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Abstract Recently, intensive attempts have been made to design robust models for fine-grained visual

recognition, most notably are the impressive gains for training with noisy labels by incorporating a reweighting

strategy into a meta-learning framework. However, it is limited to up or downweighting the contribution of an

instance for label reweighting approaches in the learning process. To solve this issue, a novel noise-tolerant

method with auxiliary web data is proposed. Specifically, first, the associations made from embeddings

of well-labeled data with those of web data and back at the same class are measured. Next, its association

probability is employed as a weighting fusion strategy into angular margin-based loss, which makes the trained

model robust to noisy datasets. To reduce the influence of the gap between the well-labeled and noisy web

data, a bridge schema is proposed via the corresponding loss that encourages the learned embeddings to

be coherent. Lastly, the formulation is encapsulated into the meta-learning framework, which can reduce

the overfitting of models and learn the network parameters to be noise-tolerant. Extensive experiments are

performed on benchmark datasets, and the results clearly show the superiority of the proposed method over

existing state-of-the-art approaches.

Keywords label associated loss, weighting noisy samples, fine-grained visual recognition, noise-tolerant

learning, meta-learning

1 Introduction

Fine-grained visual analysis (FGVA) has garnered more and more attention in both academia and industry
in the fields of image recognition, image retrieval, and image generation [1–7]. The objective of FGVA
is to learn objects with subordinate categories, for example, species of dogs or models of cars [8]. It is a
demanding task because of the fine-grained nature of small interclass and large intraclass variations [9].
Deep learning has been successfully implemented in FGVA, and fully supervised deep learning models
can realize a promising performance with massive well-labeled data [10–12]. However, well-labeled fine-
grained domain data are costly and limited, which inspires us to incorporate auxiliary web data into the
weakly supervised setting.

Furthermore, exploiting side information is an effective approach to enhancing model performance,
and web-supervised learning has also been explored for different tasks via incorporating web data into
the trained model, such as visual categorization [4,13–15], domain adaptation [16], and data argumenta-
tion [17,18]. The inspiration behind introducing web data arises from the need to increase the fine-grained
dataset with a larger and more diverse set of images. Web data offers a vast number of images that cover
a wide range of variations. Although web data naturally include ground noise due to the lack of pre-
cise labeling, they can still be valuable in complementing well-labeled fine-grained datasets. As opposed
to earlier investigations [19, 20], which mostly filter or remove noisy images among web datasets, these
web data are treated as part of training data. Moreover, a previous study [21] suggested that it is not
imperative to clean the web data as the amount is large. Therefore, coupling noisy label learning with
fine-grained learning is very meaningful and saves much time in annotating a large amount of unlabeled
data.
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Learning with noisy labels has been proposed for visual analysis [22–26]. Strategies that utilize regular-
ization techniques include weight decay [27], dropout [28], adversarial training [3], and maximum-entropy
training [29]. However, they do not explicitly deal with noisy labels. Moreover, the noise transition
matrix has been incorporated into deep neural networks (DNNs) [30], but this does not carefully address
the fine-grained nature of the DNN. The objective of these approaches is to leverage the complementary
strengths of both the well-labeled dataset and the web data to solve the label noise problem in fine-grained
visual recognition. Reducing the influence of the gap between these two types of data could reduce the
impact of label noise.

Meta-learning has been successfully utilized for many applications, including hyperparameter tuning,
optimizer learning, adaptation to new tasks, and neural architecture search. Instance reweighting can
be learned by developing an optimization problem of the main model, and it allows the main model to
communicate with each other, and a better model can be learned [31]. However, one of the restrictions of
label reweighting is that it is limited to up or downweighting the contribution of an instance in the meta-
learning process: (1) it is effective for estimating or measuring the possibility of samples, and it produces
promising results to some extent. On the other hand, estimating sample weights usually depends on extra
knowledge; (2) learning with noisy labeled datasets based on deep networks causes degradation of model
performance because they may easily overfit label noise and training set biases. This work leverages
instance reweighting and meta-learning to learn with noisy labels.

In this work, a noise-tolerant method is proposed using auxiliary web data. Specifically, two noise-
tolerant strategies are designed to enhance the robustness of models from input data to classification:
(1) measuring the associations that make from embeddings of well-labeled data to those of web data and
back at the same class, and (2) using its association probability as a weighting strategy into angular
margin-based loss (AM loss), which makes the trained model robust to noisy datasets. Also, a bridge
schema is proposed via the corresponding loss that encourages the learned embeddings to be coherent
between well-labeled and web data, thereby reducing the influence of the gap between well-labeled and
noisy web data. Finally, the formulation of the method is well encapsulated in a meta-learning framework
that can reduce model overfitting during the conventional update and learn the network parameters to
be noise-tolerant. Furthermore, the updated model (student model), aided by the teacher model, is
constructed using a self-assembling method and yields consistent predictions.

Recently, AM losses have explored the intrinsic consistency with Softmax loss, which realizes promising
results. Also, incorporating a weighting strategy into AM loss realizes a robust performance. The
proposed association schema is utilized in weighted AM loss during the training phase, and the proposed
model can reduce the effect of noisy data by adaptively adjusting the instance weights. In addition,
instead of designing a specific model to clean noisy labels, a meta-learning-based noise-tolerant method
is proposed to train with noisy labeled data. The main contributions of this work can be summarized as
follows:

(1) A novel noise-tolerant method is proposed using auxiliary web data for fine-grained visual recog-
nition. The designed association and bridge schemes make our algorithm robust to noisy labels, thereby
reducing the influence of the gap between well-labeled and web data.

(2) The developed model is expressed as a meta-objective, which is robust to noisy labels by adap-
tively learning the updated models. Also, the teacher-student training paradigm generates consistent
predictions.

(3) A novel instance reweighting fusion strategy is proposed, which allows the example weights learning
and the main model to share with each other and a better model to be learned.

(4) The experimental study on benchmark datasets shows that the developed method is effective and
realizes state-of-the-art results against the existing FGVA models.

This paper is structured as follows. Section 2 presents the related literature. Section 3 highlights the
framework for the noise-tolerant method. Section 4 provides the extensive experiments and analysis.
Sections 5 makes the discussions of our proposed work. Finally, the conclusion and future directions are
highlighted in Section 6.

2 Related work

This work is closely associated with studies on weakly supervised learning and training with noisy data.
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2.1 Weakly supervised fine-grained categorization

Recently, weakly supervised FGVA has been extensively explored [4, 5, 14, 32–35]. Several FGVA algo-
rithms have been put forward for image analysis, such as image recognition [36], image retrieval [2],
and image generation [3]. For instance, Zhang et al. [14] eliminated the irrelevant examples and em-
ployed highly informative examples for training and updating networks. Xu et al. [5] developed a
discrimination-aware mechanism incorporated into proxy-based and pair-based losses for fine-grained
representation learning. The method by [32] solves the issues of discriminative region diffusion, and an
efficient feature-oriented model is proposed for fine-grained visual recognition. In [33], they exploited the
region correlations of images and suggested a graph-propagation-based learning model for weakly super-
vised fine-grained recognition. To this end, many deep learning-based methods have been investigated to
utilize fine-grained feature representation.

