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Appendix A The proof of Proposition 1

Proof. First, applying the first equality of (6) to compute Bt(%,t), then utilizing (4) and the integration by parts, we deduce
. . 2 1 N
Be(se,t) = pés (32, t) + 0(52, t) (0, ) + A(t)w(e, t) + T/ 0 (e, t)v(1 — (e — ), t)de — / ki(3c — e, t)a(e, t)de
P 0

— (0, £)6 (52, ) + (32, )& (0,4) — 1 /0% for (32 — €, )éi(e, t)de — /0% (s — e, 1)0(e, £)dea(0, )

N PR PR S
— At k(e — €, )w(e, t)de — E(se — e, t G, (s,)v(1 — (s — €), t)dsde. Al
®) [ 7 hoe = enwtenyde—r [ThGe—et) [ dus 001 = (s = 0, Dasde (A1)
Utilizing the first equation of (6) to compute B, (¢, t), we get
Boe (3¢, t) = G, (52, ) — k(0 £) (3¢, t) — /” Fore (5e — €, t)a(e, t)de. (A2)
0

Substituting (A2) into (Al), we obtain
Br(oe,8) = B (50, 8) + pk(se, )&(0, ¢) + (é(;{, t) — /0% E(s — e, £)d(e, t)de)a(O, ) 4+ A(®)w(se, t)

e A . e 1
—/0 kt(%—e,t)a(e,t)de—k(t)/o k(%—e,t)w(s,t)de-i—r/ 01 (e, t)v(1 — (e — ), t)de

P

s, 1
—-r / k(s —€,t) / 0 (s, t)v(1l — (s —€), t)dsde. (A3)
JO €

Then, by means of é(s,t) = a(sc,t) — &(s¢,t) and the Volterra integral equation ul%(%,t) = fo" I%(% — e,t)é(e, t)de — é(%, t), we
obtain that the first equation of (7) holds. The second equation of (7) can be obtained by inserting »c = 1 into the first equation
of (6).

Appendix B The proof of Theorem 1
Before giving the details of Theorem 1, we first give a few useful lemmas. In particular, we introduce some commonly used notations.
1

For a signal f(t) that varies with time, we define the vector space f € LP([a, b]) < (ff |f(t)|Pdt) P < +oo for p > 1, with the special
case f € L7([a,b]) & sup,<;<p [f(t)] < +oo. For the equivalence class of Lebesgue measurable functions g : [0,1] — R, its L2
norm is represented as ||g|| = y/fol 92(5¢)ds, and the corresponding function space is represented as L2(0,1) = {g(3)|||g]| < +oc}.
For a function of several variables, - indicates the variable with respect to which the norm is taken, such as let u(z,-) € £2([a, b])
represent that u(s,t) belongs to £2([a, b]) for any fixed 3. In addition, ||u(-,t)||?> denotes a compact notation of fol u? (3¢, t)dse.

Lemma 1. Based on the event-triggered controller (8), the adaptive law (5) with initial data satisfying (3¢, 0) = o (<) < 6 and
A(0) = Ao < x ensures the following inequalities:

(2, )] <8, V(1) €[0,1] X [0, V), (B1)
AOI <X €0, Vm), (B2)
e(0,4),0 € L2([0, Yim)) N LZ([0, Yim)), (B3)
1811, 1A1 € £2([0, Y1) N £ ([0, V). (B4)
where ¥ = max{|}|, |A|} and
a(t) é0.9 (B5)
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Proof. Clearly, according to the properties of projection operator in [1, App. A] and initial data é(%, 0) = éo(%) <6, 5\(0) =
Ao < X, it can be obtained properties (B1)-(B2).
We discuss the following Lyapunov function

W(t)—r/ o2 (52, t)dse + = /6 G t) gy 2O (B6)

Cl(%) 262

where (1(3), 2 are defined in (5), and 6 = 0 — 6, = XA — X are parameter estimation errors. In fact, W(t) can be restated as
W (e(se,t),0(5,t), A(t)). If e(3c,t) = 0(3¢,t) = A(t) = 0, then W(0) = 0. If e(s¢, t), 0(5¢,t), and A(t) are not equal to zero, W (t) > 0.
Thus, W (t) is positive definite. Differentiating W (t), utilizing e (¢, t) = pe, (3¢, t) and inserting (5), it follows that

1§52, 1)
s1(32)

