ F1(k, l).

Notably, there is no overlap between F1(k, l) and F2(k, l). Furthermore, the notations |F1(k, l)| and
|F2(k, l)| represent the lengths of intervals F1(k, l) and F2(k, l), respectively.

In practice, because of the defense mechanism and resource constraints, malicious DoS-A is not always
persistent. Consequently, the following necessary assumptions on the DoS frequency and duration are
made throughout this study.

Assumption 1. Within the interval (k, l), n(k, l) refers to the number of DoS-A. Then, given a constant
TD > 1, such that

n(k, l) 6
l − k

TD

. (3)

Assumption 2. Within the interval (k, l), in terms of the attack duration |F1(k, l)|, there exists a
constant TA > 1, such that

|F1(k, l)| 6
l − k

TA

. (4)

Remark 1. Assumptions 1 and 2 depict the features of the DoS-A signals, which will be used subse-
quently. Notably, Assumption 1 resembles the expression of ADT, where n(k, l) refers to the number of
DoS off/on transitions rather than the total switching times. In the interval (k, l), the number of total
switching can be expressed as N (k, l) = n(k, l) + n̄(k, l) 6 2n(k, l) = N̄ (k, l), where n̄(k, l) indicates the
number of times the DoS switches on/off. TD can be explained as the ADT of the coherent DoS off/on
transition. If TD = 1, DoS can occur at every instant, and stability will be lost. Assumption 2 indicates
a requirement for the duration of DoS. The condition TA > 1 indicates that DoS-A cannot always be
active.

2.3 Estimator design

Note that data transmission might be interrupted by malicious DoS-A. To compensate for the lost signals
under DoS-A, an estimator is constructed as follows:

[

x̂1(h+ 1, r)

x̂2(h, r + 1)

]

= Ax̂(h, r) +Bu(h, r) + Lθey(h, r),

ŷ(h, r) = Cx̂(h, r), (5)

where x̂(h, r) = [ x̂1(h, r)

x̂2(h, r)
] is the estimation of x(h, r), ey(h, r) = ȳ(h, r)−ŷ(h, r), ȳ(h, r) , (1−δ(θ, 1))y(h, r),

and δ(θ, 1) takes the value of 1 for θ = 1 and 0 otherwise. In addition, Lθ = [ L1θ
L2θ

] are the switching gains

to be determined subsequently with θ ∈ {0, 1}, where θ = 1 means that the DoS-A is activated and θ = 0
represents the normal circumstance.

2.4 Sliding surface design

The key issue in designing an SMC scheme is to establish a sliding surface and design a control signal.
In this study, the following sliding surface function is constructed:

s(l) = s(h, r) =

[

s1(h, r)

s2(h, r)

]

= Gθx̂(h, r) −Gθ(A+ BKθ)

[

x̂1(h− 1, r)

x̂2(h, r − 1)

]

, (6)
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where s1(h, r) and s2(h, r) are the horizontal and vertical subsliding surfaces, respectively, with l = h+r.

Gθ = [G1θ G2θ ] are known matrices that satisfy the condition that GθB is nonsingular. Kθ = [K1θ K2θ ]

will be designed subsequently.
Furthermore, given the particularity of 2DS state recursion, s(l + 1) can be expressed as follows:

s(l + 1) =

[

s1(h+ 1, r)

s2(h, r + 1)

]

= Gθ

[

x̂1(h+ 1, r)

x̂2(h, r + 1)

]

−Gθ(A+BKθ)

[

x̂1(h, r)

x̂2(h, r)

]

, (7)

which satisfies s(l + 1) = s(l) = 0. Then, we obtain the following equivalent control law:

ueq(h, r) = Kθx̂(h, r) − (GθB)−1GθLθey(h, r). (8)

Defining e(h, r) = x(h, r) − x̂(h, r), we obtain the following estimate error dynamic:

[

e1(h+ 1, r)

e2(h, r + 1)

]

= Ae(h, r)− Lθey(h, r) +Dω(h, r). (9)

Next, let ξ1(h, r) = [ x̂1(h, r)

e1(h, r)
], ξ2(h, r) = [ x̂2(h, r)

e2(h, r)
]. The combination of (5), (8), and (9) yields

ξ̄(h, r) = Ãθξ(h, r) + D̃ω(h, r),

y(h, r) = C̃ξ(h, r), (10)

where ξ̄(h, r) = [ ξ1(h + 1, r)

ξ2(h, r + 1)
], ξ(h, r) = [ ξ1(h, r)

ξ2(h, r)
], Ãθ = ΞAθΞ

T, D̃ = ΞD̄, C̃ = C̄ΞT, Ḡθ = (GθB)−1Gθ, D̄ =

[ 0 D ]T, C̄ = [C C ], and

A0 =

[

A+BK0 L0C − BḠ0L0C

0 A− L0C

]

, A1=

[

A+BK1 − L1C +BḠ1L1C 0

L1C A

]

, Ξ=













I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I













.

