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Notably, owing to the limited information available, the

problem of output feedback stabilization/regulation for non-

linear systems has been explored based on state observers.

In addition, the sensors accounting for state measurement

could fail to detect the system states accurately due to the

limitations of manufacturing techniques and instruments.

An example was given in [1], where a displacement sensor

suffers from ±10% sensitivity error. Even worse, systems

might suffer from a variety of nonlinear characteristics which

undoubtedly challenge the existing output feedback design

and stability analysis strategies. Hence, this study considers

the following nonlinear system:

{

ẋi(t) = xi+1(t) + fi(t, x(t), u(t)), i = 1, . . . , n− 1,

ẋn(t) = u(t) + fn(t, x(t), u(t)),
(1)

where x(t) = [x1(t), . . . , xn(t)]T ∈ R
n is the system state,

fi : R+×R
n×R → R is continuous in the first argument and

locally Lipschitz in the rest of ones with i = 1, . . . , n. y(t) ∈

R is the measurement output defined as y(t) = θ(t)x1(t) and

u(t) ∈ R is the control input. θ(t) : R+ → R is an unknown

bounded continuous function.

The target of this study is to construct an output feed-

back regulator for system (1) with any initial condition

x(t0) = x0 ∈ R
n, t0 > 0 such that (i) all the closed-loop sig-

nals and the actual control are globally uniformly bounded

on [t0,+∞), (ii) u(t) and x(t) converge to the origin. The

following assumptions are indispensable.

Assumption 1. There is a known parameter θ̄ > 0 satis-

fying inequality |1 − θ(t)| 6 θ̄ < 1, where θ̄ is an allowable

sensitivity error.

Assumption 2. For i = 1, . . . , n, there exist a known

constant p>0, an unknown constant c>0, and a continuous

known function φ(t)>0 defined on [0,+∞) satisfying

|fi(t, x, u)| 6 cφ(t)(1 + |y|p)(|x1|+ · · ·+ |xi|). (2)

Assumption 1 explained/used in [2] is standard and pro-

vides a clear description of the allowable range of θ(t). The

inequality (2) indicates that the nonlinearities of system (1)

are bounded by a time-varying function multiplying the un-

measured states with an unknown constant and a polyno-

mial form of the output function, which implies that the

system contains more severe parameter unknowns, time vari-

ations, and nonlinearities. By driving φ(t) to approach +∞

as time increases, the ever-growing property of φ(t) chal-

lenges some existing methods, such as the dual-domination

approach [3], the improved dynamic gain method [4], and the

dynamic-gain scaling approach [5]. This motivates us to find

a new solution which outlines two innovations in this study.

(i) The dual-domination approach [3] is creatively improved.

Specifically, a constant gain and a dynamic gain, working as

dual gains, are introduced so that ever-growing system non-

linearities with unknown growth rates and unknown sen-

sor sensitivity can be dominated/compensated successfully.

(ii) The proposed methodology might lead to the possibility

of performing/unifying the output feedback design associ-

ated with a more general kind of nonlinear systems suffering

from growth rates and unknown measurement/sensor sensi-

tivity.

Main result. The notations given in Appendix A are

adopted throughout the study.

For system (1), construct the observer as follows:

{

˙̂xi(t) = x̂i+1(t) − ri(t)ai x̂1(t), i = 1, . . . , n− 1,

˙̂xn(t) = u(t) − rn(t)an x̂1(t),
(3)

where x̂(t) = [x̂1(t), . . . , x̂n(t)]T is the estimate of the state

x(t), r(t) = L1(t)(L2
2(t) + b) is continuously differentiable,

L1(t) satisfies the following differentiable equation:

L̇1(t)=−ρ1L
2
1(t)+ρ2(1+|y(t)|p)2L1(t), L1(t0)=1, t0>0, (4)

with b, ρ1, and ρ2 being positive constants determined sub-

sequently, and a time-varying function L2(t) with L2(t0)>1

is increasing, continuously differentiable and satisfies























(i) lim
t→+∞

L2(t) = +∞,

(ii) lim
t→+∞

L̇2(t)

L2
2
(t)

= 0,

(iii) lim
t→+∞

φ2(t)
L2(t)

= 0.

(5)

Positive constants a1, . . . , an, b1, . . . , bn are selected to
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guarantee that Λ1 and Λ3 are Hurwitz, respectively, where

Λ1=

















−a1 1 0 · · · 0
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−an−1 0 0 · · · 1

−an 0 0 · · · 0
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0 1 · · · 0
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0 0 · · · 1

−b1 −b2 · · · −bn

















, (6)

and positive definite symmetric matrices P and Q satisfy
{

ΛT
1 P + PΛ1 6 −2I, d1I 6 BP + PB 6 d2I,

ΛT
3 Q+QΛ3 6 −I, d3I 6 QB + BQ 6 d4I,

(7)

where d1, d2, d3, and d4 are positive constants which are as-

signed in advance, B = diag{v, v + 1, . . . , v + n − 1} is a

diagonal matrix with the constant v satisfying 0 < v 6 1
4p

.

Now, we give the main result of this study.

Theorem 1. If Assumptions 1 and 2 hold for system (1),

then there exists a regulator that has the following proper-

ties:

(i) all the signals, denoted by x(t), x̂(t), L1(t), and u(t),

of the closed-loop system are bounded on [t0,+∞).

(ii) limt→+∞ u(t) = limt→+∞ x(t) = limt→+∞ x̂(t) = 0.

Proof. The proof is divided into four parts.