W(t) = 2/01 e(se,t)e, (52, t)dse — 7“/0 projg{s1(3)8(t)v(1 — ¢, t), 0(s¢, t) }dse — /\(;) proj[A,;\]{qgé(t)w(O,t),X(t)}. (B7)

Utilizing —6(5¢, t)projz {81 (s¢, 1), 8(5¢,t)} < —0(5¢, )81 (3¢, 1), 7}\(15)])]‘0) xto2(t), A(t)} < —A(t)82(t), and then applying the inte-
gration by parts, we deduce

. 1 ~ ~
W(t) < 2(1,¢) — e2(0,¢) — 6(2&)(7‘/ (52, ) (1 — 3¢, t)dse + A(t)w(0, t)). (BS8)
0
Using é(sr,t) = a(se,t) — &(s¢,t), e(se,t) = a(se,t) — @(se,t) and (3), one has
1
8(0,t) = A(t)w(0,t) + r/ A(e, t)v(1 — €, t)de + (0, ).
0

Substituting the above equality into (B8) and utilizing e(1,t) = 0 to yield
W(t) < —€2(0,1) = o (1) + 8(1)e(0, 1), (BY)
where o(t) is defined in (B5). Then, utilizing Young’s inequality to yield

. 1

W) < —50°() = 5¢°(0,1), (B10)
which suggests that W (¢) is non-increasing and bounded. Integrating (B10) on [0, Yy, ), we deduce % foym e2(0, 7)dT < W(0) < +oo
and %foym a?(1)dr < W(0) < 400, ie., €(0,-),0 € L*([0,Vm)). Owing to e(0,t) = 0 for t > r, it can be easily obtained that

rl0C DIV, D+ A w0, )]
VIHTvG D2 + w2(0,1)

le(®)] < <0G, Ol + IA@)]- (B11)

Together with properties (B1)-(B2), we get o € L°°([0,V:m)), thus the property (B3) holds. Then, together with the adaptive law
(5), we obtain

; ) 120, ) e )
0:(-, X X o ’
10l S & R or r om0 Vi oo sz 7! (512
and
NORS: [0, 2) Jw(0, £) < Glo()l. (B13)

VIF oG D2 +w2(0,8) VI+ vl HI? +w?(0,1)

By means of (B3), it can be verified the property (B4).

Lemma 2. Based on the event-triggered controller (8), the first and the second equalities of (6) suggest that the following
properties hold:

k(e 0] < Fr, V(o,0) € [0,1] X [0, Vi), (B14)
I8C,Oll < Frllat, B, (B15)
laC, Bl < F2llBC, D, (B16)

kel € £2([0, Ym)) N £ (10, Vi), (B17)

for some positive scalars Fy, F; and Fs.
Proof. Because @ is uniform bounded, the property (B14) can be obtalned by utlhzmg the successive approximation method
in [1, Appendix D] to the Volterra integral equation pk(s,t) = S5 k(e — ¢, t)0(e, t)de — O(¢, ). Then, recalling the first equation

of (6), we obtain
B¢, 1) = \//01 (d(%, t) — /o% k(e — e,t)d(e,t)de)zd%.

Together with Minkowski’s inequality and Cauchy-Schwarz inequality (see Appendix E) to yield

I8¢ 1) W 62(oe,1 d%+\// (e — e, )as(e, t)de) “doe < (1 + [ KID]&C 1)l (B18)
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where K = \/fol Iy k(3¢ — e, t)2deds, which implies that the property (B15) holds with F; = 1 + ||K||. Similarly, applying
Minkowski’s and Cauchy-Schwarz inequalities to the second equality of (6), we get the property (B16).
We take the time derivative of the Volterra integral equation uk(s,t) = [;° k(3¢ — €, t)0(e, t)de — 0(5¢, t), which yields

- 1 2PN ~ 1. 1 N A
ke(oe,t) — — / k(e —€,t)0(e, t)de = ——04 (52, t) + — / k(s —€,t)0, (e, t)de. (B19)
H Jo 123 ® Jo

In particular, we write (B19) as G~ [k¢] (3¢, t) = —iG[GAt](;{, t). Thus, we obtain [k:](s, t) = —iG[G[ét]](%, t). According to (6)
and (B15), it can be verified that |k:(-, )| < %LFIQHGAJ,(,t)H Thanks to [|6:]] € £2([0, Ym)) N LZ([0, Vm)), it is easy to get the
property (B17).