Remark 2. Notably, the SMD in (10) is described as a type of switched system based on the actual
DoS-A situations. In contrast to the traditional 2D switched system that involves finite subsystems and a
switching law, the system in (10) is depicted as a type of system consisting of stable (no attacks) and un-
stable (attack occurrence) modes. The ADT technique is commonly applied to address the related issues
of switched systems. Similar to the analysis of ADT, in our study, the DoS-A frequency (Assumption 1)
is adopted to discuss the SMC issue of 2D Roesser systems under DoS-A.

This study devises a resilient SMC scheme such that the SMD in (10) is exponentially stable (ES)
with an H∞ disturbance attenuation level. Furthermore, the following definitions of the main results are
provided.

Definition 1. The SMD in (10) with ω(h, r) ≡ 0 is considered ES if the constants η > 0 and 0 < ρ < 1
exist, such that

∑

h+r=Π

‖ξ(h, r)‖2 6 ηρΠ−l0
∑

h+r=l0

‖ξ(h, r)‖2. (11)

Definition 2. Given a scalar ϑ > 0, the SMD in (10) under zero BC is considered ES with an H∞

disturbance attenuation performance (DAP) ϑ. If Eq. (11) and the following conditions hold:

∞
∑

h=0

∞
∑

r=0

‖y(h, r)‖2 6 ϑ2
∞
∑

h=0

∞
∑

r=0

‖ω(h, r)‖2. (12)

Remark 3. H∞ norm is a widely known performance index that indicates the robustness of an uncertain
system. Robustness, as a pre-event concept, represents the capability of a system to resist disturbances
or uncertain parameters. Generally, robust control is used to maintain the performance of the control
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system under internal/external disturbances. In contrast to robustness, resilience, as a post-event concept,
refers to the self-recovery capability of a system after adversarial events. Furthermore, the resilient control
emphasizes the capability to maintain the performance of the control system and restore normal operation
under unexpected attacks. Accordingly, to achieve self-recovery of the system under malicious attack,
the design method of a resilient control scheme needs to be explored.

3 Main results

In this section, a resilient SMC scheme is proposed by combining the Lyapunov theory of switched systems
and the linear matrix inequality (LMI) technique.

3.1 Stability and H∞ performance of sliding mode dynamic

This subsection mainly focuses on the analysis of the stability and H∞ performance of the SMD in
(10). Sufficient criteria will be established to guarantee that the SMD is ES with an H∞ attenuation
performance ϑ. To begin with, the following corollary is given, which is necessary for the subsequent
main result.

Corollary 1. Consider the 2D dynamic process in (1) under DoS-A satisfying Assumptions 1 and 2
with the scalars 0 < ε < 1 and α, β, µ > 1. If the positive definite matrix Pθ = diag{P 1

θ , P
2
θ } exists, such

that

[

−αP1 ÃT
1 P1

∗ −P1

]

< 0,

[

− 1
β
P0 ÃT

0 P0

∗ −P0

]

< 0, (13)

Pθ 6 µPδ, θ, δ ∈ {0, 1}, θ 6= δ, (14)

ln(µ)

ln(ε) + ln(β)
<

TD

3
,
ln(α) + ln(β)

ln(ε) + ln(β)
<

TA

3
, ln(ε) + ln(β) > 0. (15)

Then, the SMD in (10) with ω = 0 is ES.
Proof. First, construct the following Lyapunov function:

Vα(l)(ξ(h, r)) = V 1
α(l)(ξ

1(h, r)) + V 2
α(l)(ξ

2(h, r)) = ξT(h, r)Pα(l)ξ(h, r),

V 1
α(l)(ξ

1(h, r)) = ξ1T(h, r)P 1
α(l)ξ

1(h, r), V 2
α(l)(ξ

2(h, r)) = ξ2T(h, r)P 2
α(l)ξ

2(h, r), (16)

where α(l) = θ ∈ {0, 1} and l = h+ r. Then, by combining the SMD in (10) with ω(h, r) = 0, we obtain
the following expression:

∆Vα(l)(ξ(h, r)) = Vα(l)(ξ̄(h, r)) − Vα(l)(ξ(h, r)) = ξ̄T(h, r)Pα(l) ξ̄(h, r) − ξT(h, r)Pα(l)ξ(h, r),

which indicates that
(1) for θ = 1 and ω(h, r) = 0, ∆Vα(l)(ξ(h, r)) = ξT(h, r)[ÃT

1 P1Ã1 − P1]ξ(h, r);

(2) for θ = 0 and ω(h, r) = 0, ∆Vα(l)(ξ(h, r)) = ξT(h, r)[ÃT
0 P0Ã0 − P0]ξ(h, r).

Furthermore, based on situations in which the DoS-A is successful or not, the following cases will be
discussed.