However, most of the FGVA methods have been learned from well-labeled clean datasets [37–39]. For
noisy datasets, many methods deal with noisy labels, for instance, learning with noisy data [24, 40],
learning with web data [4, 13, 17], and noise-tolerant learning [41–43]. The commonality between them
is that they attempt to enhance the model’s robustness. For instance, the method by [34] is a data
augmentation method for the FGVA algorithm. However, there is a gap between well-labeled and web
data due to no coherence between these two types of data. Moreover, the model tends to overfit the label
noise from web data resulting from long-term training, and many DNN-based regularization tricks do
not work well, such as weight decay and early stopping. Our developed method can learn with noisy web
data. Furthermore, we describe the objective in a meta-learning framework that is noise-tolerant and can
adaptively update the parameters during the training process. Our work attains comparable results on
different datasets.

2.2 Training with noisy data

Web data certainly include considerable noise. Weighting training samples is a well-known method for
learning with noisy datasets and has been applied for training DNN models [27, 44–46]. For instance, Li
et al. [47] employed the knowledge graph to reduce the effect of noisy data. Han et al. [48] considered the
structure prior and derived a probabilistic model for training with noisy samples. Also, incorporating the
weighting strategy into deep networks has reached robust performance, and many different paradigms
have been suggested for analysis, such as curriculum learning, MentorNet, and co-teaching. For instance,
Ren et al. [27] designed a meta-learning-based method for weighting samples. Shu et al. [44] built a loss
for learning weight in natural language processing tasks. To this end, incorporating a sample weighting
strategy into deep network models exhibits promising performance on different tasks. However, it is a
challenge to better incorporate the weighting training samples into deep networks. In this approach, the
estimation is simplified, and the association probability is measured, which demonstrates that the learned
embeddings are coherent between the web and the well-labeled datasets. The proposed association schema
is utilized in weighted AM loss during the training phase and can reduce the effect of noisy examples by
adaptively adjusting the instance weights.

In recent years, meta-learning methods for DNNs have shown promising performance [49–53]. The
benefits of meta-learning include learning the robust network parameters and reducing overfitting during
the conventional update. Normally, the noise-tolerant setting of meta-learning has two formulations:
learning robust update rules [52] and finding good weight initializations [54]. The objective of these ap-
proaches is to learn the better parameters of the model from both the well-labeled and web datasets. Our
method and traditional model-agnostic meta-learning (MAML) [54] belong to model-agnostic. However,
unlike traditional MAML, our approach could be noise-tolerant when performing gradient updates on
metatasks. Also, MAML trains the objective loss of the classification model on the metatest set, while
our method employs a consistency loss by building the teacher and student network. Moreover, the
teacher-student framework is utilized for training the student model on metatest data, which could be
more tolerant of noisy labels. To the best of our knowledge, little work has been performed on fine-grained
visual recognition.
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Figure 1 (Color online) Illustration of the proposed noise-tolerant method.

3 The proposed method

Given the web dataset Dw = {(xw
i , y

w
i )}

Nw

i=1 and well-labeled dataset Ds = {(x
s
j , y

s
j )}

Ns

j=1, where Ns (Nw)
is the number of well-labeled (web) images. Each image xs

j (x
w
j ) has the tag ysj (ywj ) and the number of C

classes. Note that the image xw
j has the tag ywj , which is assigned by the keyword used to search websites.

The combined datasets D = {(xk, yk)}
N
k=1, where N = Ns + Nw and each image has an indicator tag

In, which shows whether xk comes from a well-labeled dataset (In = 1) or a web dataset (In = 0). The
objective of this method is to design a robust model on the well-labeled dataset Ds via incorporating the
abundant web dataset Dw ⊂ D.

In the following, the association schema, angular margin-based loss, bridge schema, and meta-learning
of our proposed method will be introduced. Figure 1 displays an illustration of our proposed method.
Before training on the conventional classification loss, a meta-loss is minimized for each minibatch of
training data. To produce synthetic label noise resembling the original data’s distribution, multiple
minibatches with symmetric and asymmetric label noise (marked as the yellow arrow) are produced
to preserve the underlying noise conditions. For each synthetic minibatch, the parameters are updated
using gradient descent, and the updated model is needed to generate predictions consistent with a teacher
model. The overall objective is to minimize consistency loss across all updated models with respect to θ.

Association schema. A general assumption behind association probability is that good embeddings
will have high similarity if they are of the same class [28]. A batch of web and a batch of well-labeled
examples are fed into the convolutional neural network (CNN), leading to embedding vectors (Ew and
Es). The objective of this proposed method is to optimize the parameters of a CNN that produces good
embeddings and utilizes both well-labeled and web data. Computation traversing is conducted from Es

to Ew based on the mutual similarities and back. The transition obeys a probability distribution acquired
from the similarity of its corresponding embeddings, which we refer to as an association. The association
schema measures the probability from Es to Ew and back to Es, ending in the same class. This results
in the measurement of the weight of the instance, which is incorporated into the angular margin-based
loss later.

Definition 1. The similarity between embeddings Es and Ew is defined as

Mij := Es
i ·E

w
j , (1)

where Es and Ew indicate the matrices whose rows index the instances in the batches, and the similarity
measurement, such as Euclidean distance, can generally be replaced by any other similarity metric.

Definition 2. The probabilities from Es to Ew by Softmaxing M over columns are

P sw
ij = P (Ew

j |E
s
i ) := (Softmaxcols(M))ij

= exp(Mij)

/

∑

j′

exp(Mij′ ).
(2)
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Algorithm 1 Learning to reweight examples

1: Initialize: Randomly initialize θ, ℓc = ℓ, well-labeled web data Ns, Nw, n,m.

2: repeat

3: Randomly sample batch data (Ns, n) of size n from Ns;

4: Randomly sample batch data (Nw, m) of size m from Nw;

5: Forward((Ns, n), (Nw,m), θ);

6: Calculate the association probability P sws;

7: Calculate the weighted AM loss ℓc;

8: Backward(ℓc, θ);

9: until Stopping criteria are met.

Therefore, the association probability of starting at Es
i and ending at Es

j is

P sws
ij = (P swPws)ij =

1

K

∑

k

P sw
ik Pws

kj , (3)

where K means the number of total associations. Note that this probability is the average of the associa-
tion probabilities, which produces the best results in our experiments. Other variations of this probability
can be exploited and result in the extension of this work.

