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Static analysis tools (SATs) have shown potential ability

in software quality assurance [1]. However, SATs report an

overwhelming number of warnings, where most warnings are

unactionable ones (i.e., warnings that are not acted on or

fixed by developers). It is not a trivial task for developers

to find actionable warnings (i.e., warnings that are acted on

and fixed by developers) in all reported warnings. Hence,

the excessive unactionable warnings seriously impede the

usability of SATs [2].

To improve the usability of SATs, many machine

learning-based actionable warning identification (ML-based

AWI) approaches are proposed and studied [3]. The general

procedure of these approaches is to perform the warning

representation, train an ML-based classifier based on the

warning representation, and apply this classifier to classify

warnings into actionable and unactionable ones. For these

ML-based AWI approaches, one of the most critical parts is

the warning representation, which is closely related to AWI

performance. Currently, the hand-engineered, token-based,

and text-based techniques are commonly used for the warn-

ing representation, which mainly focus on capturing the sta-

tistical or lexical information for AWI. However, such tech-

niques miss structural information of the warning for AWI.

The warning-inducing context, which is mainly extracted

from the class/method containing the warning or program

slicing for the warning, is the foundation for capturing struc-

tural information of the warning. Yet, due to the irrelevant

and incomplete warning-inducing context caused by the ex-

isting extraction ways, it is challenging to capture structural

information of the warning.

Our approach. We propose an AWI approach via the re-

fined warning-inducing context representation, which aims

to perform the AWI by capturing both lexical and structural

information from the refined warning-inducing context. To

obtain the refined warning-inducing context, our approach

defines a new warning-slicing criterion for program slicing to

construct the warning-inducing context and designs an ad-

justment algorithm to complete the warning-inducing con-

text. Such a refined warning-inducing context can show the

complete dependencies of the reported warning while remov-

ing the irrelevant information of this reported warning. Be-

sides, our approach performs the AWI-aware abstraction for

the refined warning-inducing context to help train a more

generalizable AWI classifier. Subsequently, our approach

leverages an advanced source code representation technique

ASTNN [4] to learn the warning-inducing context represen-

tation with both lexical and structural information. Based

on the representation of labeled warnings, our approach fi-

nally trains an ML-based classifier for AWI. Figure 1 shows

the overview of our approach, which mainly contains the

training phase and detection phase.

(1) The training phase. In the training phase, our ap-

proach includes five steps, i.e., the warning-inducing con-

text construction, completion, abstraction, representation,

and ML-based AWI classifier training.

Step 1. Given a warning, the natural way to obtain

the warning-inducing context is to extract the source code

from the class/method information containing a warning or

the warning line numbers. However, the above way either

brings much information that is irrelevant to the warning

or is too coarse-grained due to missing the detailed warn-

ing context information. Thus, based on the warning line

numbers, our approach leverages the program dependency

analysis of Joana to perform the backward program slicing

for the warning. In particular, our approach defines a new

warning-slicing criterion for Joana, which aims to alleviate

the unsolvable and time-consuming problem in the original

criterion of Joana [5]. Such a new warning slicing criterion

can be seen in Appendix A. In the end, our approach obtains

the warning-inducing context, which can contain statement

dependencies that report a warning while eliminating the

irrelevant information of this warning.

Step 2. Due to the arbitrary and irregular coding format

in the source code, the constructed warning-inducing con-

text could be incomplete. To address the above problem, our

approach designs an adjustment algorithm for the warning-

inducing context completion. The core idea of our proposed

adjustment algorithm is relying on abstraction syntax tree

rules of the source code to extract statements with the corre-

sponding source code line numbers from Joana, thereby ob-

taining the refined warning-inducing context. Appendix B

shows the detailed completion process.

Step 3. Some specific identifiers (e.g., numbers,

string literals, and project-specific variables) in the refined

warning-inducing context provide little structural informa-

tion to judge whether a warning is actionable or unaction-
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Figure 1 Overview of our approach. (a) Training phase; (b) detection phase.

able. Thus, our approach performs the AWI-aware abstrac-

tion for the warning-inducing context. On the one hand, our

approach abstracts numbers/string literals into NUM/STR.

On the other hand, our approach abstracts rare variables

with UNK based on the frequency of variables.

Step 4. Given the abstracted warning-inducing context

with a set of statements, our approach relies on ASTNN

to split them into a sequence of statement trees, learn vec-

tor representations of multi-way statement trees, and track

the naturalness among statement trees. To the end, our ap-

proach outputs an m-dimension vector, which is the warning

representation with lexical and structural information.

Step 5. Our approach uses an ML model to train an AWI

classifier based on the vectors of labeled warnings. Then,

this classifier is used for the detection phase.

(2) The detection phase. Our approach relies on Steps 1–

4 in the training phase to obtain the vectors of unlabeled

warnings. Based on these vectors, our approach uses the

AWI classifier from the training phase to classify the unla-

beled warnings into actionable and unactionable ones.

Evaluation. To validate our approach, we conduct the

experimental evaluation on 51K+ warnings, which are col-

lected from 56 releases of five large-scale and open-source

projects. We compare our approaches with four state-of-the-

art ML-based AWI approaches (i.e., one hand-engineered

AWI approach, one token-based AWI approach, and two

text-based AWI approaches) in the within-project and cross-

project AWI. The experimental results show that in the

within-project AWI, our approach improves four approaches

by 4%–38% in terms of AUC. In particular, our approach

achieves the best AUC (nearly 100%) in some cases. In the

cross-project AWI, our approach improves four approaches

by 5%–21% in terms of AUC. Through the Scott-Knott test,

the results show that compared with four state-of-the-art ap-

proaches, our approach is ranked first in the within-project

and cross-project AWI.

Conclusion. We improve AWI via the refined warning-

inducing context representation, which captures both lex-

ical and structural information for AWI from the refined

warning-inducing context. We conduct experiments on over

51K+ warnings from 56 releases of five large-scale and open-

source projects. The results in both within-project and

cross-project AWI show that our approach is more effective

than four state-of-the-art ML-based AWI approaches.
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