(1) The system suffers from persistent DoS-A and evolves possibly unstable dynamics (l ∈ F1(k, l), α(l)
= θ = 1). Then, we derive ∆Vα(l)(ξ(h, r)) < (α − 1)ξT(h, r)P1ξ(h, r) with α > 1. Simultaneously, the
following inequality holds:

ÃT
1 P1Ã1 − P1 < (α− 1)P1. (17)

(2) The system operates normally without any attack, and its stability is well established (l ∈
F2(k, l), α(l) = θ = 0). Thus, for β > 1, we derive ∆Vα(l)(ξ(h, r)) < ( 1

β
− 1)ξT(h, r)P0ξ(h, r), which can

be written as follows:

ÃT
0 P0Ã0 − P0 <

(

1

β
− 1

)

P0. (18)
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(3) The system switches between situations (1) and (2) (l ∈ F1(k, l) or l ∈ F2(k, l)), under which
Eqs. (17) and (18) hold simultaneously. Furthermore, condition (13) can be inferred from (17) and (18)
with the Schur complement. For the entire interval (0, l) =

⋃

i∈N
[li, li+1)

⋃

[0, l1], let

γ=

{

α− 1, l ∈ F1(0, l),
1
β
−1, l ∈ F2(0, l).

Then, according to (17) and (18), we derive ÃT
θ PθÃθ − Pθ < γPθ and

∆Vα(l)(ξ(h, r)) < γξT(h, r)Pθξ(h, r). (19)

It follows from (19) that Vα(l)(ξ̄(h, r)) < γ̄Vα(l)(ξ(h, r)) with γ̄ = 1 + γ. Then, we derive

V 1
α(l)(ξ

1(h+ 1, r)) + V 2
α(l)(ξ

2(h, r + 1)) < γ̄[V 1
α(l)(ξ

1(h, r)) + V 2
α(l)(ξ

2(h, r))]. (20)

From (2), it is inferred from (20) that, for the interval [li, li+1),

∑

h+r=l

Vα(l)(ξ(h, r)) < γ̄
∑

h+r=l−1

Vα(l)(ξ(h, r)) < γ̄l−li
∑

h+r=li

Vα(li)(ξ(h, r)).

Recalling condition (14) in Corollary 1 and assuming α(li−1) = δ = {0, 1}\θ, we obtain the following
inequality:

∑

h+r=l

Vα(l)(ξ(h, r))< γ̄l−li
∑

h+r=li

Vα(li)(ξ(h, r))<µγ̄l−li
∑

h+r=li

Vα(li−1)(ξ(h, r))

< µN (0,l)α|F1(0,l)|β−|F2(0,l)|
∑

h+r=0

Vα(0)(ξ(h, r)),

where N (0, l) = n(0, l)+ n̄(0, l) denotes the total number of systems switching between attack and normal
modes. Then, the following inequality can be obtained:

∑

h+r=l

Vα(l)(ξ(h, r)) < µN̄ (0,l)α|F1(0,l)|β−|F2(0,l)|Vα(0)(ξ(0, 0)),

where N̄ (0, l) = 2n(0, l). Recalling (3) and (4) in Assumptions 1 and 2, we obtain

∑

h+r=l

Vα(l)(ξ(h, r))6e
2l
TD

ln(µ)
e

l
TA

ln(α)
e
−(l− l

TA
) ln(β)

Vα(0)(ξ(0, 0)). (21)

In addition, it follows from (16) that a > 0 and b > 0 satisfy

Vα(l)(ξ(h, r)) > a‖ξ(h, r)‖2, (22)

Vα(0)(ξ(0, 0)) 6 b‖ξ(0, 0)‖2, (23)

where a = min{λmin(Pθ), θ ∈ {0, 1}} and b = max{λmax(Pθ), θ ∈ {0, 1}}. By combining (21), (22), and
(23), we obtain

∑

h+r=l ‖ξ(h, r)‖
2 6 b

a
ef(l)‖ξ(0, 0)‖2 with f(l) = l( 2

TD
ln(µ) + 1

TA
ln(α)− (1− 1

TA
) ln(β)).

Then, based on condition (15), we derive f(l) < l ln(ε) and
∑

h+r=l ‖ξ(h, r)‖
2 6 b

a
(eln(ε))l‖ξ(0, 0)‖2 with

0 < eln(ε) < 1 and b
a
> 0, which indicate that Eq. (11) holds. Therefore, the SMD in (10) is ES, which

completes the proof.

Subsequently, the theorem on exponential stability with an H∞ DAP ϑ for the SMD in (10) is estab-
lished.

Theorem 1. Consider the 2D dynamic process in (1) under DoS-A satisfying Assumptions 1 and 2
with the scalars 0 < ε < 1, ϑ > 0, and α, β, µ > 1. If the positive definite matrix Pθ = diag{P 1

θ , P
2
θ }

exists, such that the following inequalities:

Φ0 , [Φ0(h, r)]
4×4 < 0, (24)

Φ1 , [Φ1(h, r)]
4×4 < 0, (25)
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hold with (14) and (15), where

Φ0(1, 1) =−
1

β
P0, Φ0(1, 3) = ÃT

0 P0, Φ0(1, 4) = C̃T, Φ0(2, 2) = −ϑ2I, Φ0(2, 3) = D̃TP0,

Φ0(3, 3) =−P0, Φ0(4, 4) = −I, Φ1(1, 1) = −αP1, Φ1(1, 3) = ÃT
1 P1, Φ1(1, 4) = C̃T,

Φ1(2, 2) =−ϑ2I, Φ1(2, 3) = D̃TP1, Φ1(3, 3) = −P1, Φ1(4, 4) = −I.