Lemma 3. Based on the triggering condition in Definition 1, the input holding error d(t) and the event-triggered controller U,
defined in (8), there exists d2(t) < —&(t) with £(t) < 0 for any t € [0, V).

Proof. By means of the triggering condition in Definition 1, one has d?(t) < —&(t), t € [0, V). Recalling (9), we obtain

£(t) < —(p + v)&(t) = mllaC, Ol = n267(0,8) = n3a®(0,t) = mallw (-, )I1* = ns (-, )%, (B20)

for any t € (t;,ti+1),% € N. Then, by means of the time continuity of £(t), one has

t
£(t) < g(ty)e Pt / e~ I (i, )12 + 12620, 5) + 130 (0, 5) + mal|w (-, 5)|1% + msllv(, 9)lI7)ds,  (B21)

tg

for any t € [t;,t;41],7 € N. Since &(to) = £(0) < 0, one has £(t) < 0 for all t € [0,t1]. Then, utilizing (B21) on [t1, t2], we can
deduce that £(t) < 0 for any t € [t1, t2]. Iterating multiple times in sequence, it follows that £(t) < O for any ¢ € [0, V).
Lemma 4. For d(t) given by the second equality of (8), the following inequality holds

ld()[* < Tod®(t) + mal|a (-, )]I? + 7262 (0,t) + 73070, 8) + Tallw(, )1 + 750 (-, I, (B22)

for some scalars 7;(j = 0,1,2,3,4,5) > 0.
Proof. For all t € (t;,ti+1),% € N, utilizing (8) and the boundary &(1,t) = A(¢)U;, we deduce

a(1,t) = A(t)d(t) + /01 k(1 — €, t)a(e, t)de. (B23)

We take the time derivative of the second equality of (8), inserting (4), utilizing integration by parts, and then inserting (B23), one
has

. i(t) 1. 1 1. R wos 1.
d(t) = = / k(1 — €, t)a(e, t)de — < / ke(1 — €, t)a(e, t)de — pk(0,t)d(t) — ——k(O, t)/ k(1 — €, t)a(e, t)de
A2(t) Jo A(t) Jo A(t) 0
P 1,060, + L [Th1 - Dt e — [T~ ¢ 0i(e, Hdea(o, )
+ = k(1,t)&(0,t) + = /kel—e,tdé,tde—%/kl—e,tGe,tdeaO,t
t) A(t) Jo A(t) Jo
) [ oo 1
- = / k(1 — €, t)w(e, t)de — / k(1 — e,t)/ 0 (s, t)v(1 — (s —€), t)dsde. (B24)
A(t) Jo A(t) Jo e
Utilizing Young’s and Cauchy-Schwarz inequalities, we get
1d(t)|% < 9p>E2(0 t)dQ(t)+9(j\2(t) VR0 = e e + — /11%2(1—5 t)de + W E2(0 t)/l B2(1 — €, t)de
h ’ A1) Jo ’ x2(t) Jo " ’ 2@ o ’
2 1 2 1 1
H 7.2 N 2 " oo ~2 9 72 52 2
+ — /kelfe,tde Q- t + = k2 (1, )& (0,t) + — /k lfe,tde/G e, t)dea”(0,t
o ) B0 e 0d)laCol + R 08700 + e [T - e nde [0 nace’00
9R2(t) 1. 9r? 1. 1
A7) / B2(1 = e, delw(-, )| + — / B2a - e,t)de/ 02 (s, tyds|lv(-, 1) 2. (B25)
A2(t) Jo A2(t) Jo 0
Therefore, we obtain
ld(®)[* < T0d?(t) + T [|a(, )]|* + m262(0,8) + 1302 (0,8) + Tal|w (- D1 + 75 llv(, )17, (B26)
) F2F2 PP u2rd  wWiF? o2 F2 0r242 9F2F? or? PR F2
with 70 = 9’ FZ, 7 :9(7;4 JF?thr;sz + 12k€)7T2 = X2k17-3 = ;2 )y T4 = £2 »T5 = 2 t, where x =

min{|)|, [A|}, @ and F}, are given by (B1) and (B14) respectively, Fy, F(;t, Ffw are positive constants such that supt>0|5\(t)| < Fy,

SuPt;oHét('vt)” < Fg,, supt20|\l%t(~,t)\| < Fj,» which can be guaranteed by (B4) and (B17), and Fj;_ > 0 is a scalar such that

SuPoge<%g1,t;o|ke(%7 e, t)| < F,;E, which can be guaranteed by the fact that I%(u, €,t) is continuously differentiable with respect

to its arguments.

