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Formation control of multi-agent systems (MASs) has been

applied in various fields, such as autonomous navigation and

target encirclement, due to its ability to facilitate coordina-

tion and achieve the desired formation or space configura-

tion. Bearing-based formation control offers greater prac-

ticality than position-based or distance-based approaches

since bearing information is inexpensive and simple to ac-

quire, such as utilizing optical cameras.

The finite-time control has been proposed for better anti-

interference and faster convergence, such as [1]. However,

the initial states affect the estimation of the stability time’s

upper bound for a symbolic or power function controller.

Pinning control frequently develops the controllers for nodes

in a large-scale network, where only a portion of agents can

derive the reference state [2], such as the leader’s position [3].

From a practical perspective, it is required to investigate the

GPS-denial environment in which the agent may measure

neighbors’ bearing information. Furthermore, Appendix A

provides an extensive review.

Based on the above discussion, we develop a finite-time

tracking bearing-only formation of first-order MASs via pin-

ning control. The main contributions are of three aspects.

(i) In contrast to the results of finite-time bearing-based con-

trol [1, 4], the moving formation with the constant velocity

can be tracked and the formation stabilization time can be

directly set by users. (ii) A pinning strategy is presented to

accomplish the desired formation using the neighbors’ bear-

ing information. (iii) To prevent collisions, we provide a less

conservative sufficient condition that is independent of the

scale of MASs.

Preliminaries and problem statements. Consider first-

order MASs with nl leaders and nf followers (n = nl + nf ,

n > 2), which have the following dynamics:

ẋi(t) = ui(t), i = 1, . . . , n, (1)

where xi(t), ui(t) ∈ R
d are the position and control input

of each agent, respectively.

The network topology among agents can be described

by a graph G = (V, E), where V = {1, . . . , n} and E ⊆
V × V are the sets of nodes and edges, respectively. Let

Vl = {1, . . . , nl} and Vf = {nl + 1, . . . , n} denote the sets

of leaders and followers, respectively. Assuming that one

orientation (i, j) of the s-th undirected edge is assigned to

itself, we define es := eij = xj − xi and gs := gij = es/‖es‖
for s ∈ {1, . . . , m}, where m denotes the number of undi-

rected edges. Moreover, the edge set Ē is composed of each

es. The orthogonal projection of gs is Pgs := Id−gsgTs . Let

x = [xT1 , . . . , x
T
n ]T. Then, we have the bearing vector g and

edge vector e in the similar compact form. The incidence

matrix of the graph G is H ∈ R
m×n satisfying e = H̄x,

where H̄ = H ⊗ Id. Let x∗ = [(x∗1)
T, . . . , (x∗n)

T]T be the

position for the target formation (G, x∗); then we have e∗

and g∗ analogously. In the leader-follower case, the bearing

Laplacian matrix L = H̄Tdiag(Pg1 , . . . , Pgs )H̄ ∈ R
dn×dn

can be divided into four matrix blocks: Lll, Lff , Llf , and

Lfl, to describe the relationship between leaders, between

followers and between leaders and followers, respectively (see

Appendix C.1 for detail definitions). Then, a pinning matrix

D ∈ R
m×n of the graph G is defined as

dsi =





asi, (i, j) ∈ E1 or (i, j) ∈ E2,

bsi, (j, i) ∈ E1 or (j, i) ∈ E2,

0, others,

where asi < 1, bsi > −1, E1 = {(i, j) ∈ Ē|i ∈ Vl, j ∈ Vf}
and E2 = {(i, j) ∈ Ē|i ∈ Vf , j ∈ Vl}. The detailed pinning

control strategy is shown in Appendix C.2, ensuring that a

part of agents acquire the leaders’ relative bearing.

We want to design the control input ui(t) for

each follower, using the neighbors’ bearing information

{gij(t)}j∈Ni
, such that x(t) → x∗(t) as t → Λ and x(t) =

x∗(t) as t > Λ, where Λ denotes a finite time.

Assumption 1 ([5]). The desired formation (G, x∗) can

be uniquely determined by the bearing vectors {g∗ij}(i,j)∈E

and the leaders’ positions {x∗i }i∈Vl
if and only if Lff > 0.

Assumption 2 ([3]). Suppose Gf is the graph composed

by followers, which has r disjoint strong components namely

G1, . . . , Gr with V (Gi)
⋂
V (Gj) = ∅, i, j = 1, . . . , r, i 6= j,

and
⋃r

i=1 V (Gi) ⊆ V (G). V (Gi) denotes the vertex set of

the i-th strong components. If
⋃r

i=1 V (Gi) ⊂ V (G), assume

that each vertex in V (G)\⋃r
i=1 V (Gi) is reachable from at

least one vertex in
⋃r

i=1 V (Gi).