Then, the SMD in (10) is ES with an H∞ DAP ϑ.
Proof. With the Schur complement lemma, it follows from (24) and (25) that condition (13) holds.
Consequently, the exponential stability of the SMD in (10) is assured. Next, we mainly focus on the H∞

DAP for the considered system in (10) under zero BC. Let

Jθ = ∆Vα(l)(ξ(h, r)) +D(h, r), (26)

where ∆Vα(l)(ξ(h, r)) is defined in the proof of Corollary 1 andD(h, r)=yT(h, r)y(h, r)−ϑ2ωT(h, r)ω(h, r).
By combining (10) and (24)–(26), we derive Jθ < γVα(l)(ξ(h, r)) with

γ=

{

α−1, l ∈ F1(0, l),
1
β
−1, l ∈ F2(0, l).

Then, letting γ̄ = 1 + γ, we obtain

Vα(l)(ξ̄(h, r)) < γ̄Vα(l)(ξ(h, r)) −D(h, r). (27)

From (27), we obtain

V 1
α(l)(ξ

1(h+ 1, r)) + V 2
α(l)(ξ

2(h, r + 1)) < γ̄[V 1
α(l)(ξ

1(h, r)) + V 2
α(l)(ξ

2(h, r))] −D(h, r).

Furthermore, by applying the iteration technique, we derive

∑

h+r=l

Vα(l)(ξ(h, r)) < γ̄l−li
∑

h+r=li

Vα(li)(ξ(h, r)) −
l−1
∑

s=li

∑

h+r=s

γ̄l−s−1D(h, r).

By selecting α(li−1)=δ={0,1}\θ and considering condition (14), we derive Vα(li)(ξ(h,r))<µVα(li−1)(ξ(h,r))
and

∑

h+r=l

Vα(l)(ξ(h, r)) < µγ̄l−li
∑

h+r=li

Vα(li−1)(ξ(h, r))−
l−1
∑

s=li

∑

h+r=s

γ̄l−s−1D(h, r)

< µN (0,l)α|F1(0,l)|β−|F2(0,l)|
∑

h+r=0

Vα(0)(ξ(h, r))

−
l−1
∑

s=0

∑

h+r=s

µN (s,l)α|F1(s,l−1)|β−|F2(s,l−1)|D(h, r).

Then, the following inequality can be obtained under zero BC:

l−1
∑

s=0

∑

h+r=s

µN (s,l)α|F1(s,l−1)|β−|F2(s,l−1)|yT(h, r)y(h, r)

<

l−1
∑

s=0

∑

h+r=s

µN (s,l)α|F1(s,l−1)|β−|F2(s,l−1)|ϑ2ωT(h, r)ω(h, r). (28)

Multiplying both sides of (28) by µ−N (l−1,l) yields

l−1
∑

s=0

∑

h+r=s

µN (s,l−1)α|F1(s,l−1)|β−|F2(s,l−1)|yT(h, r)y(h, r)
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<

l−1
∑

s=0

∑

h+r=s

µN (s,l−1)α|F1(s,l−1)|β−|F2(s,l−1)|ϑ2ωT(h, r)ω(h, r).

From (15) with N (s, l − 1) 6 2n(s, l − 1) 6 2(l−s−1)
TD

, we obtain

l−1
∑

s=0

∑

h+r=s

µN (s,l−1)α|F1(s,l−1)|β−|F2(s,l−1)|yT(h, r)y(h, r) <

l−1
∑

s=0

∑

h+r=s

ε(l−1−s)ϑ2ωT(h, r)ω(h, r)

<

l−1
∑

s=0

∑

h+r=s

ϑ2ωT(h, r)ω(h, r).

Furthermore, it follows from µ > 1 and β > 1 that

l−1
∑

s=0

∑

h+r=s

(

1

β

)(l−1−s)

yT(h, r)y(h, r) <
l−1
∑

s=0

∑

h+r=s

ϑ2ωT(h, r)ω(h, r). (29)

Then, the following inequality can be deduced from (29):

∞
∑

l=0

l−1
∑

s=0

∑

h+r=s

(

1

β

)(l−1−s)

yT(h, r)y(h, r) <

∞
∑

l=0

l−1
∑

s=0

∑

h+r=s

ϑ2ωT(h, r)ω(h, r).

Note that from
∑∞

l=s+1(
1
β
)(l−1−s) = 1 + 1

β
+ 1

β2 + · · · = β
β−1 > 1, we derive

∞
∑

s=0

∑

h+r=s

yT(h, r)y(h, r) <

∞
∑

s=0

∑

h+r=s

ϑ2ωT(h, r)ω(h, r),

which means that Eq. (12) is satisfied. The proof is completed.