Proof of Theorem 1. Utilizing Lemma 3, one has d?(t) < —(1 — w)&(t) — wé(t) with @ € (0,1) and &(t) < O for all ¢ € [0, Vim)-

P2 @+U-=)E®)
—w§&(t)

Let us employ the auxiliary function Q(¢) := . It is worthy noting that €(t) is continuous on [t;,t;4+1),? € N and

Q(t;,,) = 1. Moreover, it can be given from d(t;) = 0 that Q(¢;) < 0. For the function €, a lower bound for the minimum
dwell-time is determined by the time from Q(¢;) to Q(tijrl). Utilizing the intermediate value theorem, it can be given that there

is a constant ¢’ > ¢; such that Q(¢;) = 0 and Q(t) € [0,1] for all t € [¢t/, ti_+1]‘
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s

Go through the same methods as in the proof of [2, Theorem 1] and selecting n; = =% (j = 1,2, 3,4, 5), it is easy to give that
the time from Q(t') = 0 to Q) =11is

1 1
t* :/ —ds >0, (B27)
o mi18%2 4 mas + w3
with 71 = vw, mp = 14+ 70+ 2v(1 —w)+p, and 73 = l;w (1479 +v(1—w)+ p) being positive constants, where 7;(j = 1,2,...,5)

are defined in Lemma 4. Hence, we obtain t;41 — t’ > t*. Owing to tig1 —ti 2 tiy1 — t’, we infer ti+1 —t; > t*. Hence, we write
t* as a lower-bound for the minimum dwell-time. From (B27), we can conclude that t* depends solely on the system parameter
and design parameter, and is independent of initial data.

Appendix C The proof of Theorem 2

Proof. According to Theorem 1, we know that there is a scalar t* > 0 such that infy{tiv1—ti} > t*, that is, No Zeno phenomenon
occurs. Thus, Yy, = +oo. Together with Proposition 2, we conclude that for given initial data aq (), Go (), wo (), vo(3¢) € L?(0,1)
compatible with the boundary condition, the closed-loop system composed of the original system (1), filter (2), state estimate (3),
and controller (8) exists a unique solution a, &, w,v € C([0, +00); L2(0,1)).

Next, we show that all signals in the closed-loop system are bounded, and the state of the original system is convergent. The
following Lyapunov functions are discussed:

Vi(t) = —€(1), (C1)
1 ~

Va(t) :/0 (1 + 30) 3% (3¢, t)de, (C2)
1

Vi (t) =/0 (1 + 50w (2, ), (C3)
1

Vi(t) :/O (1 4 30)v2 (3¢, t)dse. (C4)

Utilizing (C2) to compute Vg(t)7 substituting the first equality of (7), using the integration by parts, and utilizing the fact ,@(17 t) =
A(t)d(t), it is easy to verify that

. . ~ 1 ~ R R 1 .
Vo(t) = 2pA%(8)d* (1) — pB2(0, 1) — ullB(, 1)II* — 2u/0 (1 + 30)B (3¢, t)k(3¢,1)d2¢e(0, 1) + 2A(t) /0 (1 + 3) B3¢, )w (3¢, t)dse
X 1 ~ E2N 1 N 1,
- 2)\(t)/0 (14 5)B (>, t)/o (s — €, t)w(e, t)deds + 27"/0 (1+ %)5(%@@[/% 04 (e, )o(1 — (€ — 3), t)de] (52, t)dse
_ 2/1(1 4 5B 1) /” (3¢ — €, )G B) (e, t)dedse (C5)
o ) o t El ) .

For the fourth term of (C5), utilizing Cauchy-Schwarz and Young’s inequalities to yield

|- 2u /01(1 + 3B (e, Ok (e, ) ds2e(0, )] < 1 IBC, DI + @é%o,t), (ce)
with €; > 0 being an arbitrary constant. For the fifth term of (C5), we deduce
: 1 5 N 4F}
[2360) [+ 0B oe e )aie] < 22l BC DI + 2 ol P, (©7)
with €2 > 0 being an arbitrary constant. For the sixth term of (C5), we have