Angular margin-based loss. Incorporating the weight fusion strategy into AM loss has demon-
strated robust classification, such as face recognition [41]. However, it is difficult and complex to estimate
and seamlessly incorporate the weights into the models. In our approach, the estimation is simplified,
and the association probability is measured, which indicates that the learned embeddings are coherent
between the web and the well-labeled dataset. To this end, the association schema is treated as a weight-
ing strategy for AM loss. To shed light on the idea of weighting AM loss, first, the standard Softmax loss
is given:

ℓ = −
1

T

T
∑

i=1

log
eW

T
yi

xi+byi

∑C

j=1 e
WT

j
xi+bj

, (4)

where b indicates the bias, Wj refers to the j-th column of weights W of the layers, xi and yi refer to
the i-th image with the label yi, and T and C refer to batch size and class number, respectively. In most
AM losses, the bias bj = 0 and ‖Wj ‖= 1 are set, and then the target logit is obtained using

W
T
j xi = ‖xi‖ cos θi,j , (5)

where θi,j means the angle between xi and Wj . Then, ‖xi‖ = s is set as a fixed value, and the traditional
Softmax loss can be represented as

ℓ = −
1

T

T
∑

i=1

log
es cos θi,yi

∑C
j=1 e

s cos θi,j
. (6)

Lastly, the association probability pk of the association schema as a weighted strategy is implemented to
the following equation:

ℓc = −
1

T

T
∑

k=1

log
epks cos θk,yk

∑C
j=1 e

pks cos θk,j

. (7)

This Softmax loss function is merged into the bridge schema. In our proposed model, the weighting
fusion skills are leveraged to calculate the gradients of loss or estimate the instance weights of the current
batch. A detailed pseudocode is presented in Algorithm 1. Note that this implementation is general and
can be extended to any deep learning model and other frameworks based on current packages.

Bridge schema. Learning the parameters θ = {θf , θc} from both the web and well-labeled datasets
based on a DNN, e.g., CNN, where θf means the parameters of feature learning and θc refers to the
parameters of a classifier that supports the C-way fashion, in which C is the number of categories.
Moreover, the influence of noisy labels is considered from web data because they would cause performance
degradation due to training loss that may overfit the label noise. Thus, AM loss is used, which is presented
above. To construct a connection between the web and well-labeled datasets, a bridge schema is developed,
which optimizes the learning representation θf via incorporating a domain classifier to maximize the loss
ℓs. Therefore, the logistic function can be defined for the domain classifier as follows:

g(x, θs, θf ) =
1

1 + e−{θs,θf}Tx
, (8)
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where θs means the parameters of its source classification. Then, the formulation of the domain classifi-
cation is defined, where its log-likelihood loss function can be represented as

ℓs(I; g(x, θs, θf )) =

m
∑

i=1

−Ii log(g(x, θs, θf ))

− (1− Ii) log(1 − g(x, θs, θf )),

(9)

where Ii refers to the input images from a web dataset (Ii = 0) or a well-labeled dataset (Ii = 1) and m is
the minibatch size. The main idea behind the corresponding loss is that it can reduce the gap between the
web and well-labeled datasets. To go a step further, this means that our model can differentiate whether
the images come from the web or from well-labeled sources. Specifically, if the model can recognize the
image source, the loss ℓs will decrease. Otherwise, the loss will increase when the model has difficulties
recognizing whether the images come from the web or a well-labeled dataset. The objective of our method
is to minimize the joint loss function, as shown below:

Lθ(θf , θc, θs) = ℓc − λℓs. (10)

Meta-learning. Meta-learning is the process of learning to learn and contains the metatraining and
metatest phases. In the training process, a minibatch of data (X,Y ), where X = {x1, . . . ,xk} and the
corresponding labels Y = {y1, . . . , yk}, are sampled from various web datasets. Multiple minibatches

{Ŷ1, . . . , ŶM} are generated. Subsequently, these batch data are used to update θ via gradient descent.

θ
′
m = θ − α∇θLθ(X, Ŷm, θ), (11)

where α is the step size and Lθ(X, Ŷm, θ) means the combined loss defined in (10).
In the metatest phase, to adapt the multiple web applications, the meta-objective is to train θ for

each batch of data. For this purpose, we focus on the self-assembling method proposed by Tarvainen &
Valpola [55] because it serves as one of the foundations of our approach. It builds a teacher model to
enhance consistent predictions. Two networks are introduced: a student network and a teacher network.
The weights from the teacher network are determined by the exponential moving average (EMA) of the
weights from the student network. The student network is trained to produce predictions consistent with
the teacher network. In our proposed method, the teacher network is employed during metatesting to
train the student network, improving its ability to effectively handle label noise.

Specifically, the EMA method [56] is used to calculate the parameters of the teacher model. Given

the parameters of the student model θ and those of the teacher model θ̂, the performance of the teacher
model is superior to that of the student model. At each training step, the update step can be expressed
as

θ̂ = γθ̂ + (1− γ)θ, (12)

where γ refers to a smoothing coefficient hyperparameter. The model enforces a consistency loss J (θ′m)
that encourages the updated model to provide robust predictions using the teacher model, which learns
from clean, well-labeled data. Kullback-Leibler (KL) divergence is introduced to calculate the difference

between the teacher model f(X, θ̂) and Softmax predictions from the updated model f(X, θ′m).

J (θ′m) =
1

k

k
∑

i=1

DKL(f(xi, θ̂)||f(xi, θ
′
m))

=
1

k

k
∑

i=1

E(log(f(xi, θ̂))− log(f(xi, θ
′
m))).

(13)

Because we have different web datasets, consistency loss can be minimized via the parameters {θ′1, . . . ,
θ
′
M} from M updated models. Therefore, the average of all losses is defined as meta-loss:

Lmeta(θ) =
1

M

M
∑

m=1

J (θ′m),

s =
1

M

M
∑

m=1

J (θ − α∇θLθ(X, Ŷm, θ)).

(14)
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Algorithm 2 Noise-tolerant method based on meta-learning

1: Initialize: Randomly initialize θ, teacher model θ̂ = θ;

2: repeat

3: Sample some k sizes of batch data (X,Y ) from D;

4: for m = 1 : M do

5: Update the parameters with gradient descent:

6: θ
′ = θ − α∇θLc(X,Ym, θ);

7: Compute the consistency loss with the teacher model:

8: J (θ′

m) = 1
k

k∑

i=1

DKL(f(x̂i, θ̂)||f(xi, θ
′

m));

9: end for

10: Compute Lmeta(θ) = 1
M

∑M
m=1 J (θ′

m);

11: Update by meta-learning θ ← θ − η∇Lmeta(θ);

12: Compute the classification loss Lθ(X,Y , θ);

13: Update θ ← θ − β∇Lθ(X,Y , θ);

14: Update the teacher model: θ̂ = γθ̂ + (1− γ)θ;

15: until Stopping criteria are met.

Stochastic gradient descent (SGD) is performed to minimize meta-loss. The parameters θ of the student
model can be updated as follows:

θ ← θ − η∇Lmeta(θ), (15)

where η is the meta-learning rate. Taking the update from the meta-learning, we can use the original
minibatches (X,Y ) to optimize the classification loss via SGD:

θ ← θ − β∇Lθ(X,Y , θ), (16)

where β is the learning rate of the model. Algorithm 2 is shown above.
For the metagradient ∇Lmeta(θ), it involves a gradient via gradient. In this case, the second-order

derivatives are needed to be calculated regarding θ. From the experimental results, we can reduce the
computation complexity via the approximation method. As an example of this method [17], the first-order

approximation is employed by omitting the second-order derivatives. Thus, the term α∇θLθ(X, Ŷm, θ) in

(14) can be treated as a constant for the first-order approximation. Finally, the update θ−α∇θLθ(X, Ŷm,

θ) can be treated as data-dependent noise, and it will regularize the model network during training.
Extensions. There are two potential extensions that we would like to try. The first is the ensemble

technique, which can be incorporated into the student and teacher model to minimize the loss and improve
the consistency loss, making it more effective.