Part I. Analysis of the error dynamics. Define the esti-

mation error as follows:

εi =
xi − x̂i

rv+i−1
, i = 1, . . . , n. (8)

Then, from (1), (3), and (8), there holds

ε̇ = rΛ1ε−
ṙ

r
Bε+

r

rv
Λ2x1 + F, (9)

where ε = [ε1, . . . , εn]T, F = [ f1
rv

,
f2

rv+1 , . . . ,
fn

rv+n−1 ]
T,

Λ2 = [a1, a2, . . . , an]T, the definition of B can be found

below (7), and Λ1 is given in (6). Choose V1(ε) = βεTPε,

where the constant β > 0. Through complicated calcula-

tions in Appendix B, there holds

V̇1 6 −β(d1ρ2(1+|y|p)2+r−d2ρ1L1)‖ε‖
2+βr

x2
1

r2v
‖PΛ2‖

2

+2nc‖P‖βφ‖ε‖(1 + |y|p)
n
∑

i=1

|xi|

rv+i−1
. (10)

Part II. Construction of a regulator. Introduce the coor-

dinate transformations as follows:

ζ1=
x1

rv
, ζi=

x̂i

rv+i−1M i−1
, ῡ=

u

rv+nMn
, i=2, . . . , n, (11)

where the constant gain M > 1 is determined later. Then,

using (1), (3), (8), and (11), there holds






















ζ̇1 = Mrζ2 − v ṙ
r
ζ1 + rε2 + f1

rv
,

ζ̇i=Mrζi+1+
rai

Mi−1 ε1−
rai

Mi−1 ζ1−(v+i−1) ṙ
r
ζi,

i = 2, 3, . . . , n− 1,

ζ̇n=Mrῡ+ ran

Mn−1 ε1−
ran

Mn−1 ζ1−(v+n−1) ṙ
r
ζn.

(12)

Assign ῡ = − b1y

rv
− b2ζ2 − · · · − bnζn, where b1, . . . , bn

are determined by (6). This and Eq. (11) lead to the actual

regulator/controller as

u(t)=−rn(t)Mnb1y(t)−
n
∑

i=2

rn−i+1(t)Mn−i+1bix̂i(t). (13)

Substituting (13) into (12) yields

ζ̇ = rMΛ3ζ −
ṙ

r
Bζ + rΛ4(ε1 − ζ1) + rJε2

+rMZb1(1− θ)ζ1 +K, (14)

where J = [1, 0, . . . , 0]T, Λ4 = [0, a2

M
, . . . , an

Mn−1 ]
T, ζ = [ζ1,

. . . , ζn]T, Z = [0, . . . , 0, 1]T, K = [ f1
rv

, 0, . . . , 0]T, the defini-

tions of B and Λ3 are given below (7) and in (6), respectively.

Choose V2(ζ) = ζTQζ. Through complicated calculations in

Appendix C, there holds

V̇2 6 d4ρ1L1‖ζ‖
2+(m̄1(t)+2r‖QΛ2‖+r‖Q‖2+r)‖ζ‖2

−rM(1−2b1|1−θ| · ‖Q‖)‖ζ‖2+(1+|y|p)2‖ζ‖2

+r(1 + ‖QΛ2‖
2)‖ε‖2−d3ρ2(1+|y|p)2‖ζ‖2, (15)

where m̄1(t) = c2‖Q‖2φ2(t) is continuous and satisfies

limt→+∞

m̄1(t)
L2(t)

= 0.

Part III. Determination of parameters. Choose a continu-

ously differentiable function Ve(ε, ζ) = V1(ε)+V2(ζ). Then,

the calculations in Appendix D show that

V̇e 6 −(βr − rk1 − m̄(t) − βd2ρ1L1)‖ε‖
2 − (rMσ − rk3

−m̄(t) − d4ρ1L1)‖ζ‖
2 − (βd1ρ2 − 1)(1 + |y|p)2‖ε‖2

−(d3ρ2 − 2)(1 + |y|p)2‖ζ‖2, (16)

where β = 1 + k1 = 2 + ‖QΛ2‖2, k3 = k2 +

β‖PΛ2‖2=1+2‖QΛ2‖+‖Q‖2+β‖PΛ2‖2, σ = 1− 2b1θ̄‖Q‖,

and m̄(t) = m̄1(t) + 9β2c2n3M2n−2‖P‖2φ2(t) satisfies

limt→+∞

m̄(t)
L2(t)

= 0. If the designed parameters ρ1, ρ2, b,

and M are chosen to satisfy the conditions in the following

order:

1©ρ1 > 0, 2©ρ2 > max

{

ρ1,
2

d3
,

1

βd1

}

,

3©b > max{βd2ρ1, d4ρ1}, 4©M > max

{

1,
1 + k3

σ

}

,(17)

then Eq. (16) can be written as

V̇e 6 −(L2
2L1 − m̄)(‖ε‖2 + ‖ζ‖2). (18)

Part IV. Stability analysis. By the existence and continu-

ation properties of solutions, the solution of the closed-loop

system can be defined on [t0, Tf ), where Tf may be finite

or +∞. Introducing W (t) , [ε(t), ζ(t)]T, we have the fol-

lowing claims. Claim 1. W (t) is bounded on [t0, Tf ) with

Tf<+∞; Claim 2. Tf =+∞; Claim 3. limt→+∞ W (t)=0;

Claim 4. limt→+∞ x(t) = limt→+∞ x̂(t) = 0; Claim 5.

limt→+∞ u(t) = 0; Claim 6. L1(t) is bounded on [t0,+∞).

The detailed proof of Claims 1–6 is given in Appendix E.

Simulation examples. The simulation examples are in-

cluded in Appendix F.
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