Remark 4. Notably, Theorem 1 provides sufficient criteria for the exponential stability and H∞ DAP
of the SMD in (10) under DoS-A. However, conditions (24) and (25) in Theorem 1 cannot be solved
directly because of the existence of unknown gain matrices Kθ and Lθ in Ãθ. Consequently, solvable
conditions will be further given in Subsection 3.2, which can be effectively solved by available software.

3.2 Sliding surface design

In this subsection, we investigate the existence of a sliding surface (6) and further provide the design
method of the gain matrix in (6).

Theorem 2. Consider the 2D dynamic process in (1) under DoS-A satisfying Assumptions 1 and 2
with the scalars 0 < ε < 1, ϑ > 0, and α, β, µ > 1. If the matrices Xθ = diag{X1

θ1, X1
θ2, X2

θ1, X2
θ2} > 0,

K̄1θ, K̄2θ, L̄1θ, L̄2θ, Y, R, Ȳ , and R̄ exist, such that the following conditions:

C1X
1
02 = Y C1, C2X

2
02 = Ȳ C2, (30)

C1X
1
11 = RC1, C2X

2
11 = R̄C2, (31)

Ψ0 , [Ψ0(h, r)]
4×4 < 0, (32)

Ψ1 , [Ψ1(h, r)]
4×4 < 0, (33)

hold with (14) and (15), where

Ψ0(1, 1) = diag

{

−
1

β
X1

01,−
1

β
X1

02,−
1

β
X2

01,−
1

β
X2

02

}

, Ψ0(1, 3) = [Ψ̄(h, r)]4×4, Ψ0(2, 2) = −ϑ2I,

Ψ0(3, 3) = diag{−X1
01,−X2

01,−X1
02,−X2

02}, Ψ0(4, 4) = −I, Ψ1(1, 3) = [Ψ̃(h, r)]4×4,

Ψ1(1, 1) = diag{−αX1
11,−αX1

12,−αX2
11,−αX2

12}, Ψ1(2, 2) = −ϑ2I, Ψ1(4, 4) = −I,

Ψ1(3, 3) = diag{−X1
11,−X2

11,−X1
12,−X2

12}, Ḡ10 = (G10B1 +G20B2)
−1G10,
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Ψ0(1, 4) =













X1
01C

T
1

X1
02C

T
1

X2
01C

T
2

X2
02C

T
2













, Ψ0(2, 3)
T = Ψ1(2, 3)

T =













0

0

D1

D2













, Ψ1(1, 4) =













X1
11C

T
1

X1
12C

T
1

X2
11C

T
2

X2
12C

T
2













,

Ψ̄(1, 1) = X1
01A

T
11 + K̄T

10B
T
1 , Ψ̄(1, 2) = X1

01A
T
21 + K̄T

10B
T
2 , Ḡ20 = (G10B1 +G20B2)

−1G20,

Ψ̄(2, 1) = CT
1 L̄

T
10 − CT

1 L̄
T
10Ḡ

T
10B

T
1 − CT

1 L̃
T
20Ḡ

T
20B

T
1 , Ψ̄(2, 3) = X1

02A
T
11 − CT

1 L̄
T
10,

Ψ̄(2, 2) = CT
1 L̃

T
20 − CT

1 L̄
T
10Ḡ

T
10B

T
2 − CT

1 L̃
T
20Ḡ

T
20B

T
2 , Ψ̄(2, 4) = X1

02A
T
21 − CT

1 L̃
T
20,

Ψ̄(3, 1) = X2
01A

T
12 + K̄T

20B
T
1 , Ψ̄(3, 2) = X2

01A
T
22 + K̄T

20B
T
2 , Ḡ11 = (G11B1 +G21B2)

−1G11,

Ψ̄(4, 1) = CT
2 L̃

T
10 − CT

2 L̃
T
10Ḡ

T
10B

T
1 − CT

2 L̄
T
20Ḡ

T
20B

T
1 , Ψ̄(4, 3) = X2

02A
T
12 − CT

2 L̃
T
10,

Ψ̄(4, 2) = CT
2 L̄

T
20 − CT

2 L̃
T
10Ḡ

T
10B

T
2 − CT

2 L̄
T
20Ḡ

T
20B

T
2 , Ψ̄(4, 4) = X2

02A
T
22 − CT

2 L̄
T
20,

Ψ̃(1, 1) = X1
11A

T
11 + K̄T

11B
T
1 − CT

1 L̄
T
11 + CT

1 L̄
T
11Ḡ

T
11B

T
1 + CT

1 L̃
T
21Ḡ

T
21B

T
1 , Ψ̃(1, 3) = CT

1 L̄
T
11,

Ψ̃(1, 2) = X1
11A

T
21 + K̄T

11B
T
2 − CT

1 L̃
T
21 + CT

1 L̄
T
11Ḡ

T
11B

T
2 + CT

1 L̃
T
21Ḡ

T
21B

T
2 , Ψ̃(1, 4) = CT

1 L̃
T
21,

Ψ̃(2, 3) = X1
12A

T
11, Ψ̃(2, 4) = X1

12A
T
21, Ḡ21 = (G11B1 +G21B2)