N 1 . x| . 2 2
| =23) [ 14 80et) [ hoe = e e, tdedor] < <3l 01 + ot DI, (c8)

with €3 > 0 being an arbitrary scalar. For the seventh term of (C5), utilizing Cauchy-Schwarz and Young’s inequalities, it follows
from (6) and (B15) that

|2r/01(1 + 3)B (3¢, t)G[/: 0+ (e, ) (1 — (€ — 32), t)de] (5, t)du|

L ar?fp? 1 L
< 64/ B2 (3¢, t)dse + ;/ (/ 0 (e, t)v(1 — (e — %),t)de)zd%
0 €4 0 P
. , 4r*FIF} )
SellBC, Dl + Ttl\v(wt)\l ; (C9)

where €4 is an arbitrary positive constant. In a similar manner, for the last term of (C5), it can be obtained from the second
equality of (6) and (B16) that

1 N E<IIN 1A
) - 2/0 (14 5)B (5, t)/o Be(se — €, )G 1[B](e,t)dedu|

<es /01 B2 (3¢, t)dsc + é/ﬂl (_/0% Ey (5 — e,t)Gil[B](e,t)de>2d%
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N 4 1, 1A 2
<l + = ([ kel = €6 [B(e, 0de)
5 vJo
N AFE F3 .
SesllBGON+ ——IBC DI (C10)
5
where €5 > 0 is an arbitrary scalar. Taking €1 = €2 = €3 = €4 = €5 = {3, inserting (C6)-(C10) into (C5), one has

. . R 40F?
Va(t) < 2ux’d?(t) — nB?(0,1) — gl\ﬁ(wﬁ)l\2 +40uF7E%(0,) + " 21+ F)llw 0]

2F2 2 2

40F? F: )
—2 2B, o2 (c11)

Utilizing (C3) to compute Vg(t), inserting the first equality of (2), using the integration by parts, and then applying the second
equality of (8), it can be verified that

Va(t) = 20 (1) — peo®(0,1) — prllw(-, DI* < 4ud?(8) + 4‘?’“ G, 1% = uw?(0,8) — ullw(-, I (c12)
We take the time derivative of (C4), and then insert the second equation of (2), one has
Va(t) = 2u0° (1, ) — po® (0, ) — pllv(, )1 (C13)
From é(sz,t) = a(s¢,t) — &(s¢,t) and (6), we get
v(1,t) = &0, t) + &(0,t) = B(0,t) + &(0, t). (C14)
Inserting (C14) into (C13) yields
Va(t) < 4uf(0,6) + 4> (0, 1) — pv?(0,1) — ullo (-, ). (c15)
According to (B5), it can be obtained that
€(0,1) < (O + [[v( DI +w?(0,1)). (C16)
The following Lyapunov function is discussed:
V(t) = a1Vi(t) + a2Va(t) + asVa(t) + aaVa(t), (C17)

where a1, a2, az, and a4 are positive scalars to be chosen later. We differentiate (C17) with respect to time ¢, and then insert (9),
(C11), (C12), and (C15). After that, we apply (B16), (C14), and (C16), it follows that
y 2 2 32 azp, 2
V(t) € —(a1v — 2a2x"p — dagp)d™ (t) + a1p€(t) — (azp — 2a1m3 — a1z — 4asp)B~(0,¢) — T\W('»t)”
2 2
4a3uF22F,f N 40a2FI%,, F3

X2 w

. 4002 FZ
+ (armF3 + MBCON = aspllt O + (arns + — =20+ FD) ()]

4002 FPF; 2 2 2 2
+ (aws e () (2a17ms + dasp + 40a2qu)) oG DI = asplloC DI — aspo™(0,¢)

— (asp — (2a1ns + 4asp + 40a2uF,3)02 (75))(;.12(07 t) + (2a1m3 + dasp + 400,2;4F,3)(72(t). (C18)
We choose a1 and a4 to satisfy az > w + 4a4 and a3z > (MT% + daq + 40(12F,3)0’2 (t). Meanwhile, we take the design
o2
parameter v > w&‘. Together with (C17), it can be deduced that
. azp 2 2 2
V() < a1p€(t) — —=IBC DI —aspllo DI — aapfvl, D
+ rOBC DN + B llw (DI + Bs@)llo(, DI + halt), (C19)

40ag F3 th

2 40ag FEF?
daguF3F2 40ag F2 2FEF}
e m A1+ FR), hs(t) = arns + —— 35—+ + 0”(t) (201m5 +