J (θ′m) =
1

k

k
∑

i=1

DKL(c||f(xi, θ
′
m)), (17)

where c is the ensemble teacher (mentor) models. The second is active learning or label editing techniques,
which mean to choose the wrong labels based on the loss function. For instance, we can remove the samples
when the model reflects low confidence in its corresponding label. Then, the sampled batch data D′ will
have high quality, and the filtered training set is defined as follows:

D′ = (xi, yi) ∈ D|yi · f(xi, θ
∗). (18)

4 Experimental study

First, benchmark and large-scale datasets are introduced, which are commonly used in fine-grained vi-
sual tasks. Then, many baselines are compared and empirical results are shown for some parameters that
influence our proposed method, including analyses of the effects of some hyperparameters and represen-
tation coherence. Moreover, the effect of the weighting strategy and learning with auxiliary web data is
examined. Finally, the effect on different network structures is studied, and an ablation analysis of the
model is performed.

4.1 Datasets and evaluation setup

The well-labeled datasets consist of four typical datasets used in the fine-grained classification task. The
CUB-200-2011 dataset has 11788 images of 200 bird species. The Stanford Dogs dataset has 20580
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Table 1 Characteristics of datasets

Dataset Object #Category #Training #Testing

CUB-200-2011 Birds 200 5994 5794

Stanford Dogs Dogs 120 12000 8580

FGVC-Aircraft Aircraft 100 6667 3333

MIT Indoor 67 Indoors 67 12496 3124

iNat Species 5089 579184 95986

annotated images of dogs belonging to 120 species. The FGVC-Aircraft dataset has 10000 images of
aircraft with 100 categories and is organized in a three-level hierarchy. The MIT Indoor 67 dataset has
67 indoor categories and 15620 images [57]. In our training, three extensive web datasets introduced
by [18] are used, and these datasets are built by retrieving images from Google, Flickr, and Twitter
through keyword searches, where the keywords align with the category labels found in public datasets.
Then, images relevant to the respective classes are selected from the search results as web data. In
practice, it is difficult for some datasets to crawl the web data because the names of scenes are very
similar to the category names. For instance, the MIT Indoor 67 datasets are labeled with an additional
“indoor” or “outdoor” category, which makes it very difficult to correct the web data based on its semantic
meanings. For these four benchmark fine-grained classification datasets, 11788 bird images, 22000 dog
images, 10000 aircraft images, and 15620 indoor scene images were separately collected. The test data
certainly come from the original standard data in the following experiments.

For large-scale fine-grained visual recognition, the iNaturalist 2017 (iNat) dataset is employed in the
visual recognition task. The iNat dataset has 675170 training and validation images from 5089 natural
fine-grained categories. These categories belong to 13 supercategories, including Plant’s categories, Insect,
Bird, and Mammal. Using the same setting as the benchmark datasets, the same amount of data is
collected as the training data. Table 1 summarizes the characteristics of the datasets.

Compared algorithms. Classification comparisons are conducted with state-of-the-art methods on
four benchmark and one large-scale fine-grained datasets. Also, different CNN models are tested using
our proposed method, such as AlexNet, CaffeNet, VggNet, and ResNet50. In the literature, a pretrained
model with a finetuning strategy has shown promising results. Therefore, we also adopted these tricks in
our experiments to train the initial models on both web and standard datasets.

To compare algorithms, we can classify the three classes from these baselines, i.e., noisy label learn-
ing baselines, webly-supervised learning baselines, and weakly supervised learning baselines. Among
these baselines, webly-supervised learning baselines can use web images, whereas other baselines can-
not incorporate auxiliary classes. In addition, to better augment the web data, the web datasets are
processed according to methods and tools that can align the distribution of categories. For noisy la-
bel learning baselines, we use the methods of designed robust loss functions [22, 58], adversarial train-
ing [19, 49, 59], and meta-learning [23, 42]. For web-supervised learning baselines, we compared the
following approaches: [4, 13, 16, 17, 34, 60]. The training data from the web source are treated as the
source domain, while the test data from the web source are treated as the target domain. For weakly
supervised learning baselines, we use the methods [21, 32–34, 36, 39, 60], and some of which cannot be
directly adapted into our setting. We utilize several robust loss or weighting strategies and meta-learning
frameworks.

For fair comparison, multimodal information is not used. We compensate the networks of dynamic
MLP with various current fusion strategies, i.e., concatenation, addition, and multiplication, by augment-
ing the web data. Regarding the experiments performed on benchmark datasets, the dynamic MLP-C
architecture is used, with fixed channel dimension and stage number set to the optimal configurations
(d= 256, h= 64, N= 2). This selection remains consistent across all our experiments.

Evaluation setup. Our models are based on the TensorFlow framework and trained on NVIDIA
TITAN X GPUs. ReLU is adopted into our architecture, and different network structures are used as our
fully connected (FC) layer. Specifically, AlexNet, CaffeNet, and VggNet-16 hold for 4096-4096-2 hidden
units, while we add an additional FC layer with two hidden units for ResNet50. We set different sizes of
the minibatch for CaffeNet (m = 64), AlexNet (m = 64), VggNet (m = 32), and ResNet50 (m = 12).
We set the start of the learning rate as 0.001 for the bird, dog, and aircraft datasets and 0.0001 for the
indoor scene dataset. We reduced the learning rate after 25000 iterations of training. The parameters
of our proposed method will be discussed in Subsection 4.5. We also set the maximum iteration number
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Table 2 Comparison with various baselines trained with symmetric label noise ratio 0.1a)

CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Fu et al. 2017 [36] 85.08 Krause et al. 2016 [22] 80.18 Fu et al. 2017 [36] 92.01 Dixit et al. 2015 [61] 72.03

Zheng et al. 2017 [62] 85.97 Fu et al. 2017 [36] 85.27 Zheng et al. 2017 [62] 92.03 Guo et al. 2016 [63] 83.02

Dubey et al. 2018 [29] 84.67 Dubey et al. 2018 [39] 83.53 Dubey et al. 2018 [39] 91.96 Herranz et al. 2016 [57] 80.28

Xu et al. 2018 [16] 84.17 Niu et al. 2018 [13] 83.62 Wang et al. 2018 [37] 92.10 Lin et al. 2017 [10] 77.93

Niu et al. 2018 [13] 84.23 Sun et al. 2019 [17] 84.66 Sun et al. 2019 [17] 92.89 Sun et al. 2019 [17] 78.87

Zheng et al. 2019 [64] 78.32 Hu et al. 2019 [34] 86.08 Hu et al. 2019 [34] 91.67 Hu et al. 2019 [34] 83.26

Liu et al. 2020 [58] 87.16 Liu et al. 2020 [58] 88.47 Liu et al. 2020 [58] 93.09 Liu et al. 2020 [58] 84.38

Sun et al. 2021 [4] 87.39 Sun et al. 2021 [4] 83.88 Sun et al. 2021 [4] 92.41 Sun et al. 2021 [4] 84.89

Yang et al. 2022 [65] 87.92 Yang et al. 2022 [65] 89.18 Yang et al. 2022 [65] 92.75 Yang et al. 2022 [65] 84.98

Li et al. 2023 [66] 87.89 Li et al. 2023 [66] 88.73 Li et al. 2023 [66] 92.43 Li et al. 2023 [66] 85.02

Ours 88.23 Ours 90.15 Ours 93.36 Ours 86.25

a) Best results are marked in bold.