−1G21,

Ψ̃(3, 1) = X2
11A

T
12 + K̄T

21B
T
1 − CT

2 L̃
T
11 + CT

2 L̃
T
11Ḡ

T
11B

T
1 + CT

2 L̄
T
21Ḡ

T
21B

T
1 ,

Ψ̃(3, 2) = X2
11A

T
22 + K̄T

21B
T
2 − CT

2 L̄
T
21 + CT

2 L̃
T
11Ḡ

T
11B

T
2 + CT

2 L̄
T
21Ḡ

T
21B

T
2 ,

Ψ̃(3, 3) = CT
2 L̃

T
11, Ψ̃(3, 4) = CT

2 L̄
T
21, Ψ̃(4, 3) = X2

12A
T
12, Ψ̃(4, 4) = X2

12A
T
22.

Moreover, the gain matrices can be rewritten as follows:

K1θ = K̄1θ(X
1
θ1)

−1, K2θ=K̄2θ(X
2
θ1)

−1, L10=L̄10Y
−1, L20=L̄20Ȳ

−1, L11=L̄11R
−1, L21=L̄21R̄

−1. (34)

Then, the SMD in (10) is ES with an H∞ DAP ϑ.
Proof. First, the objective is to verify that condition (32) is equivalent to (24). Let X0 = P−1

0 .
Pre-multiplying and post-multiplying condition (24) with diag{X0, I,Ξ

TX0, I} and diag{X0, I,X0Ξ, I},
respectively, we obtain the following inequality:













− 1
β
X0 0 X0ΞA

T
0 X0ΞC̄

T

∗ −ϑ2I D̄T 0

∗ ∗ −ΞTX0Ξ 0

∗ ∗ ∗ −I













< 0. (35)

Furthermore, substituting K̄10 = K10X
1
01, K̄20 = K20X

2
01, L̄10 = L10Y, L̄20 = L20Ȳ , L̃10 = L̄10Y

−1Ȳ ,
and L̃20 = L̄20Ȳ

−1Y into (35) yields (32).
Similarly, using diag{X1, I,Ξ

TX1, I} and diag{X1, I,X1Ξ, I} to pre-multiply and post-multiply (25)
and letting X1 = P−1

1 , K̄11 = K11X
1
11, K̄21 = K21X

2
11, L̄11 = L11R, L̄21 = L21R̄, L̃11 = L̄11R

−1R̄, and
L̃21 = L̄21R̄

−1R, we can obtain (33). This completes the proof.

Remark 5. According to Theorem 2, the gains of the estimator and sliding mode controller can be
obtained by solving the LMIs (14), (15), (32), and (33) using the linear matrix equality (LME) in (30) and
(31). Nevertheless, solving the LME using the LMI toolbox of MATLAB is rather difficult. Therefore,
using the method proposed in [44], condition (31) can be replaced by the following inequalities:

[

−λI ∗

C1X
1
02 − Y C1 −I

]

< 0,

[

−λI ∗

C2X
2
02 − Ȳ C2 −I

]

< 0, (36)

[

−λI ∗

C1X
1
11 −RC1 −I

]

< 0,

[

−λI ∗

C2X
2
11 − R̄C2 −I

]

< 0, (37)

where λ is a given sufficiently small positive constant. Then, the gain matrices can be solved by deter-
mining the solution to the following convex optimization problem:

min ϑ subject to (15), (16), (34), (35), (38), and (39). (38)
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Algorithm 1 Design algorithm of resilient SMC for 2DSs

1: Given system parameter matrices A,B,C,D in (1) and matrix Gθ in (6);

2: Set up the corresponding parameters ε, α, β, µ, λ,Λ, TA, and TD ;

3: if Eq. (15) is unsatisfied then

4: Return to Step 2;

5: else

6: Set the upper threshold of the time interval Tu;

7: Generate the DoS-A based on Assumptions 1 and 2;

8: end if

9: if a feasible solution to (38) can be obtained, then

10: Calculate the estimator and controller gain matrices Lθ and Kθ in (5) and (6);

11: for h = 1 : Tu do

12: for r = 1 : Tu do

13: Verify the system performance and compute the sliding variable and SMC scheme;

14: end for

15: end for

16: else

17: Output “The convex optimization problem (38) has on solution”;

18: Return to Step 1;

19: end if

3.3 Resilient sliding mode controller design

In this subsection, we focus on the design of the resilient SMC scheme.

Theorem 3. Consider the 2D dynamic process in (1) under DoS-A satisfying Assumptions 1 and 2.
Then, the state trajectories of the SMD (10) can be forced into a neighborhood of the proposed sliding
surface s(h, r) = 0 in (6) and remain in it using the following controller:

u(h, r) = Kθx̂(h, r) − (GθB)−1‖GθLθey(h, r)‖sign(s(h, r)) − (GθB)−1Λs(h, r), (39)

where Λ > 0 is the adjusting matrix.