Remark 1. It means that the leader-following formation

under pinning control can be achieved when there is a di-

rected spanning tree among the leaders and multiple follow-

ers.
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Main results. Suppose that leaders move with the con-

stant velocity v̄ = [v̄1, . . . , v̄d]
T. Define position differences

as εi(t) = xi(t) − xi(t0) and ε∗i (t) = x∗i (t) − x∗i (t0), where

t = t0 is the initial time. Then the control input ui(t) for

each follower i ∈ Vf is designed as

ui(t) =

(
α+ γ

ϕ̇(t)

ϕ(t)

)[
∑

j∈Ni

(gij(t) − g∗ij)

+
∑

j∈Vl

dsi(gij(t) − g∗ij)

]
− oi(εi(t) − ε∗i (t)), (2)

where α, γ, oi = diag(oi1, oi2, . . . , oid) ∈ R
d×d are posi-

tive control gains. ϕ(t) is defined as a function satisfying

ϕ(t) = (Λ−t0
Λ−t

)q for t ∈ [t0,Λ) and ϕ(t) = 1 for t ∈ [Λ,∞),

where q ∈ R>0 is the user-chosen parameter and R>0 de-

notes the set of positive real numbers. For t ∈ [t0,Λ), the

derivative of ϕ(t) is ϕ̇(t) = q
Λ−t

(Λ−t0
Λ−t

)q . Assuming that the

right-hand derivative at t = Λ is adopted as ϕ̇(t), then we

have ϕ̇(t) = 0 for t ∈ [Λ,∞). Obviously, ϕ(t) satisfies the

properties of ψ(t) in Lemma 1 in Appendix D.

Then, using the control mechanism (2), the compact form

of MASs (1) can be rewritten as

ẋ(t) =−
(
α+ γ

ϕ̇

ϕ

)[
0dnl×dnl

0dnl×dnf

0dnf×dnl
Idnf

]
(H̄T + D̄T)

· (g(t) − g∗) +

[
1nl

⊗ v̄

0dnf

]
− O(ε(t)− ε∗(t)), (3)

where O = diag(Ol, Of) = diag(o1, . . . , on), ε(t) = [εTl (t),

εTf (t)]
T = [εT1 (t), . . . , ε

T
n (t)]

T, and ε∗(t) is the similar com-

pact form.

Let the initial states be x(t0) = [(x∗l (t0))
T, xTf (t0)] and

ẋ(t0) = [(v∗l (t0))
T, vTf (t0)] = [1nl

⊗ v̄, vTf (t0)]. Then, the

position error is δi(t) = xi(t) − x∗i (t) = [δTi1(t), . . . , δ
T
id
(t)]T

and δ(t) = [δTl (t), δTf (t)] = [δT1 (t), . . . , δTn (t)]T.

Next, the following result can be obtained for avoiding

collision between agents.

Theorem 1. Under Assumption 1, if

‖δ(t)‖ 6 θ :=
1√
2

(
min
i,j∈V

‖x∗i − x∗j‖ − ξ

)
, (4)

for any ξ ∈ (0,mini,j∈V ‖x∗i −x∗j‖), then ‖xi(t)−xj (t)‖ > ξ

for any i, j ∈ V and t > t0. Namely, a collision-free path

can be produced for each agent.

Furthermore, if ‖δ(t)‖ 6 ‖δ(t0)‖ for any t > t0, the con-

dition can be replaced by ‖δ(t0)‖ 6 θ.

Remark 2. Different from the previous studies, such as

[4, 5], θ does not depend on the number n, which implies

a larger initial position error can be realized in large-scale

networks. Note that ‖δ(t0)‖ 6 θ is only a sufficient condi-

tion, which is also confirmed by the simulation example in

Appendix F.1.

To establish the relationship between bearing error and

position error, we obtain Lemma 2 in Appendix D by slightly

revising Lemmas 2 and 3 in [5].

Theorem 2. Suppose Assumptions 1 and 2 hold. Con-

sider the first-order MAS (1) with the control input (2). If

ow = diag

(
v̄1

δw1(t0)
, . . . ,

v̄d

δwd(t0)

)
, (5)

where v̄k
δwk(t0)

> 0, w = nl+1, . . . , n, and k = 1, . . . , d, then

x converges to x∗ as t→ Λ and x = x∗ for t > Λ. Moreover,

the control input uf(t) = [uTnl+1(t), . . . , u
T
n (t)]T holds C1

smooth and bounded for [t0,+∞) with the condition that

qγ >
4‖H̄‖(‖δ(t0)‖+ ‖x̃∗‖)
mins{1 + bsi}λmin(Lff )

. (6)

Remark 3. The control gain parameter O is designed

based on the system environment, including the desired ve-

locity and the initial positions. The position differences εi(t)

and ε∗i (t) are both known for the i-th agent. In fact, the fol-

lower should be aware of the leader’s control input.

Remark 4. It should be noted that ϕ−q(t) decreases from

1 to 0 in [t0,Λ), which enables the implement of formation

gaol within t = Λ. Even if limt→Λ− ϕ(t) = +∞, the condi-

tion (5) indicates that large γ makes ‖u‖ always bounded.

More importantly, the finite time Λ is preset by users with-

out the initial conditions, which is better than non-smooth

controllers, such as [1], in practical complex tasks.

The proof of Theorems 1 and 2 can be found in Ap-

pendix E. The validity of the theoretical results is discussed

in Examples 1 and 2 of Appendix F. Then, a comparison

with existing results is also given in Appendix F.3.

Conclusion. The finite-time bearing-only formation

problem of first-order MASs under pinning control has been

discussed in this study. Considering the situation of tracking

moving formation in finite time, the validity of the pinning

controller is verified by Lyapunov stability theory and nu-

merical simulations. Besides, using the time-varying func-

tion with certain properties, a finite-time control mecha-

nism is proposed for the preset formation stabilization time

and the smooth bounded controller. Our results extend the

finite-time bearing-only formation studies based on the time-

varying function from stationary to tracking formation. In

practice, MASs may be described by nonlinear dynamics

and the communication topology may be directed. Thus, it

will be investigated in future work.
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