Table 3 Comparison with various baselines trained with symmetric label noise ratio 0.3a)

CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Fu et al. 2017 [36] 82.15 Krause et al. 2016 [22] 77.36 Fu et al. 2017 [36] 89.55 Dixit et al. 2015 [61] 69.68

Zheng et al. 2017 [62] 84.02 Fu et al. 2017 [36] 82.88 Zheng et al. 2017 [62] 89.47 Guo et al. 2016 [63] 79.73

Dubey et al. 2018 [29] 81.95 Dubey et al. 2018 [39] 82.77 Dubey et al. 2018 [39] 90.02 Herranz et al. 2016 [57] 78.16

Xu et al. 2018 [16] 81.86 Niu et al. 2018 [13] 81.27 Wang et al. 2018 [37] 89.26 Lin et al. 2017 [10] 76.42

Niu et al. 2018 [13] 81.62 Sun et al. 2019 [17] 81.93 Sun et al. 2019 [17] 90.68 Sun et al. 2019 [17] 77.05

Zheng et al. 2019 [64] 76.04 Hu et al. 2019 [34] 83.78 Hu et al. 2019 [34] 88.79 Hu et al. 2019 [34] 80.94

Liu et al. 2020 [58] 84.27 Liu et al. 2020 [58] 86.33 Liu et al. 2020 [58] 91.08 Liu et al. 2020 [58] 81.86

Sun et al. 2021 [4] 85.11 Sun et al. 2021 [4] 82.04 Sun et al. 2021 [4] 90.37 Sun et al. 2021 [4] 82.26

Yang et al. 2022 [65] 86.90 Yang et al. 2022 [65] 86.83 Yang et al. 2022 [65] 90.75 Yang et al. 2022 [65] 82.89

Li et al. 2023 [66] 86.54 Li et al. 2023 [66] 86.16 Li et al. 2023 [66] 90.47 Li et al. 2023 [66] 82.72

Ours 86.98 Ours 88.05 Ours 91.08 Ours 84.17

a) Best results are marked in bold.

to 220000 because this setting would result in the convergence of the model. We use ResNet50 as the
default setting.

Two types of label noise are added: symmetric and asymmetric. Symmetric label noise employs typical
uniform noise scenarios, and a one-hot vector is randomly injected to substitute the ground-truth label
of a sample with a probability of r. The asymmetric label noise incorporates the notion that each label
has a chance of being flipped to the next class, with a probability of r. The aim of this design is to mimic
the structural characteristics of the genuine errors observed in related classes, for instance, dog→cat,
horse→deer, automobile→truck, aircraft→bird. The parameterization of label transitions, denoted by
r ∈ [0, 1], assigns a probability of 1–r to the true class and a probability of r to the wrong class. The
experiments were repeated 10 times. The average classification performance is recorded with different
ratios.

4.2 Comparing with various baselines

The proposed method is compared with other state-of-the-art approaches on four public datasets. Note
that the comparison methods utilize the same auxiliary web data. Tables 2–7 [4, 13, 16, 17, 22, 29, 34, 36,
37, 39, 57, 58, 61–66] list the results for symmetric and asymmetric label noise, demonstrating that the
proposed method has better performance than the compared approaches. In Table 2, the methods of [17]
and [4] also incorporate the web data, but their algorithms may result in performance degradation and
overfit to the label noise. Our two-level noise-tolerant strategy plays an important role in enhancing the
model’s performance. On the one hand, the association mechanism makes our input data robust to noisy
labels. On the other hand, incorporating the association mechanism into AM loss makes the proposed
algorithm perform noise-tolerant classification. Compared with the method of [34], the methods of [58]
and [5] propose the data augmentation network and contain the step of generating attention maps to
represent the object’s discriminative parts. However, poor accuracy in the first step would result in poor
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Table 4 Comparison with various baselines trained with symmetric label noise ratio 0.5a)

CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Fu et al. 2017 [36] 78.25 Krause et al. 2016 [22] 72.40 Fu et al. 2017 [36] 86.52 Dixit et al. 2015 [61] 65.44

Zheng et al. 2017 [62] 80.15 Fu et al. 2017 [36] 78.56 Zheng et al. 2017 [62] 86.02 Guo et al. 2016 [63] 76.87

Dubey et al. 2018 [29] 77.62 Dubey et al. 2018 [39] 77.92 Dubey et al. 2018 [39] 86.02 Herranz et al. 2016 [57] 74.38

Xu et al. 2018 [16] 78.06 Niu et al. 2018 [13] 76.78 Wang et al. 2018 [37] 86.53 Lin et al. 2017 [10] 73.34

Niu et al. 2018 [13] 78.27 Sun et al. 2019 [17] 78.05 Sun et al. 2019 [17] 86.77 Sun et al. 2019 [17] 74.26

Zheng et al. 2019 [64] 72.93 Hu et al. 2019 [34] 77.80 Hu et al. 2019 [34] 87.63 Hu et al. 2019 [34] 75.24

Liu et al. 2020 [58] 80.82 Liu et al. 2020 [58] 82.76 Liu et al. 2020 [58] 87.35 Liu et al. 2020 [58] 78.61

Sun et al. 2021 [4] 81.92 Sun et al. 2021 [4] 80.75 Sun et al. 2021 [4] 88.11 Sun et al. 2021 [4] 79.82

Yang et al. 2022 [65] 86.15 Yang et al. 2022 [65] 86.22 Yang et al. 2022 [65] 89.68 Yang et al. 2022 [65] 82.03

Li et al. 2023 [66] 85.93 Li et al. 2023 [66] 85.27 Li et al. 2023 [66] 88.86 Li et al. 2023 [66] 82.08

Ours 87.10 Ours 87.48 Ours 90.85 Ours 84.71

a) Best results are marked in bold.