Proof. For the analysis of reachability, if the following Lyapunov candidate is chosen:

V (s(h, r)) =
1

2
sT(h, r)s(h, r), (40)

then the incremental ∆V (s(h, r)) is ∆V (s(h, r)) = V (s̄(h, r)) − V (s(h, r)) with s̄(h, r) = [ s1(h + 1, r)

s2(h, r + 1)
]. By

combining (6) and (7) with ∆s(h, r) = s̄(h, r)− s(h, r), we obtain

∆V (s(h, r)) =
1

2
s̄T(h, r)s̄(h, r) −

1

2
sT(h, r)s(h, r) =

1

2
[(s̄T(h, r) + sT(h, r))(s̄(h, r) − s(h, r))]

=
1

2
[2sT(h, r) + ∆s(h, r)]∆s(h, r) = sT(h, r)[s̄(h, r)− s(h, r)] +

1

2
∆sT(h, r)∆s(h, r)

=sT(h, r)[GθBu(h, r) +GθLθey(h, r) −GθBKθx̂(h, r) − s(h, r)] +
1

2
∆sT(h, r)∆s(h, r).

(41)

Furthermore, substituting (39) into (41) yields ∆V (s(h, r))6−sT(h, r)(I+Λ)s(h, r)+ 1
2∆sT(h, r)∆s(h, r).

A suitable and sufficiently large Λ matrix can be chosen such that ∆V (s(h, r)) < 0 when s(h, r) is outside a
certain bounded region. Notably, although ∆s(h, r) does not asymptotically tend to zero, it is reasonably
bounded. Therefore, the trajectory of (10) can be driven to a region near the sliding mode surface by
the control law (39) and remains in it thereafter. The proof is completed.

Remark 6. The main steps of SMC design (i.e., sliding surface and SMC law design) have been
accomplished, as indicated by the previously presented results. In Theorem 2, sufficient conditions have
been proposed such that the SMD in (10) exhibits exponential stability and desirable H∞ performance.
Moreover, in Theorem 3, a resilient sliding mode controller has been developed for 2D dynamics under
DoS-A to enforce the trajectories of the system (10) to the designed sliding surface and maintain it all the
time. Compared with the existing research on the SMC problem of 2DSs, the issue of resilient SMC for
2D dynamic processes in the presence of DoS-A is investigated in our work, which is the first to address
the resilient SMC problem of 2DSs under DoS-A.

Furthermore, the design algorithm of resilient SMC for 2DSs is summarized in Algorithm 1.
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Figure 3 (Color online) State responses of the open-loop system.

4 Illustrative example

In this section, we verify the effectiveness of the presented resilient SMC scheme using the following
examples.

Example 1. Consider the 2D dynamic process (1) with

A11 =

[

0.5 0.5

0.01 0.4

]

, A12 =

[

0.6 0.1

0.1 0

]

, A21 =

[

0.45 0.20

0.25 0.30

]

, A22 =

[

0.40 0.05

0.45 0

]

,

B1 =

[

0.1

0.1

]

, B2 =

[

0.1

0.1

]

, C1 =
[

0.03 0
]

, C2 =
[

0.01 −0.01
]

, D1 =

[

0.01

−0.02

]

,

D2 =

[

0.02

0.04

]

, G10 =
[

0.2 0.1
]

, G20 =
[

0.1 0.2
]

, G11 =
[

0.12 −0.1
]

, G21 =
[

−0.1 0
]

.

First, the states of the corresponding open-loop case with the aforementioned parameters are shown in
Figure 3.

In (3) and (4), the parameters of DoS-A are set as TD = 10 and TA = 8. In addition, the scalars
in Theorem 2 are set as ε = 0.4, α = 1.2, β = 5.6, µ = 3, λ = 0.0001, and Λ = 0.2. Then, we obtain

ln(µ)
ln(ε)+ln(β) = 1.3622 < TD

3 ,
ln(α)+ln(β)
ln(ε)+ln(β) = 2.3622 < TA

3 , and ln(ε) + ln(β) = 0.8065 > 0. The corresponding

DoS-A is depicted in Figure 4, where the transmissions are secure as θ = 0, and the attacks occur as
θ = 1.

Furthermore, from Theorem 2, the estimator and controller gain matrices can be designed as follows:

LT
0 =

[

13.1134 0.3776 16.0287 20.8417
]

, LT
1 =

[

8.3448 −5.5255 −0.6877 0.2456
]

,

K0 =
[

−4.0982 −2.4546 −4.7248 −0.9130
]

, K1=
[

−1.0663 −4.5505 −2.8364 −0.9945
]

with the optimal H∞ performance index ϑ∗ = 0.1936. Meanwhile, when the system works in a secure net-
work environment, the corresponding performance index ϑ̄∗ = 0.1229. Notably, the system performance
is degraded under DoS-A.

Then, the BC is set as

x1(1, r) = x2(r, 1) =

{

[rand(1) rand(1)]T, 1 6 r 6 30,

[0 0]T, r > 30.
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Figure 4 (Color online) Switching mechanism under DoS-A.
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Figure 5 (Color online) (a) Trajectories and (b) estimation of the system state.

