
SCIENCE CHINA
Information Sciences

May 2024, Vol. 67, Iss. 5, 159102:1–159102:2

https://doi.org/10.1007/s11432-023-3977-9

c© Science China Press 2024 info.scichina.com link.springer.com

. LETTER .

Efficient privacy-preserving federated learning under
dishonest-majority setting

Yinbin MIAO1, Da KUANG1, Xinghua LI1, Tao LENG2,3,4*,

Ximeng LIU5 & Jianfeng MA1

1School of Cyber Engineering, Xidian University, Xi’an 710071, China;
2Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou 646000, China;

3Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100085, China;
4School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China;

5Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350108, China

Received 24 March 2023/Revised 29 July 2023/Accepted 30 January 2024/Published online 24 April 2024

Federated learning (FL) is an emerging distributed learn-

ing paradigm that solves the problem of isolated data by

jointly learning the global model through distributed clients.

However, recent studies have shown that FL may not al-

ways guarantee sufficient privacy preservation, this is mainly

because the model parameters (e.g., weights or gradients)

may leak sensitive information to malicious adversaries.

Thus, many privacy-preserving FL (PPFL) solutions have

attracted much attention from both academic and industrial

fields. However, there are still some issues to be solved. The

first issue is that existing PPFL solutions incur high costs

or low model accuracy. Although homomorphic encryption-

based PPFL (HE-based PPFL) [1] can achieve secure ag-

gregation, it still incurs high computation overhead due to

complex operations over encrypted data. Secure multi-party

computation-based PPFL (SMC-based PPFL) [2] eliminates

time-consuming operations of HE, but it still brings high

communication costs due to multiple interactions among

clients. To avoid the high costs in above solutions, differ-

ential privacy-based PPFL (DP-based PPFL) [3] only adds

noises to perturb local model parameters, thereby achiev-

ing privacy protection, but this method may lead to low

model accuracy. Thus, the above PPFL solutions are still

not well deployed in practical applications. The second issue

is that existing PPFL still cannot provide an efficient defense

mechanism under dishonest-majority setting. Some existing

PPFL [4] eliminates discrepant malicious data by comput-

ing the cosine similarity between client-side model updates

for comparison, thereby defending against model poisoning

attacks. But this method cannot support the dishonest-

majority setting, and incurs high costs as the operation of

calculating the cosine similarity under the ciphertext is very

complicated. More recently, PPFL [5] computes the simi-

larity between model updates by comparing the Hamming

distance between trust roots and model updates. It can

support dishonest-majority setting, and its cost of calculat-

ing Hamming distance under ciphertext is less than that

of calculating cosine, but this method will bring additional

complex operations to support the calculation of Hamming

distance, such as converting from boolean sharing to arith-

metic sharing (Bit2A).

From above discussions, we propose an efficient PPFL

with a defense mechanism to resist model poisoning at-

tacks in dishonest-majority settings, balancing robustness

with the efficiency and privacy protection required in prac-

tical applications. Specifically, we propose a sample-based

secret sharing method to build efficient security modules.

This method is designed according to the characteristics of

Hamming distance calculation, which can avoid the com-

plex operations brought by Hamming distance calculation

under ciphertext, such as Bit2A. In addition, we use the

root model update and adaptive learning rate to compen-

sate for the lack of valid information caused by malicious

clients, thereby improving the accuracy of the model. To

reduce the computational overhead, we adopting MPC to

build the privacy module. The specific algorithm details

will be given in the Appendix A. Here we only introduce the

overall algorithm flow. We divide the privacy framework

into four parts, including the preprocessing stage, the stage

for calculating Hamming distance and weight, the decoding

and multiplication stage, and the model aggregation stage.

Next, we describe its specific process in Algorithm 1.

Preprocessing. Each client Ci loads the global model wτ

of round τ and uses the local dataset to train the local model

wτ
i , and then calculates the model update ∇wτ

i = wτ −wτ
i .