Table 5 Comparison with various baselines trained with asymmetric label noise ratio 0.1a)

CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Fu et al. 2017 [36] 85.12 Krause et al. 2016 [22] 80.25 Fu et al. 2017 [36] 92.26 Dixit et al. 2015 [61] 72.70

Zheng et al. 2017 [62] 86.31 Fu et al. 2017 [36] 85.93 Zheng et al. 2017 [62] 92.54 Guo et al. 2016 [63] 83.62

Dubey et al. 2018 [29] 84.92 Dubey et al. 2018 [39] 85.68 Dubey et al. 2018 [39] 93.02 Herranz et al. 2016 [57] 81.02

Xu et al. 2018 [16] 84.78 Niu et al. 2018 [13] 83.82 Wang et al. 2018 [37] 92.76 Lin et al. 2017 [10] 78.92

Niu et al. 2018 [13] 84.52 Sun et al. 2019 [17] 84.97 Sun et al. 2019 [17] 93.60 Sun et al. 2019 [17] 79.59

Zheng et al. 2019 [64] 78.93 Hu et al. 2019 [34] 86.92 Hu et al. 2019 [34] 92.15 Hu et al. 2019 [34] 84.38

Liu et al. 2020 [58] 87.65 Liu et al. 2020 [58] 89.15 Liu et al. 2020 [58] 94.17 Liu et al. 2020 [58] 85.27

Sun et al. 2021 [4] 88.27 Sun et al. 2021 [4] 85.02 Sun et al. 2021 [4] 93.14 Sun et al. 2021 [4] 86.08

Yang et al. 2022 [65] 87.95 Yang et al. 2022 [65] 89.40 Yang et al. 2022 [65] 92.89 Yang et al. 2022 [65] 85.16

Li et al. 2023 [66] 87.78 Li et al. 2023 [66] 89.12 Li et al. 2023 [66] 92.83 Li et al. 2023 [66] 84.97

Ours 88.50 Ours 90.37 Ours 93.75 Ours 87.00

a) Best results are marked in bold.

Table 6 Comparison with various baselines trained with asymmetric label noise ratio 0.3a)

CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Fu et al. 2017 [36] 82.69 Krause et al. 2016 [22] 77.89 Fu et al. 2017 [36] 90.02 Dixit et al. 2015 [61] 70.18

Zheng et al. 2017 [62] 84.05 Fu et al. 2017 [36] 83.38 Zheng et al. 2017 [62] 89.87 Guo et al. 2016 [63] 80.19

Dubey et al. 2018 [29] 82.29 Dubey et al. 2018 [39] 83.15 Dubey et al. 2018 [39] 90.47 Herranz et al. 2016 [57] 78.56

Xu et al. 2018 [16] 82.25 Niu et al. 2018 [13] 81.62 Wang et al. 2018 [37] 90.04 Lin et al. 2017 [10] 77.12

Niu et al. 2018 [13] 81.95 Sun et al. 2019 [17] 82.25 Sun et al. 2019 [17] 91.20 Sun et al. 2019 [17] 77.18

Zheng et al. 2019 [64] 76.66 Hu et al. 2019 [34] 84.37 Hu et al. 2019 [34] 90.06 Hu et al. 2019 [34] 81.75

Liu et al. 2020 [58] 84.88 Liu et al. 2020 [58] 86.78 Liu et al. 2020 [58] 92.05 Liu et al. 2020 [58] 83.14

Sun et al. 2021 [4] 86.37 Sun et al. 2021 [4] 82.76 Sun et al. 2021 [4] 91.92 Sun et al. 2021 [4] 83.11

Yang et al. 2022 [65] 86.93 Yang et al. 2022 [65] 86.90 Yang et al. 2022 [65] 91.02 Yang et al. 2022 [65] 83.05

Li et al. 2023 [66] 86.72 cLi et al. 2023 [66] 86.10 Li et al. 2023 [66] 90.15 Li et al. 2023 [66] 82.57

Ours 87.85 Ours 88.97 Ours 92.26 Ours 85.39

a) Best results are marked in bold.

performance in classification. Our meta-learning framework reduces the overfitting of models and learns
the network parameters to be noise-tolerant. The same phenomenon as with the other symmetric label
noise is shown in Tables 3 and 4. The results for these datasets offer the overall performance of our
method versus the baselines. In the below experiments, the accuracy is recorded with different noise
ratios.

Tables 5–7 present the comparison results with asymmetric label noise (noise ratio r = 0.1, 0.3, 0.5).
The performance of our proposed method also exhibits competitive results compared with the baselines.
Both the methods of [19,30] depend on a predefined noise transition matrix with ground truth. Moreover,
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Table 7 Comparison with various baselines trained with asymmetric label noise ratio 0.5a)

CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

Fu et al. 2017 [36] 78.17 Krause et al. 2016 [22] 72.36 Fu et al. 2017 [36] 86.12 Dixit et al. 2015 [61] 65.40

Zheng et al. 2017 [62] 80.06 Fu et al. 2017 [36] 78.45 Zheng et al. 2017 [62] 85.24 Guo et al. 2016 [63] 76.33

Dubey et al. 2018 [29] 77.61 Dubey et al. 2018 [39] 77.28 Dubey et al. 2018 [39] 85.39 Herranz et al. 2016 [57] 73.82

Xu et al. 2018 [16] 77.45 Niu et al. 2018 [13] 76.06 Wang et al. 2018 [37] 86.01 Lin et al. 2017 [10] 72.26

Niu et al. 2018 [13] 77.82 Sun et al. 2019 [17] 76.93 Sun et al. 2019 [17] 85.68 Sun et al. 2019 [17] 72.94

Zheng et al. 2019 [64] 72.29 Hu et al. 2019 [34] 77.42 Hu et al. 2019 [34] 86.04 Hu et al. 2019 [34] 73.96

Liu et al. 2020 [58] 80.10 cLiu et al. 2020 [58] 81.25 Liu et al. 2020 [58] 86.72 Liu et al. 2020 [58] 77.17

Sun et al. 2021 [4] 81.26 Sun et al. 2021 [4] 79.02 Sun et al. 2021 [4] 86.93 Sun et al. 2021 [4] 78.36

Yang et al. 2022 [65] 86.17 Yang et al. 2022 [65] 86.25 Yang et al. 2022 [65] 89.70 Yang et al. 2022 [65] 82.32

Li et al. 2023 [66] 85.88 Li et al. 2023 [66] 85.08 Li et al. 2023 [66] 88.75 Li et al. 2023 [66] 82.01

Ours 86.82 Ours 87.45 Ours 90.72 Ours 84.02

a) Best results are marked in bold.

the methods take the class distribution into the optimization method, which has a strong assumption.
The scheme we proposed is general and can be incorporated into any deep network architecture and has
the best performance under different noise scenarios. By comparing with the state-of-the-art methods,
our method remains competitive. Furthermore, the teacher model of our proposed method significantly
outperforms previous methods after three iterations.

4.3 Large-scale fine-grained recognition

To confirm the proposed learning schema on large-scale fine-grained recognition, several experiments
were conducted on the iNat dataset. To attain a better result, the idea of finetuning from ImageNet
pretrained networks is used. The iNat is a large-scale dataset with real-world noisy labels, which were
added to our web data. For fair comparison, a random one-hot vector is used to inject label noise with
a probability of r into the instances. Note that the noise level is greater than the injection ratio because
the web data involve some noise. Motivated by their implementation settings, we use them during
the training and make comparisons with previous methods. The base model is ResNet50 with random
initialization. Furthermore, a human verified train subset is used as our probe data, which is included
in each dataset. The comparison results in different ratios of symmetric and asymmetric noise ratios are
shown in Tables 8 and 9. Our method attains 63.17% and 61.20% with symmetric and asymmetric noise
ratios of 0.5, respectively. From Tables 8 and 9, it can be observed that using more web data realizes
better performance on the iNat dataset.