4asp + 40a2uF,§), and hy (t) = (2a1m3 + 4asp + 4Oa2p,F,?)o'2(t) are non-negative, bounded and integrable functions. By means of
(C1)-(C4), we obtain

where ki (t) = a1n1F22 + , ho(t) = a1ma +

I

V() < —ai1pVi(t) — %VQ(Q - %vg(t) - %mo T R (E)Va(t) + Ra () Va(E) + hs(t)Va(t) + ha(t). (C20)

Utilizing (C17) yields

V(t) < =6V () + BBV (t) + ha(t), (C21)
with § = min{p, §} being a positive constant and h(t) = 51117(;) + hii;t) + Bﬂi—t) being a non-negative, bounded and integrable

function.
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Figure D1  The trajectories of the states in Case 1. (a) State (s, t); (b) State estimation &(s¢,t); (¢) Input filter w(se, t); (d)
Output filter v (e, t).
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——— Continuous-in-time
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Figure D2 The evolution of the control input in Case 1.

According to Lemma 5 in Appendix E, it can be verified that V() is integrable and bounded on t € [0, +00) and lim¢— 4o V() =
0, which means that |£(t)], [|B(-, t)|, llw(-, )], and ||v(-, t)|| are square integrable and bounded on ¢ € [0, 400) and lim;_; 1 oo |£(t)| =
0, lim; 400 [[BC,8)]| = 0, limy— 4 oo |w (-, )|l = 0, and lim; 4 oo || (-, t)]| = 0.

Utilizing the second equation of (6), it can be given that ||&(-,t)|| is square integrable and bounded on t € [0,4o00) and
lims 4 oo ||&(-, t)|| = 0. From (B4) and e = 0 for ¢t > r, we infer that ||a(-, t)|| is square integrable and bounded on ¢t € [0, +00) and
lim¢—s 4 oo (-, t)|| = 0. Proposition 1 means that U(¢) is square integrable and bounded on t € [0, +00) and lim;_, 4o U(t) = 0,
so is the event-triggered controller U;. From the first equation of (2), we obtain that sup,.¢[o,1) |w(s¢,t)| is square integrable and
bounded on ¢ € [0, +00) and lim;— 4oc SUP,. (o, 1) [w(3¢,¢)| = 0. Thus, it can be deduced that lim;— 4o SUpP,.c(o,1) (3¢, t)| = O.
Because e = 0 for t > r, we obtain that lim¢_ oo sup,.c(o,1] (3¢, t)| = 0. Due to «(0,-) € L2([0, +00)) N L>([0, +00)) and
lim¢— 4 o0 |(0,t)] = 0, it follows from the second equation of (2) that sup,.c( 1] |v(3¢,t)| is square integrable and bounded on
t € [0, +00) and lim¢— 4 oo SUP,.¢c[0,1] |V(5¢, )| = 0. Then, according to (3), it is easy to obtain that sup,.c(g,1]|6(s¢,t)| is square
integrable and bounded on t € [0, +00) and limy—, 4o SUP,. (0,17 |&(5¢,t)| = 0. Together with the first equation of (6), we obtain
that sup,.co,1) |B(5¢,t)| is square integrable and bounded on t € [0, +00) and lim;_, 4 oo SUP,.c(0,1] |B(5¢, t)| = 0.

Note that the Lyapunov functions Va(t) = fol B2 (3¢, t)dse, Va(t) = fol w2 (52, t)dse, and Vi(t) = fol v? (3¢, t)ds¢ are not chosen
mainly because some favorable terms —pu fol B2 (52, t)dse, —pu fol w2 (3¢, t)dse, and —p fol 02 (3¢, t)ds cannot be obtained in derivative
calculation, that is, the stability analysis of the closed-loop system cannot be obtained.

Appendix D Simulation

In this part, we take two cases where X is positive and negative respectively to validate the availability of the theoretical analysis.
The finite difference method is utilized to discrete time step and space step as dt = 0.002 and dz = 0.05.

Case 1. The simulation model is (1) subject to parameters as follows: p = 0.75, 8(3¢) = 3(1 + e~ *cosh(ws)), and X\ = 0.8.
The bounds of the unknown function 0(s) are set to: @ = —10 and § = 10. The bounds of the uncertain parameter X are set to:
A =0.2 and XA = 100. The initial data are selected as: (s, 0) = ssin(s¢), 0(5,0) = 0.5, and A(0) = 0.6. The gains are selected
as ¢1(2) = 10sc and ¢2 = 0.5. The remaining parameters are determined as follows: £(0) = —0.1, p = 80, v = 154.3, n; = 12.5,
n2 = 0.9375, n3 = 0.3625, na = 125.75, and ns = 0.0125.