Next we quantify ∇wτ
i to obtain the model update ∇wq

i .

In addition to facilitating the calculation of Hamming dis-

tance, Ci needs to code the ∇wq
i by ∇we

i =
⌈

(1−∇wq
i )/2

⌉

.

Finally, as the secret share distributor, Ci first generates the

secret shares [[∇we
i ]]0, [[∇we

i ]]1 locally, and sends them to the

secret share holders S0 and S1 respectively. Similarly, the

server S0 holds the root of data set, and performs the prepro-

cessing process as described above. Specifically, S0 performs

training based on the root data set, and calculates the local

model update ∇wτ
s , and then performs quantization and en-

coding to obtain ∇we
s . And as the holder and distributor of

∇we
s , S0 generates the secret shares [[∇we

s ]]0, [[∇we
s]]1, and

keeps [[∇we
s]]0, and sends [[∇we

s]]1 to S1. Specific details will

*Corresponding author (email: lengtao@iie.ac.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3977-9&domain=pdf&date_stamp=2024-4-24
https://doi.org/10.1007/s11432-023-3977-9
info.scichina.com
link.springer.com


Miao Y B, et al. Sci China Inf Sci May 2024, Vol. 67, Iss. 5, 159102:2

be described in the algorithm PO(·) in Appendix A.1.

Algorithm 1 FESD

Input: α,w0, number of clients n, number of communication

rounds T.

Output: Global model wτ .

1: Servers compute [[a]], [[b]], [[c]]← F.GMT(S0, S1) //Generate

multiplicative triples in the offline stage;

2: for τ = 0, 1, . . . , T − 1 do

3: S0 selects clients Ct = {C0, . . . , Cn−1} and then com-

putes [[∇we

s
]]0, [[∇we

s
]]1 ← F.PO(wτ );

4: for i = 0, . . . , n − 1 do

5: Ci ∈ C
t computes [[∇we

i
]]0, [[∇we

i
]]1 ← F.PO(wτ );

6: Calculate Hamming distance:

7: S0 and S1 separately compute [[Hd]]b ← H([[∇we

i
]]b ⊕

[[∇we

s
]]b), b ∈ {0, 1};

8: Calculate client weight:

9: [[v]]0, [[v]]1 ← GMW(µ − [[Hdi]]0,−[[Hdi]]1);

10: Decoding:

11: [[∇wd

∗
]]b = b− 2× [[∇we

∗
]]b, b ∈ {0, 1};

12: Multiplication:

13: [[∇wτ

i
]]0, [[∇wτ

i
]]1 ← SecMul([[vi]], [[∇wd

i
]]);

14: Model aggregation:

15: [[wτ+1]]b = [[wτ ]]b − α ×
(

∑

i
[[∇wτ

i
]]
b
+[[∇wd

s
]]
b

)

, b ∈

{0, 1};

16: end for

17: end for

18: return wT .

Calculate Hamming distance and weight. To detect mali-

cious parameters, we use Hamming distance to measure the

similarity between the trusted root [[∇we
s ]] and [[∇we

i ]] up-

loaded by Ci. If the calculated Hamming distance is greater

than the parameter µ, Ci is judged to be corrupted. Then

we calculate the weight value of Ci for security aggregation.

Specifically, S0 and S1 respectively compute the se-

cret shares [[Hd]]0, [[Hd]]1 of the Hamming distance between

[[∇we
s]] and [[∇we

i ]] through XOR and H(·), where H(·) is the

number of 1 in the binary stream. In the entire process, op-

erations are performed locally, which can ensure the privacy

and security of the data (Line 7 in Algorithm 1). Aiming

to guarantee that servers do not disclose their respective se-

cret shares while calculating the client’s weight value, we

use GMW to calculate the secret share [[vi]]0, [[vi]]1 of the

client weight value (Line 9 in Algorithm 1). The structure

of circuit is shown in Appendix A.2.