The baselines include [22], which uses multiple crops and a larger web dataset with additional categories.
The methods of [5, 34] describe the attention feature map as the discriminative components of objects.
However, the separate steps of the current method may not be the perfect solution to address this issue
because the aim of the method is not direct. Moreover, mistakes made in the previous step will affect
the results of the next step. Our method does not need that, which makes our method more general.
Moreover, compared with [58], our proposed method can achieve an improvement of +2.52% (3.42%)
of accuracy with 0.5 symmetric (asymmetric) noise ratio, demonstrating that our proposed model is
promising.

4.4 Effect of the AM loss function

As we clarified before, incorporating the association mechanism into AM losses could lead to a robust
classification. The tricks have been applied in other noisy scenarios, such as LFW, CFP, and AgeDB. For
comparison, the method is also applied with Softmax loss under the same noise ratio. In Table 10, the
performance of using the AM loss function is better than that of simply using the Softmax loss function.
This enhancement is mainly caused by incorporating weight fusion into AM loss. Specifically, two noise-
tolerant strategies play an important role in ensuring robustness from the embeddings of input data to
classification. These experiments show that our proposed method can realize robust classification.
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Table 8 Classification accuracy (%) on a large-scale fine-grained dataset for different methods trained with different symmetric

noise ratiosa)

Method
Noise ratio

0.1 0.2 0.3 0.4 0.5

Zhang et al. 2016 [60] 56.94 56.29 54.83 51.65 50.02

Krause et al. 2016 [22] 58.17 57.38 55.26 55.02 53.24

Fu et al. 2017 [36] 57.92 57.18 57.03 55.84 54.17

Dubey et al. 2018 [39] 60.78 58.92 58.10 56.73 55.06

Niu et al. 2018 [13] 63.35 61.78 58.90 57.22 55.31

Sun et al. 2019 [17] 63.79 62.10 60.69 58.07 55.96

Liu et al. 2020 [58] 65.16 65.02 63.18 61.90 60.06

Sun et al. 2021 [4] 66.80 65.43 63.78 61.92 60.65

Yang et al. 2022 [65] 67.21 66.38 65.74 63.72 61.95

Li et al. 2023 [66] 67.16 66.33 65.26 63.09 61.72

Ours 68.69 68.22 67.41 65.89 63.17

a) Best results are marked in bold.

Table 9 Classification accuracy (%) on a large-scale fine-grained dataset for different methods trained with different asymmetric

noise ratiosa)

Method
Noise ratio

0.1 0.2 0.3 0.4 0.5

Zhang et al. 2016 [60] 57.03 56.60 54.98 52.01 50.22

Krause et al. 2016 [22] 57.92 57.63 56.87 55.26 53.81

Fu et al. 2017 [36] 58.11 57.08 55.26 54.10 52.19

Dubey et al. 2018 [39] 60.75 59.06 57.34 55.82 54.08

Niu et al. 2018 [13] 62.33 60.79 58.12 56.30 54.27

Sun et al. 2019 [17] 63.09 61.22 59.45 57.06 55.11

Liu et al. 2020 [58] 65.01 62.70 60.08 58.24 55.83

Sun et al. 2021 [4] 66.84 65.03 62.71 60.52 57.78

Yang et al. 2022 [65] 67.76 66.92 64.25 63.02 60.08

Li et al. 2023 [66] 67.43 66.84 64.09 62.83 60.02

Ours 68.80 68.17 66.96 64.12 61.20

a) Best results are marked in bold.

Table 10 Comparisons of purely Softmax loss (Simple) and AM loss function with symmetric (S) and asymmetric (A) labels

(Noise)a)

Loss
Noise Dataset

ratio CUB-200-2011 Stanford Dogs FGVC-Aircraft MIT Indoor 67 iNat

Simple 0.2 87.42 88.92 93.05 85.63 66.79

Simple 0.4 85.86 87.89 91.24 84.06 62.03

Simple 0.6 84.01 86.02 88.78 81.88 56.48

Noise (A) 0.2 88.59 90.17 93.89 87.02 68.22

Noise (A) 0.4 87.98 89.96 92.76 85.87 65.89

Noise (A) 0.6 86.73 88.15 91.15 84.09 60.82

Noise (S) 0.2 88.07 89.01 93.45 86.62 66.35

Noise (S) 0.4 87.01 88.73 91.89 85.05 65.01

Noise (S) 0.6 85.22 86.94 90.08 82.96 60.23

a) Best results are marked in bold.

4.5 Effect of the parameters

How hyperparameters λ,M , and the ratio of the training set affect the performance of our proposed
algorithm are investigated. A detailed analysis is described below.

Impact of λ values. The λ trades off two losses, and the findings are illustrated in Figure 2(a).
It is found that the classification accuracy undergoes some oscillations as λ increases. Using small λ
indicates that the source image data plays a more important role. When we set λ = 0, the performance
of the algorithms was worse on the FGVC-Aircraft and MIT Indoor 67 datasets. On the other hand, using
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Figure 2 (Color online) Effect of parameters (a) λ and (b) M .

Table 11 Comparison with different ratios of training set, where -Web is mixing the web dataset into training data and -Ours is

learning the representation coherencea)

Dataset
Ratio of training set

0.1 0.2 0.3 0.4 0.5

CUB-200-2011-Web 68.25 74.01 77.24 78.16 80.24

CUB-200-2011-Ours 70.93 75.22 79.89 82.37 84.68

Stanford Dogs-Web 67.46 72.79 75.10 76.87 79.35

Stanford Dogs-Ours 69.82 74.05 79.37 82.39 85.86

FGVC-Aircraft-Web 70.01 74.19 76.39 79.20 82.76

FGVC-Aircraft-Ours 72.60 77.32 82.36 86.15 88.97

MIT Indoor 67-Web 65.04 70.54 73.08 76.55 78.92

MIT Indoor 67-Ours 66.17 71.10 75.09 79.26 82.03

iNat-Web 51.02 52.89 54.85 55.92 57.40

iNat-Ours 51.37 54.00 55.79 58.03 59.84

a) Best results are marked in bold.

larger λ is not good for fine-grained classification. It probably suffers from small intraclass variations. The
general trend is that the performance is good when we set λ between 0.1 and 0.3, while the performance
of the method generally decreases as λ is greater than 0.3. For example, the performance is the highest
in two cases when we set λ as 0.1. This λ parameter study provides some guidance for comparison
experiments.