The simulation results are obtained and presented in Figures D1-D5. Figure D1 shows the response of states o, &, w, and v
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under ETC. The trajectories of the event-triggered and continuous-in-time control inputs are given in Figure D2. Figure D3(a)
illustrates the evolution of the dynamic triggering condition, if the trajectory dz(t) intersects with —&(t), an event is triggered.
From Figure D3(b), we can observe that the execution count is 34 with a minimal inter-execution time being 0.106s, substantially
exceeding the highly conservative minimal dwell-time estimate 4.5 x 10~ °s obtained from (B27). It can be seen from Figure D4
that the estimated parameters are both bounded and convergent. At last, simulations are conducted for 100 different initial data
determined by ag(s¢) = xsin(ns),n = 1,2,...,100, and inter-execution times among two triggering moments are computed. The
positive constant p, characterizing the decay rate of £(t) described by (9), is employed to regulate the sampling speed of ETC.
Thus, a comparison is drawn between cases of slow sampling and fast sampling, i.e., when p = 1 and p = 80, respectively. Figure
D5 presents the density of the inter-execution times, demonstrating that when p is small, the inter-execution times are larger, and
the sampling is less often.

Case 2. Consider the simulation model (1) with A = —0.8, the bounds of the uncertain parameter X are set to: A = —100 and
X = —0.2, the initial condition is defined as A(0) = —0.6. The remaining parameters and initial data are consistent with Case 1.

The simulation results are shown in Figures D6-D10. From Figure D6, we can observe that the states «, &, w, and v converge
to zero under ETC. The trajectories of the event-triggered and continuous-in-time control inputs are shown in Figure D7. Figure
D8(a) illustrates the evolution of the dynamic triggering condition. It can be seen from Figure D8(b) that the execution count is 43
with the minimal inter-execution time being 0.062s, substantially exceeding the highly-conservative minimal dwell-time estimate
1.2x 107 °s obtained from (B27). It can be seen from Figure D9 that the estimated parameters # and X are bounded and convergent.
Figure D10 displays the density of the inter-execution times for 100 distinct initial data. It is worth pointing out that it is just a
coincidence that negative X is required more execution and less minimal dwell-time than positive A.
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Figure D3 (a) and (b) denote the responses involved in the triggering condition and triggering interval in Case 1, respectively.
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Figure D4 The estimates 6 and A of the unknown parameters 6 and A in Case 1.
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Figure D5 Distribution of the inter-execution times based on 100 distinct initial data: «g(2¢) = s¢sin(nsc),n = 1,2,...,100 in
Case 1.
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Figure D6 The trajectories of the states in Case 2. (a) State a(se,t); (b) State estimation &(s¢,t); (c) Input filter w(se, t); (d)

Output filter v(e, t).
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Figure D7 The evolution of the control input in Case 2.
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Figure D8 (a) and (b) denote the responses involved in the triggering condition and triggering interval in Case 2, respectively.
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Figure D9 The estimates # and X\ of the unknown parameters 6 and A in Case 2.

[ P
s —so

Density

I'IH!‘H‘I | III I I
1 1.5

Intcr-exccution times

0.5

Figure D10 Distribution of the inter-execution times based on 100 distinct initial data: aq(3¢) = sesin(nsc),n =1,2,...,100 in
Case 2.

Appendix E Some Useful Criterion and Inequalities
Minkowski’s inequality ( [1]). For any 3¢ € [a, b], the following inequality holds:

\//bmz) 1 g(s0))2doe < \//b P2 (e)doe + \//b 62 (s2) e, (®1)

where f(3) and g(s) are two scalar functions.
Cauchy-Schwarz inequality ( [1]). For any 3¢ € [a, b], the following inequality holds:

/ " Fg () < \/ / ’ f2(u>du\/ / g2 (), (E2)

where f(3) and g(s) are two scalar functions.

Lemma 5 ( [1]). Suppose g, h1, and hs are real valued, nonnegative functions defined over RT, and let ¢ > 0 be a scalar. If iy
and iz belong to £(]0, +00)) and e satisfies 9(t) < —co(t) + h1(t)o(t) + ha(t), then

0 € £1([0,400)) N £7([0, +00)), , lim () =0. (E3)
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