Decoding and multiplication. Before updating the global

model, the gradient needs to be decoded for weighting.

Specifically, S0 and S1 decode secret shares [[∇we
∗
]]0, [[∇we

∗
]]1

by (1) locally, where ∗ ∈ {i, s}. Then servers calculate

the weighted model update [[∇wτ
i ]] = [[vi]] × [[∇wd

i ]] (Lines

10–13 in Algorithm 1). To calculate multiplication under

secret shares, S0 needs to generate multiplicative triples

[[a]], [[b]], [[c]] according to Algorithm GMT(·) in Appen-

dix A.3, which can be performed in the offline phase. Fi-

nally, we securely calculate [[∇wτ
i ]] according to Algorithm

SecMul(·) in Appendix A.4.

[[∇wd
∗
]]b = b− 2 · [[∇we

∗
]]b, b ∈ {0, 1} . (1)

Model aggregation. S0 and S1 respectively calculate se-

cret shares [[wτ+1]]0, [[wτ+1]]1 by (2) and then send [[wτ+1]]0,

[[wτ+1]]1 to each client Ci.

[[wτ+1]]b = [[wτ ]]b−α×
(

∑

i
[[∇wτ

i ]]b+[[∇wd
s ]]b

)

, b ∈ {0, 1} ,

(2)

where α is the global learning rate. In particular, we adopt

an adaptive global learning rate to better improve the model

performance, we set α = α/(1 − δ), where δ is the fraction

of corrupt clients detected in this round of communication

and δ can be estimated by whether vi is equal to 0.

As shown in Appendixes A–C, the algorithm details, se-

curity analysis, performance analysis are described respec-

tively.

Conclusion and future work. We propose an efficient

PPFL (FESD), which can defend against model poison-

ing attacks in the dishonest-majority setting and guarantees

that the privacy will not be compromised. Along the way,

we also propose a sampling-based secret sharing method

that can completely avoid Bit2A, thus greatly reducing the

computational overhead. In future research, we will focus

on combining the latest security multi-party technologies to

improve the efficiency of our framework, such as adopting

OT-Extension.

Acknowledgements This work was supported by National
Natural Science Foundation of China (Grant Nos. 62072361,
62125205, U23A20303), Key Research and Development Pro-
gram of Shaanxi (Grant No. 2022GY-019), Shaanxi Fun-
damental Science Research Project for Mathematics and
Physics (Grant No. 22JSY019), Opening Project of Intelli-
gent Policing Key Laboratory of Sichuan Province (Grant No.
ZNJW2023KFMS002), and Open Fund of Key Laboratory of
Computing Power Network and Information Security (Grant No.
2023ZD020).

Supporting information Appendixes A–C. The support-
ing information is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.

References

1 Phong L T, Aono Y, Hayashi T, et al. Privacy-preserving

deep learning via additively homomorphic encryption. IEEE

TransInformForensic Secur, 2018, 13: 1333–1345

2 Sharma S, Xing C, Liu Y, et al. Secure and efficient fed-

erated transfer learning. In: Proceedings of IEEE Interna-

tional Conference on Big Data, 2019. 2569–2576

3 Girgis A M, Data D, Diggavi S, et al. Shuffled model of

federated learning: privacy, accuracy and communication

trade-offs. IEEE J Sel Areas Inf Theor, 2021, 2: 464–478

4 Nguyen T D, Rieger P, Yalame H, et al. Flguard: secure

and private federated learning. 2021. ArXiv:2101.02281

5 Dong Y, Chen X, Li K, et al. Flod: oblivious defender for

private byzantine-robust federated learning with dishonest-

majority. In: Proceedings of European Symposium on Re-

search in Computer Security (ESORICS’21), 2021. 497–518

info.scichina.com
link.springer.com
link.springer.com
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/JSAIT.2021.3056102
https://arxiv.org/abs/2101.02281