Impact of different ratios of training set. To solve the issue of the gap between well-labeled
and web datasets, experiments on all four datasets are done with different ratios of training set. Better
performance can be obtained by incorporating web data into our experiments. Table 11 lists the perfor-
mance improvements at different noise ratios. The traditional approaches simply add the auxiliary data
into the training data to enhance the model performance, and the improvements are not superior to our
method, which can learn the representation coherence between the web and well-labeled data, because
the web data may involve noise, especially for fine-grained domains, and it would affect the performance
of models if we do not carefully deal with noisy labels. The experimental findings show that our approach
can reduce the influence of the gap between well-labeled and web datasets.

Impact of M values. M is the number of minibatches {(X,Ym)} that are sampled for each minibatch
{(X,Y )} of the training examples. We show the test accuracy on aircraft with M = 5, 8, 12 trained using
labels with different noise ratios in Figure 2(b). The general phenomenon is that the accuracy of the
model is enhanced as the number of M increases. Note that it is more significant as we increase the
number of M from 5 to 8. However, from 8 to 12, the boosted results are not evident. Therefore, to
balance the computation resource and generalization ability of the model, we set the number of M as 12
in our experiments.
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Figure 3 (Color online) (a) Scalability and (b) generalizability of our proposed model.

4.6 Scalability of our approach

In this subsection, given our focus on examining the scalability of our proposed method on the visual
recognition task, our main concern here is whether the above noise-tolerant schemes could result in
materially different scaling behaviors of our proposed method on the benchmark datasets. To address
this problem, our method is assessed on different models, and the results are reported for the four models
(AlexNet, CaffeNet, VggNet, and ResNet). The reason is that with good generalization of the model,
the performance of our approach will be enhanced. The corresponding classification performance on the
five benchmark datasets is plotted in Figure 3(a). These experimental results show that our approach
has good scalability and can be further incorporated into other state-of-the-art models.

4.7 Learning with deeper layers and more data

The effect of the layer size of the model is attempted to be explored. The depths of the layers of the
models are varied from 10 to 100 with a 10-layer interval. As the layers of the model increase, more data
should be fed into the model. We then scaled up the training data using auxiliary web data. We expand
the data by increasing the auxiliary web from 1 times the amount of basic training data to 10 times
the amount of training data with an interval of 1 times the amount. Experiments were conducted on
our five benchmark datasets, and the evaluation settings were the same as before. From Figure 3(b), it
can be observed that the performance keeps improving as the model goes deeper. However, it converges
when the number of layers of the model is around 60, attaining over 91.78% classification accuracy on the
FGVA-Aircraft dataset. A similar convergence phenomenon of the model can be observed in the other
four datasets. Thus, these experimental results indicate that the proposed model is stable from shallow
to deep. Finally, considering the computation resources and massive parameters of the deep model, we
should strike a balance between the computation and efficiency of the model.

4.8 Learning with auxiliary web data

Figure 4 shows the examples (left) correctly identified by our proposed method using noisy web data
(right). Because the auxiliary web images sampled by the proposed method could cover the character-
istics of all fine-grained categories, the bridge schema of the trained model could encourage the learned
embeddings to be coherent between well-labeled and web data. The noise-tolerant strategies and meta-
learning framework also play crucial roles in producing promising results. In addition, the updated
model (student model), with the aid of the teacher model, is constructed by a self-ensembling method
and produces consistent predictions. Thus, these results show that harnessing the noisy web data and
incorporating the weighting strategy into AM loss are effective ways to improve the robustness of models.

4.9 Ablation analysis

To fully investigate our method, Table 12 provides a detailed ablation analysis of the different con-
figurations of the key components. The individual objective components and their importance in the
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Figure 4 (Color online) Our proposed method can differentiate images (left) using noisy web data (right) on fine-grained dog

categories.

Table 12 Ablation study on the CUB-200-2011 dataset with noise ratio of 0.4a)

Association Weighted Bridge Meta-
Accuracy (%)

schema AM loss schema learning

– – – – 72.84

X – – – 77.35

– X – – 77.37

– – X – 77.42

– – – X 77.36

X X – – 78.40

X – X – 79.97

X – – X 81.65

– X X – 81.46

– X – X 81.22

– – X X 82.74

X X X – 83.98

X X – X 84.31

X – X X 85.67

– X X X 84.82

X X X X 87.95

a) X/– indicates the corresponding component is enabled/disabled. Best results are marked in bold.

CUB-200-2011 dataset are studied. ResNet50 is selected as the module. Based on our empirical obser-
vation, the association schema plays a significant role in preventing neural networks from overfitting to
samples with incorrect labels. The model has an accuracy of 87.95% with the enabled association schema,
while it has an accuracy of 84.82% without using the association schema components. Also, by incorpo-
rating the bridge schema, the method yields promising results as it can encourage the learned embeddings
to be coherent between well-labeled and web data, thereby reducing the influence of the gap between
well-labeled and web data. Compared with the method without using the bridge schema, our method
offers significantly better results (+3.64%). In addition, using the weighted AM loss realizes 2.28% better
performance than the baseline without using it. Furthermore, by developing the meta-learning schema,
the method yields significantly better results (+3.97%). Finally, using all four components results in a
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15.11% improvement. These experimental findings exhibit the importance of each of the four compo-
nents. Similar experimental results of ablation analysis can be found on the other three benchmark and
large-scale datasets.

5 Discussions

Learning from web data can help in constructing robust and generalizable models for generic image
classification. By incorporating web data, models can learn from a broader range of visual variations and
better adapt to real-world scenarios. This can aid in addressing the limitations of conventional datasets
that may not cover the full diversity of visual appearances.

Moreover, there are many promising directions for the relationship between fine-grained visual recog-
nition and learning from web data for generic image classification. One direction is to examine effective
methods for mining and curating high-quality web data specifically tailored to fine-grained recognition
tasks. Additionally, designing techniques to mitigate noise and label ambiguities in web data will be
critical to guarantee reliable training results.

Another direction is to examine how to effectively leverage the knowledge learned from fine-grained
visual recognition as a reference to the learning process from web data. This can include transfer learning
approaches that transfer knowledge from fine-grained recognition models to generic image classification
models trained on web data. To this end, the combination of fine-grained visual recognition and learning
from web data holds great potential to advance the field of generic image classification, allowing better
performance and broader applicability in real-world scenarios. In the future, we plan to examine a robust
pairwise comparison method to enhance the consistency and effectiveness of the model via the teacher-
student network module. Also, incorporating more effective weighting strategies into AM loss is another
one of our directions.

6 Conclusion

In this work, a novel noise-tolerant learning method is proposed for fine-grained visual recognition. By
reducing the influence of the gap between the well-labeled and web data, our method can train with
large DNNs. The proposed method comprises many noise-tolerant schemes that take the association
embeddings of input data and use its reweighting probability into AM loss to conduct a robust classi-
fication. Moreover, the problem of a meta-learning framework is described, which reduces overfitting
and makes the parameters of the model noise-tolerant, and the self-ensembling method is applied to
build the teacher model to enhance consistent predictions. Finally, the intensive experimental findings
on the benchmark datasets verify that our proposed method produces a superior performance to the
state-of-the-art approaches.
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