The external disturbance ω(h, r) is assumed to be white noise with E{ω(h, r)} = 0 and D{ω(h, r)} = 1
when 0 6 h, r 6 15, and ω(h, r) = 0.1 when h, r > 15. The simulation results are shown in Figures 5(a)
and (b). Figure 5(a) plots the state responses of the system. Figure 5(b) depicts the estimation of the
system state. Moreover, Figures 6(a) and (b) show the evolution of the sliding variable s(h, r) and SMC
scheme u(h, r), respectively. Figures 6(a) and (b) illustrate that the proposed control scheme is indeed
effective. In addition, ϑ∗ > ϑ̄∗ indicates that attack resilience is achieved at the cost of H∞ performance
to some extent.

Example 2. In real-world applications, many dynamic procedures, such as infectious disease
forecasting [45], fluid motion [46], and investment securities [47], can be depicted by the Darboux-type
equation:

∂2s(x, t)

∂x∂t
= a0s(x, t) + a1

∂s(x, t)

∂t
+ a2

∂s(x, t)

∂x
+ b1u(x, t) + b0ω(h, r). (42)

Furthermore, inspired by the method employed in [48], the model in (42) can be transformed into a 2D
Roesser model with

A=

[

1 + a1∆x (a0 + a1a2)∆x

∆t 1 + a2∆t

]

, B=

[

b1∆x

0

]

, D=

[

b0∆x

0

]

.

With the choice of coefficients a0 = 2, a1 = 0.1, a2 = −2, b1 = 1, b0 = 1,∆x = 0.1, and ∆t = 0.2, the
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Figure 6 (Color online) (a) Sliding mode surface function s(h, r) and (b) sliding mode controller u(h, r).
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Figure 7 (Color online) State responses of the open-loop system.

system matrices of formula (1) are obtained as follows:

A=

[

1.01 0.18

0.2 0.6

]

, B=

[

0.1

0

]

, D=

[

0.1

0

]

.

Other matrices are designated as C = [ 0.03 0.01 ], G0 = [ 0.2 0.1 ], and G1 = [ 0.12 −0.1 ]. Figure 7

illustrates the state responses of the open-loop case.

Similarly, by setting TD = 10 and TA = 8 and choosing the parameters α = 1.2, β = 2.7, µ = 3, λ =
0.0001, ε = 0.6, and Λ = 0.2, condition (15) is satisfied. The initial condition is set as

x1(1, r) = x2(r, 1) =















rand(1), 1 6 r 6 25,

5e−r, 25 < r 6 30,

0, r > 30,

and ω(h, r) remains the same as the external disturbance in Example 1.

From Theorem 2, we obtain the H∞ performance index ϑ∗ = 0.2663. Furthermore, the parameters of



Li L L, et al. Sci China Inf Sci June 2024, Vol. 67, Iss. 6, 162202:15

−1.0
30

−0.5

0

30

x1
 (
h

, 
r)

20

0.5

r=1,2...

r=1,2...

r=1,2...

r=1,2...

20

h=
1,2...

h=
1,2...

h=
1,2...

h=
1,2...

1.0

−1.0

−0.5

0

x1
 (
h

, 
r)

0.5

1.0

−1.0

−0.5

0
x2

 (
h

, 
r)

0.5

1.0

10
10

0 0

30

3020
20

10
10

0 0

30

3020
20

10
10

0 0

30

3020
20

10
10

0 0

ˆ

−0.5

0

x2
 (
h

, 
r)

0.5

ˆ

(a) (b)

Figure 8 (Color online) (a) Trajectories and (b) estimation of the system state.
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Figure 9 (Color online) (a) Sliding mode surface function s(h, r) and (b) sliding mode controller u(h, r).

the estimator and controller corresponding to the case of ϑ∗ = 0.2663 are calculated as follows:

L0 =

[

33.6667

1.5004

]

, L1 =

[

−1.6485

5.0730

]

, K0 =
[

−10.0243 −1.7739
]

, K1 =
[

−9.9810 −1.3772
]

.

Notably, the optimal H∞ performance index is ϑ∗ = 0.0443 for a secure network environment. More-
over, the verification results are presented in Figures 8(a) and (b), which show the system state and its
estimation, respectively. Figures 9(a) and (b) depict the sliding variable and SMC scheme, respectively.
These results show the effectiveness of the proposed method.

5 Conclusion

In this study, the resilient SMC issue of 2D CPSs encountering DoS-A has been solved. The PL of
CPSs has been described as a 2D Roesser model, and the sensor attack has been discussed. Given that
malicious attacks are not always persistent, the relevant assumptions have been given on the average
frequency and duration of DoS-A. Furthermore, given the DoS-A situation, the underlying system has
been represented as a switched system. Then, by combining the Lyapunov theory of switched systems
and the LMI approach, sufficient criteria have been provided to ensure that the SMD is ES with an
H∞ DAP. Based on the previously obtained results, the resilient SMC law has been established, and the
reachability of the SMD has been analyzed. Finally, the proposed SMC scheme has been validated using
two examples. Future work will include an extension to the problems of security state estimation and
defense-based resilient control for 2D CPSs under malicious attacks.
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